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Abstract

Purpose Effects of genetic polymorphisms/variations of

ABCB1, ABCC2, ABCG2 and SLCO1B1 in addition to

‘‘UGT1A1*28 or *6’’ on irinotecan pharmacokinetics/

pharmacodynamics in Japanese cancer patients were

investigated.

Methods Associations between transporter haplotypes/

variations along with UGT1A1*28 or *6 and SN-38 area

under the time–concentration curve (AUC) or neutropenia

were examined in irinotecan monotherapy (55 patients) and

irinotecan–cisplatin-combination therapy (62 patients).

Results Higher SN-38 AUC values were observed in

ABCB1 2677G[T (A893S) (*2 group) for both regimens.

Associations of grade 3/4 neutropenia were observed with

ABCC2 -1774delG (*1A), ABCG2 421C[A (Q141K) and

IVS12 ? 49G[T (#IIB) and SLCO1B1 521T[C (V174A)

(*15 � 17) in the irinotecan monotherapy, while they were
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evident only in homozygotes of ABCB1*2, ABCG2#IIB,

SLCO1B1*15 � 17 in the cisplatin-combination therapy.

With combinations of haplotypes/variations of two or more

genes, neutropenia incidence increased, but their prediction

power for grade 3/4 neutropenia is still unsatisfactory.

Conclusions Certain transporter genotypes additively

increased irinotecan-induced neutropenia, but their clinical

importance should be further elucidated.

Keywords Irinotecan � Transporter �
Genetic polymorphism � Haplotype

Introduction

Irinotecan, an anticancer prodrug, is widely used for treating

a broad range of carcinomas including colorectal and lung

cancers. However, unexpected severe diarrhea and neutro-

penia are important clinical side effects from irinotecan

treatment. The active metabolite SN-38 (7-ethyl-10-hydro-

xycamptothecin), a topoisomerase I inhibitor, is generated

by hydrolysis of the parent compound by carboxylesterases

[1], and is subsequently glucuronidated by uridine diphos-

phate glucuronosyltransferases (UGTs), such as UGT1A1,

UGT1A7, and UGT1A9, to form an inactive metabolite,

SN-38 glucuronide (SN-38G) [2–4]. Irinotecan is also

inactivated by CYP3A4 to produce 7-ethyl-10-[4-N-(5-am-

inopentanoic acid)-1-piperidino]carbonyloxycamptothecin

(APC) and 7-ethyl-10-(4-amino-1-piperidino)carbonyloxy-

camptothecin (NPC) [5]. Irinotecan and its metabolites are

excreted into the bile and urine via the action of ATP-

binding cassette (ABC) transporters, such as P-glycoprotein

(P-gp/ABCB1), multiple resistance-associated protein 2

(MRP2/ABCC2), and breast cancer resistance protein

(BCRP/ABCG2) [6]. Transport of SN-38 from the plasma

into the liver is mediated by the organic anion transporting

polypeptide C (OATP-C/SLCO1B1) [7]. Most of the pre-

vious pharmacogenetic studies on irinotecan have focused

on UGT1A1 polymorphisms and have shown clinical rele-

vance of UGT1A1*28, a repeat polymorphism in the TATA

box [-54_-39A(TA)6TAA[A(TA)7TAA or -40_-39ins

TA], to severe toxicities [8–10]. Based on these findings, in

2005, the Food and Drug Administration (FDA) of the

United States approved an amendment for the label of

Camptosar (irinotecan HCl) (NDA 20-571/S-024/S-027/S-

028) and the clinical use of a genetic diagnostic kit for the

*28 allele. In parallel with this advance in the USA, clinical

relevance to severe neutropenia of UGT1A1*6 [211G[A

(G71R)], another low-activity allele detected specifically in

East-Asians, as well as *28 was demonstrated in several

studies on Asian patients [11–14]. Accordingly, in June

2008, the Ministry of Health, Labor and Welfare of Japan

approved changes to irinotecan labels (Campto and

Topotecin) by adding a caution for the risk of severe tox-

icities in patients either homozygous or compound hetero-

zygous for UGT1A1*28 and *6 (*28/*28, *6/*6, *28/*6)

and the clinical use of a diagnostic kit for UGT1A1*28 and

*6. Severe toxicities, however, are found in patients without

*6/*6, *28/*28, and *28/*6; therefore, other factors

responsible for irinotecan toxicities should be identified.

Several clinical studies have suggested polymorphisms

of the drug transporter genes, such as ABCB1, ABCC2,

ABCG2, and SLCO1B1, might affect irinotecan pharma-

cokinetics (PK)/pharmacodynamics (PD) in Caucasian and

Asian patients. However, the results obtained from differ-

ent ethnic populations with various irinotencan regimens

are still controversial, and the genetic markers examined

also differ [13, 15–26]. We previously identified a number

of haplotypes/variations of transporter genes, including

ABCB1, ABCC2, ABCG2 and SLCO1B1 in Japanese

[12, 26–29], but their clinical significance, either alone or

in combination, in irinotecan therapy has not yet been

examined.

This study aimed to identify the genetic polymorphisms/

variations of ABCB1, ABCC2, ABCG2, and SLCO1B1

which can affect irinotecan PK/PD in Japanese cancer

patients. We carefully stratified the patients considering the

irinotecan regimen (irinotecan monotherapy or combina-

tion therapy with cisplatin) and UGT1A1 genotype

(UGT1A1 *6 or *28), and examined additive effects of

transporter haplotypes/variations on the area under the

time–concentration curves (AUC) of the toxic metabolite

SN-38 and on the risk of severe neutropenia.

Patients and methods

Patients

The patients used in this study were the same as those

described in a previous paper [12], where details on the

eligibility criteria for irinotecan therapy, patient profiles,

and irinotecan regimens were described. In this study, 55

patients with irinotecan monotherapy (100 mg/m2 weekly

or 150 mg/m2 biweekly) and 62 patients with combination

therapy of irinotecan (60 mg/m2 weekly or 70 mg/m2

biweekly) and cisplatin (60 or 80 mg/m2, respectively)

were included. This study was approved by the ethics

committees of the National Cancer Center and the National

Institute of Health Sciences, and written informed consent

was obtained from all participants.

Analyses on genetic polymorphisms and PK/PD

Patients’ data on genetic variations and haplotypes of

UGT1A1, ABCB1, ABCC2, ABCG2 and SLCO1B1 were
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previously obtained [12, 26–29]. Regarding ABCG2,

combination haplotypes were newly defined using the

previously reported haplotypes from three linkage dis-

equilibrium (LD) blocks [28]. Patients’ PK data on the area

under the concentration–time curve (AUC) and toxicities

were previously obtained [12].

Association analyses

Associations of transporter genotypes with AUC/dose

values for irinotecan, SN-38 and SN-38G, absolute neu-

trophil count (ANC) nadir, and incidence of grade 3 diar-

rhea or grade 3/4 neutropenia were investigated. For SN-38

AUC/dose and neutropenia, the patients were stratified by

the presence of UGT1A1*6 or *28 (UGT?). Statistical

significance (two-sided, P \ 0.1) was determined by the

Mann–Whitney (MW) test or Jonckheere–Terpstra (JT) test

for AUC/dose, and by Fisher’s exact test and chi-square

test (for trend) for incidence of grade 3 and 4 toxicities,

using Prism version 4.0 (GraphPad Prism Software Inc.,

San Diego, CA, USA) and StatXact version 6.0 (Cytel Inc.,

Cambridge, MA). Multiplicity adjustment was not applied

to bivariate analysis, and contributions of the candidate

genetic markers to SN-38 AUC/dose values and ANC nadir

were further determined by multiple regression analysis

after logarithmic transformation of the AUC/dose values

and ANC nadir counts. The variables examined were age,

sex, body surface area, history of smoking or drinking,

performance status, serum biochemistry (GOT, ALP, cre-

atinine) at baseline, the ANC at baseline (for neutropenia),

and genetic markers including UGT1A1*6 or *28 (UGT?)

and the transporter haplotypes. The variables in the final

models were selected by the forward and backward step-

wise procedure at a significance level of 0.20 using JMP

version 7.0.0 (SAS Institute Inc., Cary, NC, USA).

Results

Definition of major transporter haplotypes

and their selected markers

For screening transporter gene polymorphisms affecting

irinotecan PK/PD, major haplotypes and their tagging

single nucleotide polymorphisms (SNPs) from ABCB1,

ABCC2, ABCG2 and SLCO1B1 were selected (Table 1)

according to their frequencies (more than 5%) and/or from

preliminary results obtained from all patients treated with

irinotecan.

For ABCB1 block 1[26], the haplotype group BJL,

which consists of *1B (having -1789G[A), *1J (having

-1789G[A and -371A[G) and *1L (having -1789G[A

and -145C[G), was selected because an association of the

marker SNP -1789G[A with lower expression levels of P-

gp has been reported [30]. ABCB1 block 2 *2 was origi-

nally defined as haplotypes containing three SNPs,

1236C[T, 2677G[T (A893S) and 3435C[T [31]. Since

the *9 haplotype with 1236C[T, 2677G[T (A893S)

without 3435C[T [16] showed the same trend for PK/PD

as *2 (data not shown), the current study classified the

Table 1 List of major transporter haplotypes and their markers analyzed for Japanese cancer patients

Gene Haplotype Tagging SNP Abbreviation used

in this paper

Haplotype frequency

Monotherapy

(N = 110)a
With cisplatin

(N = 124)a

ABCB1 BJLb (block 1) -1789G[A 0.182 0.210

*2 groupc (block 2) 2677G[T(A893S) B 0.382 0.379

*10 groupd (block 2) 2677G[A(A893T) 0.182 0.169

*1b (block 3) IVS27-182G[T 0.200 0.169

ABCC2 *1A -1774delG C 0.373 0.371

*1C/G 3972C[T(I1324I) 0.218 0.266

ABCG2 #IIB [*1a–*2–*1b]e 421C[A(Q141K), IVS12 ? 49G[T G 0.200 0.274
#IIIC [*1b–*3–*1c]e 34G[A(V12M), IVS9-30A[T 0.164 0.097

SLCO1B1 *1b 388A[G(N130D) 0.373 0.573

*15 � 17 521T[C(V174A) S 0.191 0.153

a Number of chromosome
b BJL consists of *1B (having -1789G[A), *1J (having -1789G[A and -371A[G) and *1L (having -1789G[A and -145C[G) previously

defined [26]
c *2 Group includes *2, *9, *12 and *14 haplotypes previously defined [26]
d *10 Group includes *10 and *13 haplotypes previously defined [26]
e Combination of ABCG2 haplotypes of three blocks [block (-1)–block 1–block 2] previously defined [28]
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haplotypes with 2677G[T (A893S), *2, *9, *12 and *14

[26], as the *2 group (*2 in this paper). Similarly, the *10

group was classified as haplotypes with 2677G[A

(A893T), i.e., *10 and *13, since no differences in PK/PD

parameters were observed between these haplotypes. The

*4, *6, and *8 haplotypes in block 2 [16, 26] showed

no significant effect in the current analysis (data not

shown). The ABCB1 block 3 *1b haplotype containing

IVS27-182G[T was selected because our previous study

showed it was associated with an increased renal clearance

of SN-38 [16].

Based on reports showing possible functional alterations

of -1774delG [32] and 3972C[T (I1324I) [18, 24],

ABCC2 haplotypes containing those variations were clas-

sified as *1A and ‘‘*1C and *1G (*1C/G)’’, respectively,

according to our previous definition: *1A, -1774delG;

*1C, -24C[T and 3972C[T; *1G, 3972C[T [27].

ABCC2*2 [1246G[A (V417I)] and *1H [2934G[A

(S978S)] [27] showed no statistically significant effects

(data not shown).

The ABCG2 combinatorial haplotypes were newly

defined as combinations of haplotypes across the three

blocks [block (-1)–block 1–block 2] previously reported

[28]. Major combinations in 177 patients were the wild

type #IA (frequency = 0.291), #IIB [containing 421C[A

(Q141K) and IVS12 ? 49G[T] (0.251) and #IIIC [con-

taining 34G[A (V12M) and IVS9-30A[T] (0.107). Note

that #IIB and #IIIC are subgroups of block 1 *2 [421C[A

(Q141K)] and block 1*3 [34G[A (V12M)], respectively

[28].

The SLCO1B1 haplotypes used were the major haplo-

types *1b [containing 388A[G (N130D) without 521T[C

(V174A)] [33] and *15 � 17 [containing 521T[C

(V174A)], the functional relevance of which has been

reported [34].

Association of transporter genotypes with AUC values

Since we previously found that some PK parameters,

including AUC/dose, Cmax/dose and t1/2 for irinotecan

and/or its metabolites, as well as incidence of grade 3/4

toxicities were affected by irinotecan regimen [12], the

following analyses were conducted using the two groups of

patients; i.e., those treated with irinotecan monotherapy

(100–150 mg/m2 for initial dosage) or by combination

therapy with cisplatin (60–70 mg/m2 for initial dose of

irinotecan). Since SN-38 AUC levels were largely depen-

dent on the UGT1A1 genotype ‘‘*6 or *28’’ [12], the

associations of transporter genotypes with SN-38 AUC

values were analyzed within the groups stratified by the

marker UGT1A1 ‘‘*6 or *28’’ (UGT?); i.e., UGT-/-,

UGT?/- and UGT?/?. Since the SN-38 AUC/dose level

of one patient with haplotypes ABCB1*2 [2677G[T

(A893S)] and *14 [2677G[T (A893S) and 1345G[A

(E448K)] showed an outlying value (indicated as ‘‘a’’ in

Fig. 1), this patient was excluded from the statistical

analysis. In this study, we preliminarily found that effect

of each transporter genotype on irinotecan PK/PD was

generally small. However, it was hypothesized that multi-

ple transporter genotypes might act additively as described

below. Accordingly, we adopted a statistical significance

level of P = 0.1 (two-sided) to pick up candidate

polymorphisms for further evaluation of their combined

effects.

Figure 1 shows the association of transporter genotypes

with SN-38 AUC values in the irinotecan monotherapy. In

all patients (ALL), higher values of the SN-38 AUC/dose

were observed in the ABCB1*2/*2 [1.64-fold of -/-,

P = 0.095 (MW test)] (Fig. 1b) and ABCG2#IIB [1.24-

fold of -/-, P = 0.078 (MW test)] genotypes (Fig. 1e)

and lower values were observed in the ABCB1*1b (block

3) [0.78-fold of -/-, P = 0.008 (MW test)] (Fig. 1c)

genotype. In UGT-/- patients, an increase in SN-38

AUC/dose was observed in the ABCB1 BJL [1.22-fold of

-/-, P = 0.073 (MW test)] (Fig. 1a) and ABCG2#IIB

[1.21-fold of -/-, P = 0.082, (MW test)] genotypes

(Fig. 1e). In UGT (?/- and ?/?) patients, an increase in

SN-38 AUC/dose in SLCO1B1*15 � 17 (S) [1.59-fold of

-/-, P = 0.036 (MW test)] was also observed (Fig. 1f).

Multiple regression analysis for the SN-38 AUC/dose

(logarithm-transformed values) in the irinotecan mono-

therapy revealed significant associations of ABCB1*2/*2

(coefficient = 0.212 ± 0.075, P = 0.007), along with

UGT?/- (0.113 ± 0.054, P = 0.040) and UGT?/?

(0.225 ± 0.088, P = 0.014) in the final model [R2 =

0.226, Intercept = 0.281 (log 10-3h m2/L), N = 53].

Regarding other compounds, ABCB1*2/*2 also showed

higher irinotecan AUC/dose (1.27-fold) [66.2 (48.2–82.4)

[median (25th–75th percentiles)] for *2/*2 vs. 52.2 (40.6–

61.9) for -/- and *2/-; P = 0.063 (MW test)] and SN-

38G AUC/dose (1.62-fold) [18.0 (14.6–27.7) for *2/*2 vs.

11.1 (7.7–14.2) for -/- and *2/-; P = 0.002 (MW test)].

Conversely, lower irinotecan AUC/dose for ABCB1*10/

*10 (0.79-fold) [54.8 (44.4–65.7) for -/- vs. 43.3 (40.6–

54.1) for *10/*10; P = 0.062 (JT test)] was detected.

For the combination therapy with cisplatin, an increase

of the SN-38 AUC/dose for ABCB1*2/*2 (1.43-fold) in

non-UGT?/? patients (UGT-/- and UGT?/-) (N = 55)

[3.57 (2.72–4.19) for *2/*2 vs. 2.51 (1.99–3.28) for -/-

and *2/-; P = 0.032 (MW test)], and a decrease for

ABCB1*1b (0.80-fold) in UGT-/- patients (N = 35)

[2.03 (1.72–2.33) for *1b/- and *1b/*1b vs. 2.55 (2.02–

3.31) for -/-; P = 0.026 (MW test)] were observed.

Multivariate analysis, however, showed no significant

contributions of these transporter haplotypes to the SN-38

AUC/dose values.
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Effects of transporter genotypes on toxicities

in irinotecan monotherapy

Since 80 and 100% of UGT?/? patients showed grade

3/4 neutropenia in the irinotecan monotherapy and com-

bination therapy with cisplatin, respectively, neutropenia

incidence was analyzed only in the non-UGT?/? popu-

lation. Two patients were excluded from the analysis; one

patient who showed an outlier SN-38 value (indicated as

‘‘a’’ in Fig. 1) and a second patient from the cisplatin-

combination therapy group who discontinued irinotecan

therapy.

In terms of incidence of grade 3/4 neutropenia in iri-

notecan monotherapy (Table 2), ABCC2*1A-dependent

increases [0, 25.8 and 50.0% for -/-, *1A/- and *1A/*1A,

respectively; P = 0.014 (chi-square test for trend)] were

observed in UGT (-/- and ?/-) patients. Higher inci-

dence with ABCG2#IIB was also found in UGT (-/- and

?/-) patients [9.5% for -/- and 35.3% for #IIB/- and
#IIB/#IIB, respectively; P = 0.049 (Fisher’s exact test)],

and with SLCO1B1*15 � 17(S) in the UGT?/- patients

[15.0, 28.6 and 100% for -/-, S/- and S/S, respectively;

P = 0.076 (chi-square test for trend)].

Multiple regression analysis for the ANC nadir (logarithm-

transformed values) was conducted. The final model

[R2 = 0.466, Intercept = 1.088 (log counts/lL), N = 52]

revealed associations of ABCC2*1A/*1A (coefficient =

-0.339 ± 0.088, P = 0.0004), ABCG2#IIB (-0.131 ±

0.067, P = 0.057) and SLCO1B1*15 � 17 (-0.136 ± 0.066,

P = 0.046) in addition to UGT?/- (-0.134 ± 0.073,

P = 0.074) and UGT?/? (-0.238 ± 0.117, P = 0.047) and

ANC at baseline (0.541 ± 0.226, P = 0.021), but association

of ABCB1*2/*2 was not significant (-0.158 ± 0.095,

P = 0.104).

Although total incidence of grade 3 diarrhea was low

(11%), an ABCB1*2-dependent increase was observed

[0, 15.4 and 28.6% for -/-, *2/- and *2/*2, respectively;

P = 0.022 (chi-square test for trend)]. Note that all patients

who experienced grade 3 diarrhea had neither the

ABCC2*1C/G nor ABCG2#IIIC genotypes.

(A)

(D) (E) (F)

(B) (C)

Fig. 1 Effects of transporter genotypes on SN-38 AUC/dose in

irinotecan monotherapy (N = 54). a Excluded from statistical anal-

ysis. The bars represent the medians. UGT? = UGT1A1*6 or *28.
a BJL contains -1789G[A, *2 (block 1) = 325G[A (E109K), *3
(block 1) = 304G[A (G102R); b *2 (block 2) contains 2677G[T

(A893S); c *1b (block 3) = IVS27-182G[T, *2 (block 3) = 3751G[
A (V1251I); d *1A contains -1774delG; e IIB contains 421C[A

(Q141K) and IVS12 ? 49G[T; f S = SLCO1B1*15 � 17 containing

521T[C (V174A)
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Effects on toxicities in combination therapy

with cisplatin

Since only four patients (6.0%) experienced grade 3 diar-

rhea from the cisplatin-combination therapy, association

analysis for diarrhea was not done.

Grade 3/4 neutropenia incidence was higher with

ABCB1*2 [47.1, 63.3 and 85.7% for -/-, *2/- and *2/*2,

respectively; P = 0.073 (chi-square test for trend)] in UGT

(-/- and ?/-) patients. In UGT-/- patients, a higher

incidence was also observed with ABCG2#IIB [55.6, 83.3

and 100% for -/-, #IIB/- and #IIB/#IIB, respectively;

P = 0.075 (chi-square test for trend)]. Conversely, the

incidence was lower with ABCG2#IIIC [71.4% for -/-,

and 25% for #IIIC/- and #IIIC/#IIIC, respectively;

P = 0.006 (Fisher’s exact test)] in UGT (-/- and ?/-)

patients. Notably, all patients homozygous for ABCG2#IIB

(N = 5) or SLCO1B1*15 � 17 (N = 1) experienced grade

3/4 neutropenia. The effect of ABCC2*1A on neutropenia

was not consistent among the UGT genotypes in contrast to

the results from the monotherapy. Multiple regression

analysis was not applied to the neutropenia parameters in

the cisplatin-combination therapy because, as described in

the next section, contributions of minor variations could

not be ignored.

Minor genetic variations possibly related

to grade 4 neutropenia

We have detected a number of rare non-synonymous

variations of the transporter genes to which statistical

analysis could not be applied. Since grade 4 neutropenia

Table 2 Effects of transporter genotypes on incidences of grade 3/4 neutropenia in Japanese patients treated with irinotecan monotherapy

Gene Genotype UGT-/- UGT?/- UGT (-/-, ?/-)

No./total % P value No./total % P value No./total % P value

Exacta Trendb Exacta Trendb Exacta Trendb

ABCB1 BJL (block 1)c

-/- 3/14 21.4 [0.1 4/15 26.7 [0.1 [0.1 7/29 24.1 [0.1 [0.1

?/- 0/7 0.0 2/9 22.2 2/16 12.5

?/? 0/1 0.0 0/1 0.0

*2 group (block 2)

-/- 1/5 20.0 [0.1d [0.1 5/14 35.7 [0.1d [0.1 6/19 31.6 [0.1d [0.1

?/- 1/11 9.1 0/13 0.0 1/24 4.2

?/? 1/5 20.0 1/1 100 2/6 33.3

*1b (block 3)e

-/- 2/9 22.2 [0.1 4/18 22.2 [0.1 [0.1 6/27 22.2 [0.1 [0.1

?/- 0/11 0.0 2/9 22.2 2/20 10.0

?/? 0/1 0.0 0/1 0.0

ABCC2 *1A

-/- 0/11 0.0 [0.1 0.031 0/5 0.0 [0.1 0/16 0.0 0.022 0.014

?/- 2/8 25.0 6/23 26.1 8/31 25.8

?/? 1/2 50.0 1/2 50.0

ABCG2 #IIB

-/- 0/13 0.0 0.042 3/19 15.8 [0.1 [0.1 3/32 9.4 0.049 0.057

?/- 3/8 37.5 3/8 37.5 6/16 37.5

?/? 0/1 0.0 0/1 0.0

SLCO1B1 *15 � 17

-/- 2/12 16.7 [0.1 3/20 15.0 [0.1 0.076 5/32 15.6 [0.1 [0.1

?/- 1/9 11.1 2/7 28.6 3/16 18.8

?/? 1/1 100 1/1 100

a Fisher’s exact test for (-/-) versus (?/- and ?/?)
b Chi-square test for trend
c Three patients bearing *2 (block 1) or *3 (block 1) were excluded
d Fisher’s exact test for (-/- and ?/-) versus (?/?)
e One patient bearing *2 (block 3) was excluded
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occurred in non-UGT?/? patients at rates of 8.0% (4/50)

in the irinotecan monotherapy and 20% (11/55) in the

cisplatin-combination therapy, we investigated possible

contributions of these minor transporter variations and

another low-activity UGT-haplotype, UGT1A1#60-#IB

[35], to severe neutropenia.

Among the rare variations detected, eleven heterozygous

transporter genetic variations and one UGT1A1#60-#IB

homozygote were found in non-UGT?/? patients who

experienced grade 4 neutropenia (Table 3). These variations

include an amino acid substitution leading to reduced in

vitro activity, ABCG2 1465T[C (F489L) [36], and the stop

codons, ABCG2 376C[T (Q126X) and 1723C[T (R575X)

[28].

Additive effects of transporter gene haplotypes

on neutropenia

Since multiple transporters are involved in irinotecan PK/

PD, severity of toxicity might depend on the number and

combinations of the low-activity variants, each of which

does not effectively affect PD. To examine this possibility,

we surveyed relationships between ANC nadirs and com-

binations of haplotypes associated with grade 3/4 neutro-

penia (P \ 0.1) and the minor variations associated with

grade 4 neutropenia (listed in the previous section); the

data for selected haplotypes/variations are depicted in

Fig. 2. For the combination therapy with cisplatin

(Fig. 2b), homozygous SLCO1B1*15 � 17 was included,

but ABCC2*1A was excluded since its effect in the

cisplatin-combination therapy was not consistent among

the UGT genotypes.

In the irinotecan monotherapy, ANC nadirs in most

patients with either one or more of ABCG2#IIB,

SLCO1B1*15 � 17 and the minor variations were lower

than the median ANC nadirs of both UGT-/- and

UGT?/- patients without them (None) (Fig. 2a). In par-

ticular, the effects were more evident in patients bearing

two or more of the selected haplotypes/variations (includ-

ing the UGT?). Among the patients who experienced

grade 3 or 4 neutropenia, 80% of patients had two or

more candidate haplotypes/variations in the UGT (-/- and

?/-) group (Fig. 2a).

In UGT?/- patients with the cisplatin-combination

therapy, ANC nadirs of the patients with ABCB1*2/*2,

ABCG2#IIB/#IIB, SLCO1B1*15 � 17/*15 � 17 or any minor

variations, and their combinations were lower than the

median values of patients without these markers (None),

except for one patient with ABCB1*2/*2 and

SLCO1B1*15 � 17 (B/B ? S/-) (Fig. 2b). Also, in

UGT-/- and UGT?/- patients, the effects were more

evident in the patients with two or more of the selected

haplotypes/variations. Among the patients who experi-

enced grade 4 neutropenia, 82% of patients had two or

more candidate haplotypes/variations in the UGT (-/- and

?/-) group (Fig. 2b).

It was noted that the additive effect of g1 [ABCG2

376C[T (Q126X)] was not observed in the heterozygotes

(g1/-), but was evident in the compound heterozygotes

with another ABCG2 genetic polymorphism, #IIB, (G/g1)

(Fig. 2a, b).

Regarding the combined effects of the above transporter

genotypes on SN-38 AUC values, higher levels were

observed in patients with the candidate haplotypes/varia-

tions of two or more genes in the monotherapy, but this

trend was not always evident in the cisplatin-combination

therapy patients (data not shown).

Discussion

In this study, we showed possible additive effects of

transporter and UGT1A1 genotypes on irinotecan PK and

PD. Since multiple transporters are involved in irinotecan

PK, it is likely that a functional alteration of one of the

responsible transporters can be compensated by other

transporters; thus, changes in PK/PD parameters by trans-

porter genotypes may not always be large. However, the

overall elimination rate of irinotecan or its metabolites

might be altered under the conditions of simultaneously

reduced activities of multiple transporters, higher irino-

tecan doses, or reduced UGT activity.

Table 3 Minor genetic variations detected in non-UGT?/? patients

who experienced grade 4 neutropenia

ID Gene Genetic variation

Nucleotide change

(amino acid substitution)

Haplotypea

b1 ABCB1 304G[C (G102R) Block 1 *3

b2(B)b 1804G[A (D602N) Block 2 *12

b3(B)b 1342G[A (E448K) Block 2 *14

b4 3043A[G (T1015A) Block 2 *16

b5 3751G[A (V1251I) Block 3 *2

c1 ABCC2 1177C[T (R393W) *7

g1 ABCG2 376C[T (Q126X) Block 1 *4

g2 1465T[C (F489L) Block 2 *2

g3 1723C[T (R575X) Block 2 *5

s1(S)c SLCO1B1 1007C[G (P336R)

s2 311T[A (M104K)

u1 UGT1A1 -3279T[G, 1941C[G #60-#IB (?/?)

a Defined in previous papers for ABCB1 [26], ABCC2 [27], ABCG2
[28] and UGT1A1 [35]
b Linked with ABCB1*2 (B)
c Linked with SLCO1B1*15 � 17 (S)
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In the irinotecan monotherapy, the increasing effect of

ABCB1*2/*2 (block 2) on SN-38 AUC/dose was evident

while contributions of ABCB1 BJL (block 1), ABCB1*1b

(block 3), ABCG2#IIB and SLCO1B1*15 � 17 were not

significant in the multivariate analysis. For neutropenia,

additive effects were suggested for ABCC2*1A/*1A,

ABCG2#IIB, SLCO1B1*15 � 17, and possibly some minor

genetic variations in addition to UGT1A1*6 or *28

(Fig. 2a). The association of ABCB1*2 (block 2) with

grade 3 diarrhea was also observed.

In the combination therapy with cisplatin, an increase in

the SN-38 AUC/dose by ABCB1*2 and for a decrease by

ABCB1*1b were observed, but the multivariate analysis did

not show their significant contributions. Regarding neutro-

penia, additive effects of ABCB1*2/*2, ABCG2#IIB/#IIB,

and possibly, SLCO1B1*15 � 17/*15 � 17 and some minor

variations were suggested (Fig. 2b).

Thus, in both regimens, the associations of ABCB1*2

(block 2) with higher SN-38 AUC/dose levels and toxici-

ties (diarrhea or neutropenia), and additive effects of

ABCG2#IIB and SLCO1B1*15 � 17 with UGT1A1*6 or *28

on neutropenia were observed. The current study also

suggests that combination genotypes with two or more

genes could have a greater effect on neutrophil count

reduction than a single gene, indicating a quantitative

property of multiple genetic factors affecting phenotype.

These findings could partly explain a large interindividual

variation in irinotecan toxicities within each UGT

genotype.

In this study, influences of the transporter genotypes on

SN-38 AUC/dose did not always correlate to an influence

on neutropenia as observed in the combination therapy

with cisplatin and in the case of ABCB1*2 (block 2) in the

monotherapy. Although weak negative correlations were

observed between the SN-38 AUC level and ANC nadir,

the SN-38 AUC values of patients who exhibited grade 3/4

neutropenia (ANC nadir \ 1,000 counts/lL) were fairly

diverse, especially in the combination therapy with cis-

platin (Fig. 3). It is likely that the extent of toxicities

depends not only on systemic exposure levels of the active

metabolite for which hepatic UGT activity is a large con-

tributor, but also on the elimination from the target cells

(neutrophil progenitor cells or enterocytes) where trans-

porter function might be more critical.

Our previous study showed the association of ABCB1

block 2 *2 [1236C[T, 2677G[T (A893S) and 3435C[T]

with lower renal clearance of irinotecan and its metabolites

[16]. The current data obtained in the irinotecan mono-

therapy also suggest higher AUC/dose for irinotecan, SN-

38G, and SN-38 with ABCB1*2/*2. Since a high affinity of

P-gp for irinotecan is known, lower elimination rate of

irinotecan could also result in higher plasma levels of its

metabolites. Other studies have also suggested associations

of the haplotype 1236T–2677T (corresponding to our *2

group in this study) with a reduced excretion rate of P-gp

substrates [37] and SN-38 [25], and associations of the

haplotype 2677T–3435T (corresponding to our *2 group in

this study) with paclitaxel-induced neutropenia [38].

For ABCC2, ABCC2 -1774delG, a tagging SNP of *1A,

was reported to be associated with low promoter activity

and cholestatic or mixed-type hepatitis [32]. Patients with

ABCC2*1A/*1A together with ABCB1*2/*2 or ABCG2#IIB

showed higher values of SN-38 AUC (Fig. 1) and neutro-

penia in the monotherapy (Fig. 2a), but these trends were

not evident in the UGT-/- patients treated with cisplatin-

combination therapy (data not shown). Thus, the effects of

ABCC2 might be dependent on combinations with other

genetic and non-genetic factors. Conflicting clinical out-

comes of ABCC2 3972C[T, a marker of *1C/G, were

reported to cause higher AUC of irinotecan and its

(A)

(B)

Fig. 2 Additive effects of transporter haplotypes/variations on ANC

nadirs in irinotecan monotherapy (a) and combination therapy with

cisplatin (b). UGT? = UGT1A1*6 or *28; B = ABCB1*2;

C = ABCC2*1A; G = ABCG2#IIB (open circle, #IIB/#IIB);

S = SLCO1B1*15 � 17 (open square, *15 � 17/*15 � 17); b1–
u1 = minor variations listed in Table 3. a None = non-(C, G, S or

minors), b None = non-(B, G, S or minors). The bar in each genotype

represents the median. The dotted lines in each UGT genotype show

the median values of patients without any selected transporter

polymorphisms/variations (None). The lines (G3 and G4) represent

the border of grade 3 and 4 neutropenia
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metabolites in Caucasians treated with irinotecan mono-

therapy [18] and to lower the incidence of grade 3 diarrhea

in Koreans treated with a combination therapy of irinotecan

and cisplatin [24]. In the current study, no significant

association of ABCC2*1C/G on PK/PD was observed in

the monotherapy. Although a high incidence of grand 3/4

neutropenia was observed in patients with ABCC2*1C/G in

the combination therapy with cisplatin, most patients also

had ABCG2#IIB (data not shown); thus, the effect of

ABCC2*1C/G remains obscure.

For ABCG2, the current study examined the association

with the combinatorial haplotypes consisting of the three

previously defined block haplotypes [28]. ABCG2#IIB

contains the non-synonymous SNP 421C[A (Q141K),

which was detected at higher frequencies in Asians and

was reported to cause reduced expression of BCRP in vitro

[36, 39–41]. In clinical studies, the association of 421C[A

(Q141K) with higher plasma levels of diflomotecan was

shown in Caucasians [42]. However, an association of this

SNP with irinotecan PK/PD had not been shown [19, 24].

An association of 421C[A (Q141K) alone with irinotecan

PK/PD was not significant in our hands (data not shown),

but #IIB containing both 421C[A (Q141K) and

IVS12 ? 49G[T showed a moderate association with

neutropenia. It is unclear whether the additional SNP

IVS12 ? 49G[T itself or another unknown linked SNP is

causative for the reduced function. ABCG2#IIIC contains a

non-synonymous SNP 34G[A (V12M) which has no

influence on BCRP expression or activity in vitro [36, 39–41].

Our study showed no influence of ABCG2#IIIC on the SN-

38 AUC/dose levels and neutropenia in the irinotecan

monotherapy (data not shown), but did show a decreasing

trend in grade 3/4 neutropenia in the combination therapy

with cisplatin. In contrast, a report on Korean patients

suggested the association of ABCG2 34G[A (V12M) with

a higher incidence of grade 3 diarrhea in a combination

therapy of irinotecan and cisplatin [24].

Among SLCO1B1 polymorphisms, 521T[C (V174A), a

tagging SNP of *15 � 17, was demonstrated to reduce in

vitro SN-38 influx [7], and clinical studies in Asians also

showed its relevance to a higher SN-38 AUC and severe

neutropenia in combination therapy of irinotecan with

cisplatin [22–24]. Our results support these previous find-

ings. Note that our *15 � 17 mainly consists of *17 [con-

taining -11187G[A, 521T[C (V174A) and 388A[G

(N130D)].

Taken together, the clinical data on transporter geno-

types show variability among the studies. The reasons for

these conflicting findings might be partly attributed to the

ethnic differences in transporter genotypes and the regi-

mens used. In addition, non-genetic factors, such as disease

status and inflammation [43, 44], hepatic or renal function

[45], and co-administered or pre-administered drugs, may

also influence the clinical outcome.

The current study suggests combined effects of multiple

haplotypes/variations on neutropenia. From clinical aspects

of irinotecan therapy, the benefit of additional genotyping

of transporters to predict severe toxicities should be clari-

fied. Regarding grade 3 and 4 neutropenia, positive pre-

diction values for two or more candidate genotypes

including UGT (?) (Fig. 2) were 46 and 89% in the

monotherapy and the cisplatin-combination therapy,

respectively, which are low compared with UGT?/? (80

and 100%, respectively). Regarding grade 4 neutropenia,

positive predictive values for these candidate genotypes

were 15 and 41% in the monotherapy and the cisplatin-

combination therapy, respectively, while for UGT?/?,

they were 0 and 43%, respectively. Further studies using a

(A) (B)

Fig. 3 Correlations between SN-38 AUC and ANC nadir in patients in irinotecan monotherapy (a) and combination therapy with cisplatin (b).

r Spearman’s rank correlation coefficient
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larger population size are needed to further elucidate the

roles of these candidate markers.

In conclusion, the current study suggests there are

additive effects for several transporter genotypes on the

SN-38 AUC level and the reduction of neutrophil counts in

irinotecan therapy. The clinical benefits of additional

genotyping of these candidate markers should be further

delineated.
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