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Abstract The recent cloning of the mammalian gene
coding for N1-acetylpolyamine oxidase (PAO) provides
the opportunity to directly examine the role of human
PAO (hPAO) in polyamine homeostasis as well as its
potential role in determining cellular response to anti-
tumor polyamine analogues. To facilitate the study
of this enzyme, the production, purification, and char-
acterization of the recombinant hPAO is reported.
hPAO oxidizes N1-acetylspermidine (Km=2.1 lM,
Kcat=15.0 s�1) and has very high affinity for N1-acet-
ylspermine (Km=0.85 lM, Kcat=31.7 s�1). The re-
combinant hPAO does not efficiently oxidize spermine,
thereby demonstrating a significant difference in sub-
strate specificity from the previously described human
spermine oxidase PAOh1/SMO. Importantly, hPAO
demonstrates the ability to oxidize a subset of antitumor
polyamine analogues, suggesting that this oxidase
activity could have a significant effect on determining
tumor sensitivity to these or similar agents. Transfection
of A549 human lung cancer cells with an hPAO-
expressing plasmid leads to a profound decrease in
sensitivity to those analogues which act as substrates,
confirming its potential to alter drug response. One
similarity that hPAO shares with human PAOh1/SMO,

is that certain oligoamine analogues are potent inhibi-
tors of its oxidase activity. The results of these studies
demonstrate how changes in polyamine catabolism may
affect drug response.
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oxidase Æ SSAT: Spermidine/spermine N1-
acetyltransferase Æ BENSpm: N1,N11-
bis(ethyl)norspermine Æ CPENSpm: N1-ethyl-N11-
(cyclopropyl)methyl-4,8-diazaundecane Æ CHENSpm:
N1-ethyl-N11-(cycloheptyl)methyl-4,8-
diazaundecane Æ IPENSpm: (S)-N1-(2-methyl-1-butyl)-
N11-ethyl-4,8-diazaundecane Æ MDL 72,527: N1,N4-
bis(2,3-butadienyl)-1,4-butanediamine

Introduction

Although the polyamine metabolic pathway in general
has been identified as a rational target for antineoplastic
therapy [5, 16, 27, 33, 38, 45], considerable interest has
recently arisen in the role that polyamine catabolism
plays in determining the cellular response to antitumor
polyamine analogues. The production of H2O2 and toxic
aldehydes resulting from the catabolic oxidation of
polyamines has been directly linked to the cytotoxicity
observed in response to specific antitumor polyamine
analogues [10, 21]. Consequently, interest in the poten-
tial of exploiting polyamine catabolism for therapeutic
advantage has increased. Until recently, the oxidation of
intracellular mammalian polyamines was thought to
result solely from the activity of a peroxisomal N1-
acetylpolyamine oxidase previously identified as PAO
[22, 23, 34–36]. However, initial attempts to molecularly
clone this PAO resulted in the discovery of an entirely
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new enzyme, spermine oxidase (PAOh1/SMO), which
demonstrates high affinity for spermine [42, 46, 47].
Although it has been hypothesized that both oxidases
have the potential to play a role in the cellular response
of cancer cells to the antitumor polyamine analogues,
only recently has it been possible to examine the sub-
strate specificity of the individual enzymes for the vari-
ous natural polyamines and their analogues [8, 43, 47,
50]. Therefore, the goal of the present study was to
examine the properties and substrate specificity of the
recombinant, classical human N1-acetylpolyamine oxi-
dase, hPAO, and to examine the effects of its expression
on cell sensitivity to antitumor polyamine analogues.
The results of these studies not only suggest that this
enzyme does possess very different substrate specificities
for the natural polyamines as compared with PAOh1/
SMO, but also demonstrate its ability to oxidize specific
antitumor polyamine analogues and significantly alter
the response of tumor cells to these agents.

Materials and methods

Chemicals and reagents

N1,N11-Bis(ethyl)norspermine (BENSpm) was provided
by Parke-Davis (Ann Arbor, Mich.). N1-Ethyl-N11-(cy-
clopropyl)methyl-4,8-diazaundecane (CPENSpm), N1-
ethyl-N11-(cycloheptyl)methyl-4,8-diazaundecane (CHENS
pm), (S)-N1-(2-methy-1-butyl)-4,8-diazaundecane (IPE-
NSpm), SL-11093, SL-11144, SL-11150, SL-11158,
SL-11156, and the polyamine oxidase inhibitor N1,N4-
bis(2,3-butadienyl)-1,4-butanediamine (MDL 72,527)
were synthesized as previously described [3, 30, 31, 39, 40,
48] (Fig. 1). Spermine, spermidine, N1-acetylspermidine,
N8-acetylspermidine, Sephadex G-100, and luminol were
purchased from Sigma Chemical Co. (St. Louis, Mo.).
N1-Acetylspermine was purchased from Fluka (Switzer-

land). Horseradish peroxidase was from Roche Molecu-
lar Biochemicals (Indianapolis, Ind.). Restriction and
DNA-modifying enzymes were purchased from New
England Biolabs (Beverly, Mass.), Invitrogen (Carlsbad,
Calif.) and Sigma. Invitrogen customoligomers were used
for PCR as indicated.

Construction of the bacterial hPAO expression vector

Published sequences [43, 50] were used to clone human
PAO cDNAs by RT-PCR using total cellular RNA
prepared from HEK-293, NCI-A549, or NCI-H157 cells
using Trizol RNA reagent according to the supplied
protocol (Invitrogen). PAO cDNAs were amplified by
nested PCR using two sets of primer pairs, 5¢-CGA-
GAGCTCCAGACCTCCCGGCTA with 5¢-GCATCT-
GGTGTCTCAGCTCAAGTC, and 5¢-CAGAAGCCC-
TCGGACTGCCCGGAC with 5¢-GGCCAGACTCC-
AATAACAGACACA. The resulting PCR products
were then TA-cloned into the pCR2.1 vector (Invitro-
gen) according to the manufacturer’s supplied protocol.

To construct the bacterial expression vector pET15b/
hPAO-1, the hPAO-1 cDNA was amplified by PCR
from the respective pCR2.1 clone. Primers used for PCR
contained NdeI (upstream, 5¢-TCGGCGCCATATG
GAG TCGACCGGCAGCGTCGG) or XhoI (down-
stream, 5¢-ATTACTCGAGAACTGA GAAGGTGGC-
CCTGGTTA) restriction sites that were used to clone
the hPAO-1 PCR product in-frame into the pET15b
vector (Novagen, Madison, Wis.) in the same restriction
sites.

Purification of the recombinant hPAO-1

The pET15b/hPAO-1 plasmid was transformed into the
BL21(DE3) strain of Escherichia coli and selected on LB
agar with 100 lg/ml ampicillin. The expression of

Fig. 1 The polyamine
analogues used in these studies.
Note that SL-11156 is also
known as N1,N14-
bis(ethyl)homospermine
(BEHSpm)
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hPAO-1 was induced in LB medium by 1 m M IPTG
treatment for 4 h at 37�C. The cell lysate was prepared
under denaturing conditions with 8 M urea, and hPAO-
1 protein was isolated from the cell lysate by Ni-NTA
resin, according to the supplied protocol. The resulting
denatured protein was renatured by dialysis in buffer
(250 m M NaCl, 50 m M Tris-HCl, 0.1 m M EDTA,
1 m M DTT, 0.2 lM FAD) with decreasing concentra-
tions of urea as previously described [47]. The renatured
hPAO-1 protein was further purified by gel filtration
chromatography. Sephadex G-100 matrix was preswol-
len in dialysis buffer and packed into a 1·60-cm glass
column. A 1-ml aliquot of the renatured protein sample
was loaded onto the column and eluted with dialysis
buffer (70 ll/min). Fractions (350 ll/tube) were assayed
for enzyme activity and the protein was visualized by
Coomassie staining after separation by 10% SDS-
PAGE.

Determination of PAO enzyme activity

hPAO-1 activity was determined using a modification of
the chemiluminescence analysis reported by Fernandez
et al. and Rogers et al. as previously described for
PAOh1/SMO activity measurements [18, 32, 47]. Briefly,
enzyme activity was assayed in 83 m M glycine buffer,
pH 8.0, 5 nmol luminol, 20 lg horseradish peroxidase,
0.2 m M 2-bromoethylamine (catalase inhibitor), 15 lM
deprenyl (copper-containing amine oxidase inhibitor),
0.15 m M clorgyline (mitochondrial oxidase inhibitor),
and the substrate as indicated. Where indicated, inhibi-
tors were added at the specified concentrations 2 min
prior to the addition of substrate.

The apparent initial rate constants for Km and Kcat of
the enzyme preparations were estimated using Linewe-
aver-Burk transformation of the Michaelis-Menten ki-
netic equation at pH 8.0 in atmospheric oxygen with the
indicated substrate. The pH of 8.0 was chosen since this
represents the best approximation of pH in human
peroxisomes measured to date [14, 15].

Stable expression of hPAO-1 in A549 cell line

A mammalian hPAO-1 expression vector was con-
structed by restricting pCR2.1/hPAO-1 with EcoRV and
HindIII, followed by ligation of the resulting fragment
into the pcDNA3.1(-) vector (Invitrogen) using the same
restriction sites. For stable transfections, A549 human
non-small-cell lung carcinoma cells were cultured in 100-
mm plates to 70% confluence in RPMI 1640 medium
with 10% calf serum. Lipofectamine-mediated (Invitro-
gen) transfection was performed with 10 lg pcDNA3.1/
hPAO-1 or empty pcDNA3.1 vector (used as control) for
5 h. Transfected cells were selected 48 h after transfec-
tion with medium containing 400 lg/ml G-418 for
3 weeks and clones were screened for hPAO-1 activity.

Cell proliferation assay

The high hPAO-1 expressing clone, A18-5, or control
vector-transfected A549 cells were seeded at 2000 cells/
50 ll medium/well in 96-well plates. After 24 h, the
polyamine analogues in a volume of 50 ll medium
were added into each well at the indicated concentra-
tions. After a 72-h exposure, 20 ll MTS [3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt] solution from a
One Solution Cell Proliferation Assay Kit (Promega,
Madison, Wis.) was added and the absorbance at 490 nm
was recorded after a 90-min incubation at 37�C.

Northern blotting assay

Total cellular RNA was extracted from cells with Trizol
RNA reagent (Invitrogen) according the manufacturer’s
protocol. RNA samples, 15 lg for each lane, were sep-
arated by 1.5% agarose/formaldehyde gel electropho-
resis, transferred onto Zeta-Probe nylon membrane
(Bio-Rad, Hercules, Calif.), and UV-crosslinked. The
membrane was then hybridized to a random primer-la-
beled probe specific for the hPAO-1 cDNA, and rep-
robed with 18S ribosomal cDNA as a loading control.

Results

Activity of recombinant hPAO-1

It should be noted that in our cloning of the human
PAO using RT-PCR methods similar to those used to
discover PAOh1/SMO splice variants [28, 46], cDNAs
corresponding to 12 splice variants of hPAO were
identified (sequence and the cell lines from which they
were cloned have been submitted to GenBank and as-
signed the accession numbers AY541513–AY541523)
from multiple human tumor cell lines. However, due to
the large number of splice variants, a single cDNA,
hPAO-1, corresponding to the cDNAs reported by Wu
et al. and Vujcic et al. [43, 50] and represented in all cell
lines examined, was chosen for further study here.

High expression of hPAO-1 protein was achieved
using pET15b/hPAO-1-transformed BL21 (DE3) E. coli
cells after induction with 1 m M IPTG for 4 h at 37�C.
The denatured protein was enriched by Ni-NTA column
chromatography, followed by renaturation in decreasing
concentrations of urea. However, Ni-NTA chromatog-
raphy of the bacterial lysate consistently resulted in two
bands on SDS-PAGE, one corresponding to the ex-
pected size for the recombinant protein (about 59 kDa)
and a smaller band (about 35 kDa). Therefore, Sepha-
dex column chromatography was used to further enrich
the recombinant protein. Fractions 51–55 demonstrated
high PAO activity and were pooled for further study
(Fig. 2a). An aliquot corresponding to 0.5 lg of the
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pooled protein resolved as a single band of about
59 kDa by SDS-PAGE analysis (Fig. 2b).

To determine the apparent initial Km and Kcat values
for the hPAO-1 protein preparation, concentrations of
N1-acetylspermine and N1-acetylspermidine ranging
from 0.5 lM to 25 lM were used. The Km, Kcat, and
Kcat/Km values of hPAO-1 were determined by to be
0.85 lM, 31.7 s�1, and 3.72·107 M�1 s�1, respectively,
for N1-acetylspermine and 2.1 lM, 15.0 s�1, and
7.14·106 M�1 s�1 with N1-acetylspermidine as the sub-
strate.

When the natural polyamines and their acetylated
counterparts were examined for their ability to serve as
substrates for the recombinant hPAO-1 (Fig. 3a) the
order of preference was found to be: N1-acetylsper-
mine>N1-acetylspermidine>N1,N12-diacetylspermine.
However, under the same conditions N8-acetylspermi-
dine, spermidine, and spermine were not found to be
efficiently oxidized.

Oxidation of specific polyamine analogues by hPAO-1

There is evidence that some antitumor polyamine ana-
logues are substrates for cellular oxidases, including PAO
[26, 37, 43, 50]. Therefore, the ability of recombinant
hPAO-1 to oxidize various antitumor polyamine ana-
logues that are in, or are being considered for, clinical
trials was examined. The symmetrically substituted ana-
logue BENSpm was demonstrated by Wu et al. and
Vujcic et al. [43, 50] to be oxidized by PAO. Here we
examined the unsymmetrically substituted analogues
CPENSpm, CHENSpm, and IPENSpm, the oligoam-
ines, SL-11144, SL-11150, and SL-11158, the tetra-amine
SL-11156 and its conformationally restricted analogue,

SL-11093, as potential substrates for hPAO-1. Each of
the analogues was incubated at a concentration of
250 lM with hPAO-1 (Fig. 4). Consistent with our pre-
vious findings suggesting that resistance to CHENSpm
was mediated by oxidase activity [26], CHENSpm was
found to be oxidized by the recombinant enzyme. Simi-
larly, CPENSpmand IPENSpm also served as substrates.
It is noteworthy that none of the oligoamine compounds
or the aminobutyl-containing tetra-amines were found to
be substrates for hPAO-1. HPLC analyses of the reaction
products of recombinant hPAO-1 and each of the ana-
logues indicate that in addition to H2O2, CPENSpm,
CHENSpm, and IPENSpm are each catabolized by
hPAO-1 resulting in at least two major amine-containing
products (data not shown). For each compound, one
product has a retention time similar to that of
mono(ethyl)norspermidine [43], while the other has a
retention time shorter than that of mono(ethyl)norspe-
rmidine, longer than that of spermidine, and unique to
the specific analogue. Further analysis is required to
confirm the identity of these products.

Fig. 2 Purification of recombinant hPAO-1. a Activity of fractions
eluted from a Sephadex-G100 column. After Ni-NTA column
chromatography and renaturation, protein was added to the
Sephadex-100 column and eluted with dialysis buffer. Fractions
were collected and assayed for activity and are presented as relative
light units (RLU) using the standard assay system as described.
Fractions 51–55 were pooled for further analysis. b Protein (0.5 lg)
was separated by 10% SDS-PAGE and stained with Coomassie
brilliant blue. Lane 1 purified protein after Sephadex-G100
chromatography, lane 2 markers with sizes as indicated

Fig. 3 Substrate specificity of purified recombinant hPAO-1.
Purified protein was incubated in the presence of 250 lM of the
indicated substrate: (a) natural polyamines, or (b) polyamine
analogues. The data are from a representative experiment per-
formed in triplicate with error bars indicating the standard
deviation
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Overexpression of hPAO-1 decreases the sensitivity of
human A549 non-small-cell lung cancer cells to specific
polyamine analogues

To confirm that high PAO activity has pharmacody-
namic relevance, human A549 lung cancer cells were

transfected with an hPAO-1-expressing vector. Clone
A18-5 was found to have significantly increased
expression of hPAO-1 at both the mRNA and enzyme
levels and was chosen for further study (Fig. 5). It is
important to note that the increased expression of
hPAO-1 did not alter the ability of the transfected A549
cells ability to oxidize spermine, thus suggesting that in
situ hPAO-1 maintains its preference for N1-acetylated
polyamines.

The A18-5 clone was then exposed to increasing
concentrations of the three analogues that were oxidized
by the recombinant hPAO-1 in vitro to determine if
increased expression of hPAO-1 altered cellular sensi-
tivity to the analogues (Fig. 6). The results of these
experiments clearly indicated that the increased expres-
sion of hPAO-1 greatly decreased the sensitivity of A549
cells to CHENSpm, CPENSpm, and IPENSpm, each of
which were demonstrated to be substrates for the en-
zyme. By contrast, the sensitivity of A549 to SL11156,
an analogue that is not a substrate for the enzyme, was
not altered by overexpression of hPAO-1.

Inhibition of hPAO-1 activity by polyamine analogues

MDL 72,527 was originally designed as a specific
inhibitor of PAO, the enzyme that preferentially oxidizes
acetylated polyamines as its substrates [3, 34]. This
inhibitor, as expected, potently inhibited the hPAO-1
enzyme preparation with an IC50<0.1 lM (Fig. 6).
Since oxidation of polyamines appears to be a mediator
of analogue cytotoxicity with specific compounds, the
determination of which analogues act as inhibitors of
hPAO-1 may be instructive with regard to understand-
ing the mechanism of action of the individual analogues.
Therefore, 10 lM of each was examined for its ability to
inhibit the oxidation of N1-acetylspermine (250 lM)
(Fig. 7). Of the analogues examined, three oligoamine
analogues, SL-11144, SL-11150, and SL-11158, were
found to be inhibitors of the recombinant hPAO-1 en-
zyme, with SL-11150 and SL-11158 completely inhibit-
ing hPAO-1 activity at the concentration of 10 lM

Fig. 5 Expression of hPAO-1 in A549 cells decreases sensitivity to
specific polyamine analogues. The hPAO-1-overexpressing A549
clone A18-5 was exposed to increasing concentrations of the
indicated polyamine analogue for 72 h. Growth of treated cells was
estimated by MTS assay. Each point represents three determina-
tions with the error bars indicating standard deviation falling
within the symbol. Note that overexpression of hPAO-1 does not
alter the response of A549 cells to SL-11156

Fig. 6 Inhibition of purified recombinant hPAO-1 by the poly-
amine oxidase inhibitor MDL 72,527. Increasing concentrations of
MDL 72,527 were incubated in the presence of 250 lM N1-
acetylspermine. The data presented are the mean of duplicate
determinations

Fig. 4 Expression of hPAO-1 in transfected A549 lung cancer cells.
a Northern blot analysis of the A18-5 clone demonstrating
increases expression of hPAO-1. Total cellular RNA (15 lg) was
analyzed from vector control-transfected (lane 1) and hPAO-1-
transfected (lane 2) cells. hPAO-1 mRNA was expressed as a single
band of about 2.0 kb. b Cell lysates from the A18-5 or vector
control clones were assayed for oxidase activity using both N1-
acetylspermine (N1-ASPM) and spermine (SPM). The results are
from a representative experiment performed in triplicate and are
presented as a mean of triplicate determinations with the error bars
indicating standard deviation
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tested. Although additional work is required to deter-
mine the mechanism of inhibition, these data demon-
strate that polyamine analogues in addition to MDL
72,527 are capable of inhibiting hPAO-1, and this
information should be useful in the design of future
analogues.

Discussion

The recent cloning of the mammalian FAD-dependent
peroxisomal PAO [43, 50] provides the opportunity to
fully examine the role that polyamine catabolism plays
both in polyamine homeostasis and in response to
antitumor polyamine analogues. The previous cloning
and characterization of the other two mammalian en-
zymes controlling polyamine catabolism, SSAT [6, 7,
11–13, 19, 20, 29, 44, 51] and PAOh1/SMO [9, 17, 28, 42,
46, 47], and the elucidation of their regulation will
eventually allow full examination of the interplay among
the catabolic enzymes.

The current study was undertaken to determine the
activity and substrate specificity of recombinant human
PAO. Using previously published sequences we were
able to adapt the method of recombinant protein pro-
duction and purification used previously to produce
human PAOh1/SMO [46] to rapidly produce sufficient
human PAO protein for analysis. The unanticipated
finding that the human PAO gene codes for at least 12
splice variants provides fertile ground for further study
in the regulation of the polyamine catabolic pathway.
However, for practical purposes we limited our initial
studies to the splice variant designated here as hPAO-1,
that codes for a 511 amino acid protein identical to that
reported by Vujcic et al. [43]. Our results demonstrate
that hPAO-1 has the highest affinities for N1-acetyl-

spermine (Km about 0.85 lM) and N1-acetylspermidine
(Km about 2.1 lM). These apparent Km values, derived
in atmospheric oxygen, are different than those reported
by Wu et al. [50] for the mouse homologue, suggesting
that the human recombinant protein has a higher affinity
for both spermidine and spermine. However, it is
important to note that the rate constants reported here
are initial rate constants rather than the steady-state rate
constants reported previously [50]. The only other nat-
ural polyamine derivative that was found to be readily
oxidized using the recombinant human protein was
N1,N12-diacetylspermine. However, the physiological
relevance of the diacetyl substrate is questionable since it
is not normally found in cells [41].

Since there is considerable interest in developing
polyamine analogues as antineoplastic agents, it has
been a concern as to whether such analogues would
serve as substrates for amine oxidases, including the
polyamine oxidases. The first-generation analogues,
including BENSpm and BESpm, were synthesized for
their capacity to block the oxidation of the primary
amines through the addition of alkyl groups [1]. Al-
though this strategy prevents significant oxidation by the
copper-containing serum amine oxidase, previous stud-
ies indicated [2, 34] and recent results demonstrate that
these analogues are, in fact, substrates for the acetyl-
polyamine oxidase [43, 50]. These results are in contrast
to results with PAOh1/SMO, which did not oxidize any
of the polyamine analogues examined [47]. The results
presented here with the unsymmetrically substituted
analogues CHENSpm, CPENSpm, and IPENSpm are
consistent with our previous report suggesting that CHO
cells are resistant to CHENSpm treatment as a result of
oxidase activity [26]. Although resistance could be
overcome by the addition of the oxidase inhibitor MDL
72,527 these results did not conclusively implicate PAO
activity, since MDL 72,527 inhibits both PAO and
PAOh1/SMO [43, 46].

In addition to confirming it is the acetylpolyamine
oxidase, PAO, and not PAOh1/SMO, that is responsible
for cellular resistance to unsymmetrically substituted
analogues, the current findings also support the
hypothesis that hPAO-1 represents a more promiscuous
enzyme than PAOh1/SMO. The significant differences in
substrate specificity between the human polyamine ox-
idases and other closely related polyamine oxidases,
including maize PAO, are interesting since they all are
approximately the same size and share considerable
domain homology. The basis for substrate specificity
awaits crystallization and structure solution to better
define the active site of the mammalian polyamine ox-
idases, as has been accomplished for maize PAO [4]. It is
important to note that the ability of hPAO-1 to oxidize
antitumor polyamine analogues has physiological rele-
vance, as clearly demonstrated by the decreased sensi-
tivity to CHENSpm, CPENSpm, and IPENSpm in
A549 cells overexpressing the oxidase.

Neither PAOh1/SMO [47] nor hPAO-1 appear
capable of oxidizing the oligoamine or the tetra-amine

Fig. 7 Inhibition of hPAO-1 activity by polyamine analogues.
Recombinant protein was incubated in the presence of 250 lM N1-
acetylspermine and 10 lM of the indicated analogue. It should be
noted that the analogues were added to the reaction mixture
containing the recombinant protein 2 min prior to the addition of
substrate. The data are from a representative experiment performed
in triplicate with error bars indicating the standard deviation.
Control indicates the activity (22 lmol/mg protein/min) of hPAO-1
using 250 lM N1-acetylspermine as a substrate with no inhibitor

88



analogues that are composed of aminobutyl repeats.
This may be a result of the terminal aminobutyl moieties
common to these compounds as opposed to the terminal
aminopropyl moieties found in both the symmetrically
and unsymmetrically substituted analogues. Although
these oligoamines are not substrates for the human
polyamine oxidases, three of the compounds tested here
are inhibitors of both hPAO-1 and PAOh1/SMO [47]
and still possess significant antitumor activity [25, 24],
indicating that the production of H2O2 through poly-
amine catabolism may not be necessary for the antitu-
mor activity of the oligoamines as has been implicated
for other analogues [10, 21]. However, it should be noted
that the mechanism by which the oligoamines inhibit the
oxidases is not currently known.

In summary, this is the first reported study to
examine the recombinant human acetylpolyamine oxi-
dase protein, hPAO. The clear demonstration that spe-
cific analogues are substrates for the human PAO
suggests one possibility as to why the results of clinical
trials with the polyamine analogues have been less than
desirable [49]. However, the identification of analogue
substrates and inhibitors of this important polyamine
catabolic enzyme and understanding the structural
requirements surrounding these properties should be
helpful in the further design of more effective agents
targeting polyamine metabolism.
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