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Results  In all xenografts, microvessel damage occurred 
from Day 1. Tumor damage also occurred in liver, breast, 
but not in renal xenografts. Using specific human and 
mouse probes for genes encoding sunitinib targets, we 
showed a significant relation between apoptotic tumor cell 
numbers and human PDGFRΒ and RET mRNA expression 
in liver cancer and to human VEGFR2 expression in breast 
cancer xenografts. In contrast, in renal cancer xenografts, 
vascular effect evaluated by measuring endothelial cell 
apoptosis was related to mouse Vegfr1, Vegfr2 and Vegfa-
164 expression.
Conclusion T his study identifies sunitinib vascular and 
tumor effects according to different tumor types and shows 
that sunitinib molecular targets used as biomarkers enable 
assessment of therapeutic response.

Keywords T umor cell death · Endothelial cell · 
Sunitinib · Murine model · Xenograft

Abstract 
Purpose  Sunitinib is an inhibitor of tyrosine-kinase recep-
tors, and no biomarker predictive of sunitinib response is 
available. The purpose of this preclinical study was to show 
whether sunitinib molecular targets could be used as bio-
markers to assess tumor response to sunitinib in human can-
cer cell line xenografts of three different tumor types.
Methods  Using mice xenografted with liver, breast and 
renal carcinoma cell lines, we sequentially analyzed the 
effect of 7-day sunitinib treatment on tumor and vascular 
compartments.
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Introduction

Recent therapies targeting tumor angiogenesis have 
shown clinical benefits in metastatic liver, breast and kid-
ney carcinoma [1–3]. Nevertheless, biomarkers are still 
needed in order to better assess the therapeutic response 
or resistance in individual patients and to establish new 
treatment regimens. Sunitinib (Sutent, SU11248, Pfizer) 
is an orally administered inhibitor of tyrosine-kinase 
receptors. In advanced renal cell carcinoma, sunitinib-
associated hypertension was shown to be associated with 
improved clinical outcomes, supporting its viability as an 
efficacy marker [4]. Nevertheless, primary resistance to 
sunitinib has occurred in about 30 % of patients [1, 5, 6]. 
In hepatocarcinoma and metastatic breast carcinoma, pri-
mary resistance to sunitinib is even more frequent [7–9], 
thereby limiting its use. Novel biomarkers are therefore 
needed to predict therapeutic response and also resistance 
to sunitinib.

Several studies have aimed to identify biomarkers 
associated with sunitinib response [10–12]. For exam-
ple, VEGFA mRNA basal expression was found to be 
associated with response to sunitinib treatment in meta-
static renal cell carcinoma [13]. In addition, a large set of 
data on VHL gene status [10] and HIF expression [14] is 
available, but results are contradictory and so far do not 
efficiently predict response to sunitinib. Preclinical stud-
ies, using mice xenografted with human cancer cell lines 
[15–17], have focused on the anti-angiogenic activity of 
sunitinib, showing a decrease in microvessel density [16–
20]. However, little is known about its effects on tumor 
cells. Here, we explored the tissue effects of sunitinib 
on the microvessel network and on tumor cells at differ-
ent time points using mice xenografted with liver, breast 
and renal carcinoma cell lines (SkHep1, MCF-7 and 786-
O, respectively). We first demonstrated that sunitinib 
targets either the vascular stroma alone in 786-O cells 
or both the vascular stroma and tumor cells in SkHep1 
and MCF-7 xenografts. The main sunitinib targets are 
VEGFR1, VEGFR2, PDGFRα and PDGFRβ, KIT, FLT3 
and RET [18, 21]. Using quantitative RT-PCR, these 
xenograft models enabled us to perform separate analy-
ses of the expression of these targets as well as VEGFA-
165 in (1) human tumor cells, using specific human 
probes and (2) CD105-sorted mouse tumor endothelial 
cells, using mouse probes for the same targets as well 
Vegf-164. These analyses allowed us to assess whether 
the effects on tumor and endothelial cells were related to 
gene expression of sunitinib targets in each tumor-type. 
Altogether, our results show that sunitinib targets can be 
used as biomarkers, as their gene expression level cor-
relates with the tumor-type-specific response to sunitinib 
treatment.

Materials and methods

Cell lines

Three human cell lines, 786-O (kidney carcinoma, with 
VHL mutation), MCF-7 (breast carcinoma) and SkHep1 
(hepatocarcinoma), were obtained from the ATCC (Rock-
ville, MD). Cell cultures are described in Supplemental 
Methods.

In vitro cytotoxicity and proliferation inhibition

Cells were exposed to increasing concentrations of suni-
tinib ranging from 0.5 to 16 μmol/L. After 2-day incuba-
tion, cytotoxicity was determined by the colorimetric con-
version of tetrazolium MTT as described in Supplemental 
Methods.

Mice xenografted with human cell lines

Mice purchased from Janvier, France, were maintained in 
pathogen-free animal housing (University-Institute-Haema-
tology, Paris). For each cell line studied, 5 × 106 cells were 
grafted subcutaneously in 6-week-old female NMRI nude 
mice, under xylazine (10  mg/kg) and ketamine (100  mg/
kg) anesthesia. This study was approved by the University-
Institute board ethics committee for animal studies. Tumor 
growth was measured daily in two perpendicular diameters 
with a caliper. Volumes were calculated as V = L × l2 ÷ 2, 
L being the largest diameter (length), l the smallest (width) 
[22]. For each tumor, growth curves were established. 
When tumors reached a volume of 100 mm3, the mice were 
given sunitinib diluted in 0.9 % NaCl once daily.

Four concentrations of sunitinib, ranging from 0.84 to 
40.00 mg/kg/day, were studied in the three xenograft mod-
els. These first results led us to treat mice at 2 mg/kg/day 
for the following experiments, where mice were euthanized 
at Day 0 (without treatment) and at Days 1, 3, 5 and 7 after 
treatment. Five mice were studied for each time point. 
Freshly dissected tumors were cut into four parts: one part 
was treated for endothelial cell sorting, one snap-frozen, 
one formaldehyde-fixed and paraffin-embedded and one 
glutaraldehyde-fixed for electron microscopy [23].

Tumor endothelial cell sorting

Fresh tumors minced mechanically were strained through 
a 70-μm sieve to obtain a single-cell suspension. Tumor 
cells were washed three times with a PBS buffer containing 
0.5 % bovine serum albumin. Cells were incubated 30 min 
at 4 °C with anti-mouse CD105 antibody (monoclonal rat, 
1/50, clone MJ7/18, BD Pharmingen, France). Unbound 
antibody was washed off, and cells were incubated for 
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15  min at 4  °C with microbeads conjugated with a rat 
IgG2a antibody (Miltenyi Biotech, France). Sorting was 
performed as recommended by the manufacturer. Positive 
cells were counted and prepared for RNA extraction.

Quantitative RTPCR of sunitinib molecular targets 
and VEGFA isoforms

This study was performed using human probes on the three 
cancer cell lines, on untreated xenografted tumors (Day 
0) and on sunitinib-treated xenografted tumors (Day 7). 
Mouse endothelial cells, sorted from xenografted tumor 
samples at Day 0 and Day 7, were studied using mouse 
probes.

RNA extraction, quantification and qualification and 
qPCR are explained in Supplemental Methods.

The following human genes were analyzed: VEGFA-
165 [Hs00900058_m1], VEGFR1 [Hs01052936_m1], 
VEGFR2 [Hs00176676_m1], PDGFRΑ [Hs00183486_
m1], PDGFRΒ [Hs00199831_m1], KIT [Hs00174029_
m1], RET [Hs00240887_m1], FLT-3 [Hs00975659_m1] 
and TBP [Hs99999910_m1]. The following mouse genes 
were analyzed: Vegfa-164 [Mm00437308_m1], Vegfr1 
[Mm00438980_m1], Vegfr2 [Mm01222431_m1], Pdgfrα 
[Mm01211694_m1], Pdgfrβ [Mm01262489_m1] and 
Gapdh [Mm99999915_g1] (Applied Biosystem, France).

Quantitative in situ studies: necrosis, cell proliferation, 
apoptosis

In all cases, analyses were performed by two patholo-
gists (AJ, MV) unaware of the tumor-type and the day of 
treatment.

Necrosis was studied on virtual slides created on a 
Nanozoomer 2.0 HT scanner (Hamamatsu, Japon) from 
hematoxylin–eosin-stained paraffin sections. Areas of 
necrosis were delineated by the two pathologists on the vir-
tual slides and quantified using DotSlide 2 software.

Microvessel density was assessed on tissue sections 
using CD31 monoclonal rat anti-mouse antibody (Dianova, 
Germany, clone SZ31) at 1:20 dilution as primary anti-
body. An indirect immunoperoxidase method was used, 
with controls having no primary antibody or an irrelevant 
primary antibody of same isotype. The number of stained 
blood vessels was counted on ten different fields at ×400 
magnification, on a Provis-AX-70 microscope (Olympus–
Tokyo). Results were expressed as mean ±  standard error 
of the mean (SEM).

Human tumor cell proliferation and human tumor cell 
apoptosis were assessed on tissue sections using, respec-
tively, a monoclonal mouse anti-human Ki67 antibody 
(clone MIB-1, DakoCytomation, France) and a polyclonal 
rabbit anti-human cleaved-caspase-3 antibody (Asp175, 

Cell Signaling, France) as primary antibodies. An indirect 
immunoperoxidase method was used. Immunostained cell 
counts were performed on ten different fields at ×400 mag-
nification. Results were expressed as mean ± SEM.

Electron microscopy (Hitachi-7650) was used to count 
apoptotic endothelial cells in tumor microvessels. Apop-
tosis was defined according to consensus criteria [24]. A 
minimum of 50 microvessel sections was analyzed for each 
sample, and results expressed as mean ± SEM.

Statistical analyses

For quantitative in situ studies, the differences between 
analyses before and after treatment were assessed using the 
Wilcoxon signed-rank test. A p value  ≤0.05 was consid-
ered to be significant. For correlation studies, the Pearson 
correlation coefficient was calculated between the level of 
mRNA expression of the molecular targets of sunitinib in 
tumor or endothelial cells at Day 0 and the apoptotic cell 
counts at Day 7. SPSS Statistics 17.0 software was used to 
perform the analyses.

Results

Sunitinib induces differential tumor and endothelial cell 
apoptosis in xenograft models of renal, breast and hepatic 
carcinomas

In vitro, cytotoxicity tests showed that sunitinib inhibitory 
concentration (IC50) values for MCF-7 (Fig. 1a), SkHep1 
(Fig.  1b), 786-0 (Fig.  1c) human cancer cell lines were 
5  μmol/L (±0.3), 5.4  μmol/L (±0.15) and 6.1  μmol/L 
(±0.22), respectively. The three human cancer cell lines 
were selected from a panel of more than 20 cell lines, 
because of greater sensitivity to sunitinib (Figure S1—sup-
plementary Figure). In comparisons with untreated con-
trols, sunitinib inhibited proliferation of MCF-7 (Fig.  1d) 
and SkHep1 (Fig. 1e) but not 786-0 cell lines (Fig. 1f), at 
0.5 μmol/L concentration, a dose known to be pharmaco-
logically active in vitro and in vivo [18, 25].

In vivo, in the three types of xenografts treated with 
increasing doses of sunitinib (0.84; 2; 8; 40  mg/kg/day), 
we showed that the dose of 2 mg/kg/day was the first effi-
cient dose in inhibiting tumor growth (p < 0.05) (Fig. 1g–
i). In addition, we hypothesized that a dose of 40 mg/kg/
day was too high for modeling in mice sunitinib tumor 
cell effects observed in patients. In patients, after 28 days 
of continuous treatment with a 50-mg daily dose of suni-
tinib, the peak of concentration (Cmax) in serum is around 
70  ng/mL [25]. In mice, a comparable Cmax is obtained 
after a dose of 5 mg/kg. After a dose of 40 mg/kg, the Cmax 
is much higher than 100  ng/mL [18]. In addition, in the 
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mice we treated with a 40-mg/kg daily dose of sunitinib, 
after 7 days of treatment, we observed severe cardiac and 
hepatic toxicities (i.e, round steatosis vacuoles with pic-
notic hepatocytes surrounding centrolobular veins, conges-
tive capillaries with reduced thickness of cardiomyocytes; 
see Supplementary Figure S2). By contrast, at the minimal 
efficient dose of 2 mg/kg/day, in the three xenograft mod-
els, our results showed that sunitinib induced mild liver or 
cardiac toxicity.

We then performed kinetic analyses of microvessel 
density, necrosis, proliferation and apoptosis in the three 
models treated with 2  mg/kg/day sunitinib. Microvessel 
distribution was tumor-type dependent at baseline, typi-
cally more peripheral in MCF-7 xenografts (Supplementary 
Figure S3), and microvessel density significantly decreased 
from Day 1 in all three xenografts (Fig. 2a). Tumor necro-
sis occurred at Day 3 in SkHep1 and MCF-7 xenografts, 
whereas it was detected only at Day 5 in 786-O (Fig. 2b; 
Supplementary Figure S4). In addition, at this 2 mg/kg/day 
dose, sunitinib efficiently inhibited tumor cell proliferation 

at Day 3 in SkHep1 and MCF-7 xenografts, whereas this 
was never observed in 786-O tumors (Fig.  2c; Supple-
mentary Figure S4). We then wondered whether tumor 
cell apoptosis was affected in the same manner. Sunitinib 
significantly induced tumor cell apoptosis in SkHep1 and 
MCF-7 xenografts but not in 786-O tumors (Fig. 2d; Sup-
plementary Figure S4).

Having observed that sunitinib was able to induce necro-
sis and decrease microvessel density, we analyzed how the 
vascular compartment was targeted in these three xenograft 
models of renal, breast and hepatic carcinomas. Using elec-
tron microscopy, apoptotic endothelial cells were quanti-
fied on semi-thin sections. This analysis made it possible 
to determine that sunitinib displayed the same efficacy 
in inducing endothelial apoptosis in these three models 
(Fig. 3, panel a–c).

Altogether, these results suggest that sunitinib targets 
both the tumor and vascular compartments in SkHep1 and 
MCF-7 xenografts, but only the vascular compartment in 
786-O tumors. Interestingly, this translates as early necrosis 

Fig. 1   In vitro and in vivo dose effects of sunitinib on three human 
cancer cell lines and in three xenograft models. For the in vitro data 
(a–f), experiments were done in triplicate. Inhibitory concentra-
tion 50 (IC50) toward sunitinib was 5  μmol/L (±0.3), 5.4  μmol/L 
(±0.15) and 6.1  μmol/L (±0.22) for MCF-7, SkHep1 and 786-0 
cell lines, respectively. For MCF-7 and SkHep1 cell lines, inhibition 
of proliferation was observed at the pharmacologically active dose 

of 0.5 μmol/L, while it was not for 786-0 cell line. For the in vivo 
experiments (g–i), mice (n = 5 per dose) were treated daily with suni-
tinib at 0.84, 2, 8 and 40 mg/kg, respectively. Tumors were measured 
at Day 0 and Day 7, and tumor volumes were calculated. A dose-
dependent tumor growth inhibition was observed for the three xeno-
graft models (SkHep-1, MCF-7 and 786-O), with a significant tumor 
growth inhibition at 2 mg/kg/day. *p < 0.05
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at Day 3 in SkHep1 and MCF-7 xenografts, whereas it was 
only detected later, at Day 5, in 786-O.

Tumor‑type‑specific regulation of genes encoding sunitinib 
targets in vitro and in vivo

Having shown that sunitinib is able to target either the 
tumor or the vascular stroma in these models, we next 

wondered whether its differential effect on tumor and 
endothelial apoptosis might be due to differential expres-
sion of genes encoding its targets, i.e, VEGFR1, VEGFR2, 
PDGFRα, PDGFRβ, KIT, RET and FLT-3. We also studied 
VEGFA-165 isoform expression. The expression levels of 
these genes were therefore investigated both in vitro and 
in vivo in the three tumor cell types. In vitro, we showed 
a different gene expression pattern in the three cell types. 

Fig. 2   In vivo cell and tissue effects of sunitinib on three human can-
cer cell line xenografts. At the dose of 2 mg/kg/day, quantitative data 
were assessed on five different fields for each tumor and for five dif-
ferent mice in each group. For necrosis extent  (b), a significant dif-
ference was found at Day 3 in both SkHep1 and MCF-7 xenografts 
and at Day 5 in 786-O xenografts. For tumor cell proliferation (c), 

Ki67 positive cells counts significantly decreased at Day 3 in SkHep1 
and MCF-7 xenografts, but not in 786-O xenograft. For tumor cell 
apoptosis (d), cleaved-caspase 3 positive cells counts significantly 
increased at Day 5 in MCF-7 and SkHep1 xenografts, but not in 
786-O xenograft. *p < 0.05. ns = not significant
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Only VEGFR2, RET, PDGFRΒ and VEGFA-165 mRNAs 
were expressed in SkHep1 cells (Fig. 4a), whereas MCF-7 
cells expressed VEGFR1, VEGFR2, KIT, RET, FLT-3 and 
VEGFA-165 mRNAs (Fig. 4b), and 786-O cells expressed 
VEGFR2, PDGFRΑ, PDGFRΒ, RET and VEGFA-165 
mRNA (Fig. 4c).

We then performed quantitative RT-PCR analyses 
using either human-specific or mouse-specific probes on 
tumor samples, thereby making it possible to decipher 
which genes encoding sunitinib targets are expressed in 
human cancer cells versus those expressed in the mouse 

tumor stroma. These analyses revealed striking differ-
ences when compared to the in vitro results. In untreated 
tumors, human VEGFR1 mRNA expression was up-reg-
ulated in SkHep1 xenografts (Fig.  4d, dark bar), whereas 
it was down-regulated in MCF-7 xenografts (Fig. 4e, dark 
bar) and unchanged in 786-O cells (Fig.  4f, dark bar). 
Human RET expression was also modulated in vivo when 
compared to in vitro, as its expression was lost in MCF-7 
xenografts (Fig. 4e, dark bar). We then wondered whether 
the expression of these genes was affected by sunitinib 
treatment. We demonstrated that mRNA expression of 

Fig. 3   Sunitinib-induced endothelial cell apoptosis in tumor cell 
line xenografts. Using electron microscopy, on semi-thin sections, 
endothelial cells with large nuclei and regularly distributed chromatin 
(white arrow) were found within microvessel section at Day 0 (white 
broken lines =  microvessel basal membrane). At Day 7 in SkHep1 
xenograft (a), microvessel sections showed major damage with apop-
totic endothelial cells (white arrow heads) and microthrombi (T) at 
Day 7. In MCF-7 xenografts (b), on semi-thin sections, microvessels 
had a more irregular shape (white broken lines = microvessel basal 
membrane) and apoptotic endothelial cells with reduction in cellu-

lar volume (pyknosis) were observed (white arrow head). At higher 
magnification, chromatin condensation and distribution in the nucleus 
periphery (double black arrow) are clearly seen on apoptotic endothe-
lial cells. In 786-O xenografts, microvessel sections showed endothe-
lial damage with pycnotic nuclei (white arrow heads), together with 
an accumulation of apoptotic nuclei and fibrin deposits in the ves-
sel lumen. The number of apoptotic endothelial cells significantly 
increased between Day 0 and Day 7 in all xenografted models. 
RBC = red blood cell. *p < 0.05
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PDGFRΒ, RET and VEFGA-165 was affected by sunitinib 
in SkHep1 xenograft, whereas only VEGFR2 was affected 
in MCF-7 xenograft (Fig.  4d–e, gray bar). Interestingly, 

and in line with our observations that neither prolifera-
tion nor apoptosis was affected by sunitinib in 786-O 
xenografts, we demonstrated here that none of the genes 

Fig. 4   qRTPCR for sunitinib targets on cell lines (a–c) and tumor 
xenografts using human (d–f) or mouse (g–i) probes. For the cell 
lines (a–c), experiments were done in triplicate. The housekeeping 
gene tbp was used to normalize gene expression results. The results 
were expressed in (−ΔCT). For the xenografts (d–i), five mice of 
each type were used and experiments were done in triplicate. The 
same concentration of RNA was used for all the samples, and the 
quality of RNA was checked using Agilent electrophoresis (Agilent, 
France). The housekeeping genes TBP (d–f) or Gapdh (g–i) were 
used. At Day 0, we showed a loss of mRNA expression for most 
human targets of sunitinib compared to human tumor cell lines. At 
Day 7, decreased mRNA expression of PDGFRΒ (RQ  =  0.07, 

p < 0.05), RET (RQ = 0.12, p < 0.05), and VEGFA-165 (RQ = 0.18, 
p < 0.05) was found in SkHep1 xenograft (D), and decreased mRNA 
expression of human VEGFR2 (RQ  =  0.33, p  <  0.05) in MCF-7 
xenograft (e). In mouse CD105-positive cells from treated tumors 
(Day 7), we showed decreased mRNA expression of Vegfa-164 in the 
MCF-7 (h) and 786-O xenografts (i), but not in the SkHep1 xenograft 
(G). In MCF-7 xenograft, mRNA expression of Vegfr1 (RQ  =  0.2, 
p  <  0.05), Vegfr2 (RQ  =  0.28, p  <  0.05), Pdgfrα (RQ  =  0.23, 
p < 0.05) and Pdgfrβ (RQ = 0.07, p < 0.05) decreased at Day 7 (h). 
In 786-O, Vegfr1 (RQ  =  0.39, p  <  0.05) and Vegfr2 (RQ  =  0.22, 
p < 0.05) expression decreased at Day 7 (i)
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encoding sunitinib targets were differentially regulated in 
vivo in 786-O xenografts.

We next explored whether the expression of these genes 
was affected in the vascular stroma (sorted CD105-positive 
mouse endothelial cells of these tumors), using mouse-spe-
cific probes. We first showed that Vegfr1, Vegfr2, Pdgfrα, 
Pdgfrβ and Vegfa-164 were expressed in the three untreated 
xenografts (Fig.  4g–i—black bar). In sunitinib-treated 
tumors, none of these genes were affected in SkHep1 xeno-
grafts (Fig. 4g, gray bar), whereas Vegfr1, Vegfr2, Pdgfrα, 
Pdgfrβ and Vegfa-164 were all affected in MCF-7 xeno-
grafts (Fig. 4h, gray bar) and Vegfr1, Vegfr2, Vegfa-164 in 
786-O xenografts (Fig. 4i, gray bar). Altogether, these data 
therefore showed that sunitinib has tumor-type-specific 
effects and specifically affects its target genes expression 
both in the tumor and vascular compartments in MCF-7 
xenografts and either in the tumor compartment in SkHep-1 
or only in the vascular compartment in 786-O xenografts.

Tumor and endothelial cell apoptosis is correlated with the 
level of molecular expression of sunitinib targets

We then sought to determine whether tumor or endothe-
lial apoptosis induced by sunitinib might be correlated 
with differences in the expression levels of genes encod-
ing its targets. We performed correlation analyses between 
the number of apoptotic cells in either tumor or endothe-
lial cells and the expression of these genes. A significant 
correlation was observed between the number of apoptotic 
tumor cells and tumor mRNA expression levels of human 
PDGFRΒ and RET in SkHep1 xenograft (R2 =  0.91 and 
0.96, respectively, p  <  0.01) (Fig.  5a) and VEGFR2 in 
MCF-7 xenograft (R2  =  0.81, p  <  0.05) (Fig.  5b). The 
same analysis was performed on genes expressed by 
mouse endothelial cells in 786-O xenografts. We showed 
reduced mRNA expression of Vegfr1 (R2 = 0.91, p < 0.05) 
and Vegfr2 (R2 = 0.93, p < 0.05) and Vegfa-164 (R2 = 0.91, 

Fig. 5   Correlations between 
vegfa isoform and molecular 
targets of sunitinib mRNA 
expression levels at Day 0 
and apoptotic cell counts at 
Day 7 in MCF-7, SkHep1 
and 786-O tumor xenografts. 
mRNA expression levels at Day 
0 are expressed in –dCT, the 
housekeeping genes TBP (a, 
b) and Gapdh (c) being used 
to normalize gene expression 
results. The Pearson coefficient 
of correlation (R2) was calcu-
lated between the percentage 
of apoptotic cell at Day 7 and 
the mRNA expression levels of 
molecular targets of sunitinib at 
Day 0. The SPSS statistics 17.0 
was used to perform the analy-
ses. A significant correlation 
was shown between percent-
ages of apoptotic tumor cells 
at Day 7 and mRNA expres-
sion levels at Day 0 of human 
PDGFRΒ and RET in SkHep1 
xenograft (R2 = 0.96 and 0.91, 
respectively) (a) and of human 
VEGFR2 in MCF-7 xenograft 
(R2 = 0.81) (b). For 786-O 
xenograft (c), in CD105 mouse 
endothelial cells at Day 0, we 
found a significant correlation 
between mRNA expression 
levels of Vegfr1 (R2 = 0.91), 
Vegfr2 (R2 = 0.93), Vegfa164 
(R2 = 0.91) and the number 
of tumor endothelial apoptotic 
cells at Day 7. *p value <0.05
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p < 0.05), but of none of the human genes encoding suni-
tinib targets (Fig. 5c).

Discussion

In metastatic clear cell carcinoma patients treated with 
sunitinib, Rini et al. [26] reported that the plasma levels of 
VEGF-A and PlGF increased significantly after 28  days. 
Deprimo et  al. [1] also reported that VEGF and PlGF 
levels increased more than threefold in 44 and 40  % of 
cases, respectively, after 28 days of treatment. In parallel, 
sVEGFR-2 levels decreased by at least 20 % in all patients, 
and sVEGFR-3 levels decreased by ≥30 in 87 % cases [1]. 
These effects were dependent on drug exposure, since lev-
els tended to return to near baseline after 2 weeks without 
sunitinib. These analyses support the hypothesis that these 
angiogenesis-associated proteins might be used as circulat-
ing biomarkers, and research is ongoing to better under-
stand the underlying mechanisms and assess their utility. In 
addition, hypertension [4] and circulating endothelial cells 
[27, 28] have also been reported to correlate with outcome 
in advanced renal cell carcinoma patients treated with 
sunitinib. Nevertheless, it is still a matter of debate as to 
whether hypertension, circulating endothelial cells or angi-
ogenesis-related circulating proteins are bona fide reliable 
markers in metastatic clear cell carcinoma for use in clini-
cal settings. In addition, the use of the proposed biomark-
ers in clear cell carcinoma as universal biomarkers for any 
other type of cancer is as yet unproven.

In our study, we first analyzed tissue response to suni-
tinib in xenograft models of renal, breast and liver carci-
noma. It can be noted that despite the efficacy of sunitinib 
in the treatment of ccRCC, its targets and mechanisms of 
action remain unclear, and direct anti-tumoral effects of 
sunitinib have not been clearly established in vivo. One 
study showed apoptotic effects of sunitinib on ccRCC cells 
in vivo but the reported doses were far higher than phar-
macologically relevant doses [29]. In contrast, Huang et al. 
[19] proposed that sunitinib acts primarily on endothelial 
cells rather than on tumor cells, as sunitinib is not cytotoxic 
for ACHN, A-498 or 786-O human renal cancer cell lines, 
while it is cytotoxic for HUVEC and HLMVEC endothe-
lial cells, at relevant pharmacological doses. It is there-
fore yet not fully understood whether sunitinib acts pri-
marily through an anti-angiogenic mechanism or whether 
it also acts by directly targeting ccRCC tumor cells. In 
the present study, we have first shown that 2  mg/kg/day 
sunitinib has significant anti-tumoral activity in all three 
models tested. In these models, sunitinib targets the vas-
cular stroma, inducing endothelial apoptosis, as expected 
for anti-angiogenics. Our analysis further showed that 
sunitinib also directly targets tumor cells in SkHep-1 and 

MCF-7 xenografts, but not in 786-O xenografts. Necrosis is 
a well-known effect of VEGFR inhibition [18, 30–32], and 
it is partially related to vessel damage. Accordingly, tumor 
necrosis was observed as soon as Day 3 in SkHep1 and 
MCF-7 xenografts, whereas it was detected only at Day 5 
in 786-O.

Considering the pharmacological profile of sunitinib, 
we then postulated that quantifying the different expres-
sion levels of genes encoding its targets (VEGFR1, 
VEGFR2, PDGFRΑ, PDGFRΒ, KIT, RET and FLT-3) 
and the VEGFA-165 isoform might enable us to determine 
biomarkers. Indeed, although sunitinib may induce tumor 
cell apoptosis in MCF-7 xenograft by blocking VEGFR2, 
it is not clear how it could affect the level of expres-
sion of this target. It was recently reported that blocking 
VEGFR2 with sunitinib inhibits VEGFR2 translocation to 
the nucleus and its own transcription [33]. Therefore, we 
first analyzed the expression of these specific genes in all 
three xenografts using specific human and mouse primers 
and performed quantitative RT-PCR analyses. Our results 
showed (1) that these xenografts expressed various combi-
nations of genes and (2) that these genes are expressed at 
different levels. The results therefore raise the hypothesis 
that sunitinib action may be tumor-specific. To our knowl-
edge, this has never been demonstrated before in vivo at 
the molecular level. A correlation between the cytotoxic 
effect of sunitinib and basal mRNA expression of PDG-
FRB in three human cancer cell lines of human RCC has 
previously been reported in vitro [34]. In 67 patients with 
clear cell RCC, the protein expression of PDGFRB in can-
cer cells before treatment with sunitinib is associated with 
a better response [35].

In our study, we then analyzed whether the differential 
expression of these genes correlated with the effect of suni-
tinib, evaluated by measuring either the number of apop-
totic tumor cells or the number of apoptotic endothelial 
cells. A significant correlation was observed between the 
number of apoptotic tumor cells at Day 7 and mRNA basal 
expression levels of human PDGFRΒ and RET in SkHep1 
xenografts and VEGFR2 in MCF-7 xenografts. In 786-O 
xenografts, in which sunitinib targeted only the vascular 
stroma, we showed a reduced basal expression of Vegfr1, 
Vegfr2 (R2 =  0.93, p < 0.05) and Vegfa-164 genes in iso-
lated mouse tumor endothelial cells.

Although this study was restricted to a small number of 
gene expression analyses, performed in only three tumor 
types, it nevertheless identifies a tumor-type-specific effect 
of sunitinib, targeting either the vascular stroma only or 
both the vascular stroma and tumor cells. This study also 
shows that sunitinib molecular targets, the expression of 
which is altered in endothelial cells or in both endothe-
lial and tumor cells, could be used as biomarkers to assess 
response to sunitinib treatment providing confirmatory 
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clinical data. Indeed, in patients, a biological test assessing 
mRNA expression levels of sunitinib targets on the tumor 
cells could be easily implemented in the daily practice. In 
addition, sorting of CD105-positive endothelial cells from 
tumor samples is also feasible [36], enabling further assess-
ment of mRNA expression levels of sunitinib targets on 
tumor endothelial cells. In conclusion, these findings open 
new avenues that might contribute to better evaluation of 
the therapeutic response and better treatments among can-
cer patients treated with anti-angiogenics.
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