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Abstract. IgG immune complexes are of central im-
portance in the humoral immune system and strongly
implicated in the pathogenesis of hematologic and
rheumatic autoimmune disorders. Cross-linking of re-
ceptors for the Fc domain of IgG antibodies (FcgRs)
triggers a wide variety of effector functions including
phagocytosis, antibody-dependent cellular cytotoxicity,
and release of inflammatory mediators, as well as im-
mune complex clearance and regulation of antibody
production. In this way, FcgR provide an essential
feedback between the humoral and cellular immune re-
sponse. In the past, significant advances have been
made in the molecular dissection of FcgR function us-
ing cellular transfection systems. Current approaches
designed to target and change individual FcgR genes in
mice have given further insight into their specific con-
tributions to systemic processes, also indicating them to
be important immunoregulatory receptors involved in
various disease states of allergy, autoimmunity, and in-
flammation. Future work on targeting FcgR binding
sites in combination with humanized FcgR mouse mod-
els will lead to novel therapeutic strategies in the treat-
ment of IgG-mediated human disease in which FcgR
activation plays an integral part.
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Introduction

Cell surface receptors for the Fc domain of immunoglo-
bulin (Ig) are known to be expressed on all cells of the
immune system. Fc receptors (FcR) play an important
role in immune regulation, as they serve to link antibo-
dy-mediated immune responses with cellular effector
functions. Specific FcRs exist for all classes of immuno-
globulin, including IgA (FcaR), IgD (FcdR), IgE
(FcεR), IgG (FcgR), and IgM (FcmR). The primary
structure of the genes and proteins of the FcaR, FcεR,
and FcgR receptors has been resolved, revealing simi-
larities in subunit composition and signal transduction
with the T- and B-cell antigen receptors. In the case of
FcgR, three distinct classes have been recognized:
FcgRI, FcgRII, and FcgRIII, with different IgG bind-
ing affinities and IgG subclass specificities (for review
see [1–3]).

All the FcgR belong to the Ig supergene family com-
posed of unique ligand-binding a chains that consist of
the C2 class of extracellular Ig domains. Within each
FcgR receptor class multiple subtypes are known. The
FcgRI and -III classes exist as oligomeric complexes to-
gether with g and z chain homo- or heterodimers in-
volved in cell activation through the conserved cyto-
plasmic signal transduction motif, termed immunore-
ceptor tyrosine-based activation motif (ITAM). Mem-
bers of the FcgRII class such as FcgRIIA and FcgRIIB
are different from other FcgR, in that they are monom-
eric receptors containing either activatory (ITAM) or
inhibitory (ITIM) signaling motifs within their respec-
tive ligand-binding chains.

The structural heterogeneity of FcgR is reflected in
a wide range of biological activities, including clearance
of antigen/antibody immune complexes (IC), regulation
of antibody production, enhancement of antigen pres-
entation, antibody-dependent cell-mediated cytotoxici-
ty (ADCC), phagocytosis, degranulation, and activa-
tion of inflammatory cells. Many of these responses
may be unique for selected cell types based on differ-
ences in tissue-specific expression of FcgRs. Additional
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diversity of individual FcgR receptor-mediated func-
tion is related to genetically determined polymorphisms
(for review see [4]), to the generation of soluble FcgR
(for review see [5]), and to synergisms with other recep-
tor systems (for review see [6]).

FcgRs have been implicated to be involved in sev-
eral rheumatic and autoimmune diseases. The specific
contribution of each of the FcgR classes to many of
these pathological events is still unclear. Recent studies
using genetically altered FcgR mouse strains have been
started to define more closely the functional signifi-
cance of FcgRs for normal and pathological in vivo im-
mune reactions. This review focuses on molecular as-
pects of human and murine FcgR structure and func-
tion and discusses the potential of FcgR knock-out
mice as experimental models for human disease.

General characteristics of the IgG Fc receptor family

(FcgR)

Three distinct classes of mouse and human FcgR have
been defined: FcgRI, FcgRII, and FcgRIII. In the
mouse each class is encoded by a single gene, whereas
in the human being a total of eight genes have been
identified: three genes for the high-affinity receptor
FcgRI (A, B, C) and five genes for the two low-affinity
receptors FcgRII (A, B, C) and FcgRIII (A, B). The
human FcgR genes are located on chromosome 1,
bands 1p13 and 1q21 (hFcgRI) and band 1q22
(hFcgRII and hFcgRIII) [7]. These regions are syntenic
to mouse chromosomes 3 or 1, where the respective
murine mFcgRI or mFcgRII and mFcgRIII genes have
been mapped [8, 9]. The FcgR genes are derived from a
common ancestral gene and are structurally related,
containing conserved Ig-like extracellular (EC) do-
mains and divergent transmembrane (TM) and cyto-
plasmic (C) regions [8]. The different organization in
the TM/C domains, together with certain specificity of
expression, accounts for the diverse functions of the
different FcgR classes. An overview of the molecular
heterogeneity and characteristics of FcgRs is shown in
Figs. 1 and 3 and Tables 1–3.

FcgRI

Human FcgRI (CD64) is a 72-kDa glycoprotein which
binds with high affinity (Kap108–109M–1) to monomer-
ic as well as aggregated IgG, with a specificity for hu-
man IgG1 and IgG3. The interaction with IgG4 and
particularly with IgG2 is much weaker. In contrast to
other human FcgRs, hFcgRI does not interact with mu-
rine IgG2b, binding only mIgG2a and mIgG3 isotypes
[2]. High affinity is a unique property for FcgRI, de-
pendent on a third extracellular Ig domain not found in
class II or III receptors [10].

Of the three hFcgRI genes (A, B, C), only hFcgRI-
A encodes for the high-affinity receptor. The other two,
i.e., the hFcgRI-B and hFcgRI-C genes, are character-
ized by in-frame stop codons in the third extracellular
(EC3) exon [11]. hFcgRI-B-derived splice variants
lacking the EC3 exon are capable of encoding a low-
affinity hFcgRIb2 receptor isoform in vitro [12]. The
existence and function of such a receptor isoform in
vivo has not yet been demonstrated.

hFcgRIa is constitutively expressed on monocytes
and macrophages and can be induced by IFN-g on neu-
trophils, eosinophils, and glomerular mesangial cells
[1–3, 13]. hFcgRIa expression is also induced by G-CSF
on neutrophils and by IL-10 on mesangial cells [13, 14].
An IFN-g-responsive region (GRR) within the
hFcgRI-A gene promoter has been identified [15]. In-
duction by IFN-g as well as by IL-10 and G-CSF in-
volves the binding of STAT family members of acti-
vated transcription factors to the GRR [16–18].

The induction by IFN-g, G-CSF, and IL-10 at sites
of inflammation might be crucial to the function of
hFcgRIa as a trigger molecule of phagocytosis and
ADCC, as well as of endocytosis, leading to enhanced
antigen presentation. hFcgRIa receptors lack signaling
motifs in the cytoplasmic domain of their ligand-bind-
ing a chains [10]. Initiation of phagocytosis following li-
gand binding and receptor aggregation relies on tyro-
sine kinase activities recruited by the ITAM motif of
the associated FcR g-subunit [19, 20]. It is also sug-
gested that the g-subunit contributes to an improved
IgG binding of hFcgRIa as well as to a more stable sur-
face expression [21], whereas pseudopod formation oc-
curring after binding of IgG-opsonized particles [22]
and endocytosis of soluble immune complexes [23] are
not strictly dependent on the g-chain.

Murine FcgRI is a trypsin-sensitive 70-kDa glyco-
protein expressed mainly on macrophages binding
mIgG2a with high affinity (Kap108M–1) [1, 3]. mFcgRI
seems not to interact with the other mIgG1, mIgG2b
isotypes. The IgG-binding capacity for human IgG is
not well defined. Similar to hFcgRIa, both features of
high affinity and mIgG2a specificity are dependent on
the presence of a third Ig domain [24]. Sequence com-
parison of mFcgRI and hFcgRIa has revealed a
65–75% identity in the three extracellular domains and
the transmembrane region. However, the cytoplasmic
domain is largely unrelated to hFcgRIa, containing as it
does an additional stretch of 22 amino acids [25]. With-
in the cytoplasmic domain serine residues have been
identified to be phosphorylated following stimulation
of neutrophils by induction of protein kinase C [26]. A
defective mFcgRI receptor lacking, in addition to ex-
tracellular mutations, most of its cytoplasmic tail is ex-
pressed in some mouse strains exemplified by nonobese
diabetic (NOD) mice [27, 28]. This mutated mFcgRI
has lost the capacity to internalize bound IgG2a. A sim-
ilar functional impairment of IgG2a-FcgRI-triggered
phagocytosis is seen in mice deficient in the FcR g-
chain. These data indicate that specific signals locate to
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Fig. 1a,b. Schematic represen-
tation of the human (a) and
mouse (b) IgG Fc receptor
family (FcgR). All human and
mouse FcgR classes I, II, and
III are members of the immu-
noglobulin superfamily having
two or three homologous ex-
tracellular Ig-like domains.
The membrane-proximal Ig
domains involved in ligand
binding of IgG are shown in
blue. With the exception of
hFcgRIIIb, which is a GPI-an-
chored protein, all FcgRs are
transmembrane molecules.
Multiple genes in each recep-
tor class, their alternative
spliced products, and their in-
dividual subunits are referred
to as A, B, and C; b1, b1’, b2,
and b3; and a, b, g, and z, re-
spectively. Polymorphic var-
iants are indicated (HR/LR,
NA1/NA2, 48L/48R/48H,
158F/158 V, and Ly17.1/
Ly17.2). Within the cytoplas-
mic tails distinct functional
motifs involved in signal trans-
duction are recognized. Acti-
vatory ITAM and inhibitory
ITIM sequence motifs are in-
dicated in green and red, re-
spectively. In addition, the re-
gion responsible for inhibition
of endocytosis present in hu-
man and mouse FcgRIIb1 is
displayed in yellow

specialized cytoplasmic regions in the ligand-binding a-
chain and the associated g-subunit, which both might
contribute to mFcgRI-triggered effector cell functions.

FcgRII

Human FcgRII (CD32) receptors are 40-kDa glycopro-
teins that bind, as low-affinity receptors, IgG in the
form of immune complexes (Kap107M–1) with a specif-

icity for hIgG1 and hIgG3. All hFcgRIIs show no de-
tectable binding with hIgG4 but interact well with
mIgG2a and mIgG2b. Binding to hIgG2 and mIgG1,
which are normally not recognized by human FcgRs,
depends on the high responder (HR)/low responder
(LR) polymorphism of the hFcgRIIa receptor [2, 4].
The HR allotype which is determined by an Arg at po-
sition 131 interacts with hIgG2. In contrast, the LR al-
lotype expresses for His at residue 131 and has the ca-
pacity to bind mIgG1. This polymorphism has been as-
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Table 1 General characteristics of human Fcg receptors

hFgRI (CD64) hFcgRII (CD32) hFcgRIII (CD16)

Molecule 72 kDa 40–43 kDa 50–80 kDa
Genes 3 (A, B, C) 3 (A, B, C) 2 (A, B)
Alleles IA: P IIA: 2 (HR/LR) IIIA: 3 (48L/R/H)

IB: P IIB: P 2 (158F/V)
IC: P IIC: P IIIB: 2 (NA1/NA2)

Transcriptsa a1, a2 a1, a2 a1–a6, DEC2
b1, b2, b3 b1, b2, b3 b
c c

Isoformsb hFcgRIa hFcgRIIa1, hFcgRIIa2 (S) hFcgRIIIa,
(hFcgRIb2) hFcgRIIb1, b2 (hFcgRIIIaDEC2)

(hFcgRIIc) hFcgRIIIb (GPI)
Associated FcR g chain P FcR g chain, FcR b chain
subunitsc TCR/CD3 z chain
Mabsd 22.2, 32.2, 197, IIa: IV.3, CIKM5, 2E1, CIKM3 IIIa (48L): B73.1

62, 44, 10.1 IIa-HR: 41H16 IIIa (158V): MEM154, 1D3
IIb: 1A4, 8.7, 7.30 IIIb (NA1): MG38, B73.1
IIa/b: KB61, 8.26, Ku79, AT10 IIIb (NA2): GRM1, PEN1

IIIa/b: 3G8, DJ130c, Leu11a,
LNK16, B88-9

Affinity for 108–109 MP1 ~107 MP1 IIIa: 3!107 MP1 e

IgG (Ka) IIIb: ~107 MP1

Specificity 3p1141 1 12 IIa (HR): 3111 1214 IIIa/IIIb: 1p31 1 12, 4
for hIgG IIa (LR): 311p21 1 14

IIb1: 311141 12

a A total of six variant FcgRI transcripts are evident, from which
a1, b1, b2, c but not yet a2 or b3 have been published [11].
hFcgIIIa transcripts lacking the EC2 coding sequences can be ex-
pressed by transfection as a hFcgRIIIa receptor variant with a
single extracellular Ig domain [152]
b Parentheses indicate protein isoforms expressed after transfec-
tion but not yet verified in vivo [3, 12, 152]. All isoforms are trans-
membrane proteins, with the exceptions indicated as S (soluble)
and GPI (glycosyl-phosphatidyl-inositol anchored)
c The FcR b chain can associate with the hFcgRIIIa ag2 receptor
complex in the transfected murine P815 mastocytoma cell line.
TCR/CD3 z chain associates as a homo- or heterodimer with
hFcgRIIIa expressed by gd T cells and NK cells
d CD64, CD32, CD16 monoclonal antibodies characterized during
the Fifth Leukocyte Typing workshop are listed [153–155]. Most
CD64 mAbs recognize an epitope outside the ligand-binding do-
main. CD32 mAbs show differences in their patterns of reactivity,

with preferential binding to either hFcgRIIa or hFcgRIIb, or
both. The 41H16 mAb is specific for the FcgRIIa-HR allotype
and reacts with all FcgRIIb isoforms [156]. The 1A4 mAb detects
specifically an activation epitope of hFcgRIIb present on tonsilar
CD19-positive B cells [157]. The 8.7, 7.30 mAbs preferentially
bind to Daudi B cells rather than monocytic U937 cells [158].
CD16 mAb normally recognize both hFcgRIII isoforms but can
show differences in their reactivity with distinct allotypes. A not-
able exception is MG38, which reacts exclusively with the NA1
form of hFcgRIIIb [159]. The 1D3 mAb, originally clustered to be
specific for NA1 and NA2 of hFcgRIIIb, also demonstrates weak
reactivity with the 158 V hFcgRIIIa [69]. The MEM154 mAb
binding to an epitope at the ligand-binding site of hFcgRIIIb
[160] also reacts with the 158 V hFcgRIIIa allotype [69]
e The medium affinity of hFcgRIIIa expressed by NK cells is de-
pendent on the high-binding 158 V allotype [69, 161]

sociated with certain bacterial infections and with SLE
[2, 4]. Extensive information has been gained in defin-
ing the IgG binding site of FcgRII [3]. The loop con-
necting F and G ß-sheets on the second extracellular Ig
domain of FcgRII-A between residues Asn154 and
Ser161 constitutes an IgG-binding structure [29]. In ad-
dition to this region, as the major site involved in the
direct interaction with IgG, several amino acids located
on the loops connecting B and C ß-sheets (Lys113,
Pro114, Leu115, Val116) as well as C and ’E ß-sheets
(Phe129, Arg/His131) influence hFcgRII-A/IgG inter-
action [30].

In contrast to the other hFcgRs, which are encoded
by genes containing a single exon for the transmem-
brane and cytoplasmic region, three separate exons
(C1–C3) have been discovered for the cytoplasmic tail
and 3’UTR of the hFcgRII genes [8, 31]. Three sepa-
rate genes, hFcgRII-A, hFcgRII-B, and hFcgRII-C, are
known. Six different mRNAs (a1, a2, b1, b2, b3, and c)
are transcribed encoding either soluble (a2) or trans-

membrane (a1) hFcgRIIa receptors as well as two
hFcgRIIb isoforms [4, 32, 33]. The existence and func-
tion of the c1-transcribed hFcgRIIc receptor have not
yet been demonstrated in vivo. The hFcgRIIb1 and
hFcgRIIb2 receptors are identical except for a 19-ami-
no acid insertion in hFcgRIIb1 encoded by the first in-
tracytoplasmic (C1) exon. hFcgRIIb3 is almost identi-
cal to hFcgRIIb2 but lacks nucleotide sequences encod-
ing for signal sequences by the S2 exon. The
hFcgRIIb1-specific insertion negatively affects the in-
ternalization capacity of IgG [34].

hFcgRIIs are the most widely expressed FcgRs and
are present on almost all leukocytes, including neutro-
phils, eosinophils, basophils, monocytes, macrophages,
platelets, Langerhans cells, B cells, and some T-cell
subsets [1–3]. In relation to the receptor classes I and
III, their expression on monocytes and neutrophils is
not up-regulated by cytokines. hFcgRIIa expressed on
neutrophils and macrophages initiates phagocytosis,
ADCC, and cellular activation [35–38], whereas
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Table 2 Distribution and function of human Fcg receptors

hFcgRI (CD64) hFcgRII (CD32) hFcgRIII (CD16)

Expression
Constitutive Myeloid progenitors B cells, subpopulation of T cells IIIa: NK cells, gd T cells,

Monocytes Monocytes, macrophages macrophages, subpopulation
Macrophages Basophils, eosinophils of monocytes
Dendritic cells Neutrophils, platelets, IIIb: Neutrophils

Langerhans cells, dendritic cells,
endothelial cells

Induced Neutrophils P IIIa: Mesangial cells,
Eosinophils monocytes
Mesangial cells IIIb: Eosinophils

Regulationa A: IFNg, IL-10, G-CSF A: P A: IFNg, IL-10, G-CSF
B: P B: P B: TGFb
C: IL-4, IL-3 C: IL-4 C: IL-4

Functions Endocytosis IIa1: Endocytosis, antigen IIIa: Endocytosis,
Antigen presentation presentation, respiratory antigen presentation,
ADCC burst, phagocytosis, ADCC, apoptosis,
Phagocytosis ADCC, mediator release phagocytosis,
Respiratory burst IIb2: Endocytosis mediator release
Mediator release IIb1/2: Negative regulation of IIIb: Respiratory burst,

B-cell and mast-cell
activation

IIIb: ADCCb

a A transcriptional induction, B post-transcriptional induction, C down-modulation
b Conflicting data in the literature (reviewed in [3])

Table 3 Characteristics of murine Fcg receptors

mFcgRI mFcgRII mFcgRIII

Molecule 70 kDa 40–60 kDa 40–60 kDa
Genes 1 1 1
Alleles P 2 (Ly17.1/Ly17.2) P
Isoforms mFcgRI mFcgRIIb1, b1b, b2, b3 (S) mFcgRIIIa
Associated subunits FcR g chain P FcR g chain, FcR b chain
Mabs P 2.4G2 2.4G2

K9.361 (anti-Ly17.1)a

K75.325 (anti-Ly17.2)a

Affinity for IgG (Ka) 108 MP1 ~107 MP1 ~107 MP1

Specificity for mIgG 2a1 1 11, 2b, 3 1p2ap2b1 1 13 1p2ap2b1 1 13
Expression Macrophages, b1: B cells, subset of T cells, Macrophages, mast cells,

mesangial cellsb early fetal thymocytes neutrophils, eosinophils
b2: Macrophages, Mesangial cellsb

mesangial cellsb NK cells, gd T cells
b1/b2: Mast cells, basophils, Early fetal thymocytes

eosinophils
Functions ADCC, b1: Capping, apoptosisc, ADCC,

phagocytosis negative regulation of Antigen presentation,
B-cell and mast-cell phagocytosis,
activation degranulation

b2: Endocytosis, phagocytosis?d, Mediator release
antigen presentation

a The FcgRII-specific anti-Ly17 antibodies distinguish between
FcgRII and FcgRIII expression and functioning [162, 163]
b mRNAs for mFcgRI, mFcgRIIb2, and mFcgRIII are evident in
mesangial cells

c Induction of apoptosis has been described for mFcgRIIb1 in B
cells [164] and mFcgRII b1/b2 in eosinophils [165]
d There is some evidence that the endocytic mFcgRIIB2 is also
involved in phagocytosis of opsonized particles [166]

hFcgRIIb expressed on B cells and mast cells delivers a
negative signal modulating activatory BCR- and FcεRI-
mediated responses, respectively [34, 39–41].

Specialized signaling motifs, an activatory ITAM in
the cytoplasmic tail of hFcgRIIa versus an inhibitory
ITIM in hFcgRIIb, are essential for the different func-
tions of the hFcgRII isoforms. Mutational analyses
have shown that tyrosine residues in both hFcgRIIa-

ITAM and hFcgRIIb-ITIM are critical for the activa-
tion versus down-regulation events. ITAM motifs,
found in hFcgRIIa and the FcR g-chain as well as in
the T- and B-cell antigen receptors, consist of two
YXXL boxes interspaced by 7–12 amino acids [42].
Phosphorylation of both tyrosines by Src-family protein
tyrosine kinases such as Lyn or Fyn, and by subsequent
association with SH2 domains contained in tyrosine ki-
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nases such as Syk, appears to be critical for activatory
hFcgRIIa signaling [36, 43]. The ITIM motif is unique
for all mouse and human FcgRIIb receptor isoforms
not present in the other FcgR classes. It is part of a
highly conserved 13-amino acid sequence with a con-
sensus inhibitory I/LxYxxL motif encoded by the C3
exon and determines the ability to control ITAM-based
signaling after co-cross-linking with the BCR, FcεRI,
FcgRIIa, and FcgRIII receptors [40]. The functional
significance of the ITIM motif is best studied in the mu-
rine system described below.

In mice the mFcgRII gene is structurally related to
hFcgRII-B. Activatory mFcgRIIa receptors are not
present in the murine system. mFcgRII-B exist in four
isoforms generated by cell-type-specific alternative
splicing of TM- and/or C1-encoding exons of the tran-
script classes b1, b1’ in B cells and b2, b3 in macro-
phages [44]. mFcgRIIb3 receptors lacking TM and C1
sequences are released as soluble receptors by macro-
phages [45]. mFcgRIIb2 receptors lacking C1 se-
quences are preferentially expressed by myeloid cells
and mediate endocytosis of immune complexes, leading
to an enhancement of antigen presentation [46]. The
mFcgRIIb1’ isoform contains a 19-amino acid insertion
encoded by the 5’ part of the C1 exon, indicating that
this isoform is the murine homologue of hFcgRIIb1
[47]. It is coexpressed with and functionally equivalent
to mFcgRIIb1, which has a longer, 47-amino acid-en-
coded C1 insertion. The presence of C1 sequences in
the B-cell-specific mFcgRIIb1/b1’ receptors is not re-
quired to modulate BCR activation signals, but selec-
tively prevents mFcgRII-mediated endocytosis and an-
tigen presentation [48, 49]. The characteristic C1 inser-
tion contributes to the formation of caps in response to
mFcgRIIb1 cross-linking. It has been concluded that
this feature is important to B-cell function, ensuring
that mFcgRIIb1 is in close proximity to the BCR and
other costimulatory factors such as MHC class II and
CD19 [48].

Coligation of mFcgRIIb1 with the antigen receptor
on B cells inhibits the influx of extracellular calcium
and abrogates the proliferative signal [48, 50, 51]. Phos-
phorylation of the FcgRIIb ITIM tyrosine is critical to
its inhibitory mechanism (see Fig. 3), leading to the re-
cruitment of SH2-domain containing phosphatases,
namely the tyrosine-phosphatase SHP-1 and the phos-
phatidylinositol (3,4,5) P3 5’ inositol phosphatase SHIP
[52–54]. Although SHP-1 and SHIP are both implicated
in FcgRIIb signaling, their relative roles remain con-
troversial [55, 56]. A potential role for SHP-1 was origi-
nally suggested in studies on SHP-1 in B cells, where
SHP-1-deficient (moth-eaten) B cells did not demon-
strate antiproliferative activity on FcgRIIb engagement
[52]. The involvement of a tyrosine phosphatase like
SHP-1 may explain the selective decrease in the tyro-
sine phosphorylation of CD19 [54]. The dephosphory-
lation of CD19 gives rise to a corresponding decrease in
the level of associated PI3 K, suggesting that inhibition
of calcium influx and IP3 production may result from

default PI3 K activation [57, 58]. The finding that inhi-
bitory signaling by mFcgRIIb does not require SHP-1
in SHP-1-deficient mast cells led to the identification of
SHIP [59]. Later on, the preferential association of
mFcgRIIb1 with SHIP was also demonstrated in B cells
[53, 60]. It has been proposed that SHIP recruitment
attenuates a proapoptotic signal initiated by
mFcgRIIb1 coligated with the BCR [60, 61].

FcgRIII

Human FcgRIII (CD16) receptors are extensively gly-
cosylated proteins showing heterogeneity with an ap-
parent molecular weight of 50–80 kDa. hFcgRIII binds
IgG in the form of immune complexes, with a specifici-
ty for hIgG1 and hIgG3 and minimal binding of hIgG4
and hIgG2 [1–3, 62]. Several amino acids on the mem-
brane-proximal Ig domain of hFcgRIII (Gln126,
Arg156, Lys162, Val164) are involved in IgG binding
[63]. Molecular modeling located these amino acids to
the FG loop (Lys162, Val164), the CC’ loop (Gln126),
and the F b-sheet, providing one discontinuous binding
site for IgG [64]. The Lys162, Val164 residues on the
FG loop seem to form the main IgG-interactive site of
FcgRIII (Fig. 2).

Two separate genes encoding hFcgRIII (III-A and
III-B) have been mapped within a distance of 200 kb
from the hFcgRII gene complex [8]. Sequence conser-
vation of about 97% identity has been described be-
tween both coding and flanking regions of each gene
[65, 66]. hFcgRIII-A and hFcgRIII-B encode almost
identical proteins but contain amino acid differences
responsible for distinct post-translational modifications
such as N-linked glycosylation and membrane expres-
sion [65]. The presence of serine at position 185 of
hFcgRIIIb is essential to create a signal for attachment
to a glycosylphosphatidylinositol (GPI) anchor [1–3].
The hFcgRIIIa contains a phenylalanine instead of a
serine at that position, resulting in a transmembrane re-
ceptor isoform with a cytoplasmic tail of 25 amino
acids. This transmembrane hFcgRIIIa receptor re-
quires additional subunits, the FcR g-chain and/or the
CD3 z-chain, for efficient cell surface expression, pro-
tecting the hFcgRIIIa ligand-binding a-chain against
degradation in the endoplasmic reticulum [1–3]. In ad-
dition, recent studies suggest that the FcR g-chain
might be responsible for the medium affinity of
hFcgRIIIa compared with the low affinity of
hFcgRIIIb [21].

Several polymorphisms on hFcgRIII that influence
the binding of IgG have been described [4, 67–69]. On
neutrophils, the hFcgRIIIb exists in two allelic forms,
NA-1 and NA-2, which differ by four amino acids in
the membrane-distal Ig domain [4]. Individuals homo-
zygous for NA2 show a lower phagocytic capacity by
hFcgRIIIb compared with NA1 [67]. On NK cells and
monocytes, two polymorphisms have been recognized
for hFcgRIIIa [68, 69]. The first represents a triallelis-
mus in the membrane-distal Ig domain, predicting a
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Fig. 2a,b. Three-dimensional-
model of the putative IgG-
binding site on FcgR exem-
plified for hFcgRIII-B. Amino
acid residues involved in IgG
binding are colored. Space-fill-
ing (a) and ribbon diagram
(b) presentations imply that
these residues are located on
the FG loop and the GFC sur-
face of the membrane-proxi-
mal domain of hFcgRIII-B.
Similar structural determi-
nants are involved in interac-
tions with IgG by hFcgRII re-
ceptors [28, 29]

leucine (L) to arginine (R) or histidine (H) at residue
position 48. The second is localized in the membrane-
proximal Ig domain near the ligand-binding site, pre-
dicting a phenylalanine (F) to valine (V) at residue po-
sition 158. Compared with FF homozygotes, hFcgRIIIa
expressed in 158VV-positive individuals bound more
IgG1 and IgG3, despite identical levels of receptor ex-
pression and irrespective of the amino acid present on
position 48 [68]. The difference in high binding
(158VV) versus low binding (158FF) has direct func-
tional as well as clinical consequences. In a recently
published case, two children suffering from recurrent
viral infections were genotyped to carry the hFcgRIIIa-
48HH-158VV high-binding allele [68, 70]. Moreover,
the initial analysis of 200 patients with SLE indicates a
strong association of the low-binding phenotype with
disease, especially nephritis, and a corresponding un-
der-representation of the homozygous high-binding
phenotype [69].

The hFcgRIIIa is constitutively expressed on macro-
phages, NK, and gd T cells and can be induced by IFN-
g on glomerular mesangial cells [1, 2, 71–73].
hFcgRIIIb is the most abundant receptor on neutro-
phils and can be induced by IFN-g on eosinophils [1,
74]. The molecular basis for the differential tissue-spe-
cific expression patterns has been analyzed both in vi-
tro and in vivo [75, 76]. Reconstitution studies in trans-
genic mice locate the regulatory gene elements suffi-
cient for NK cell (FcgRIII-A) versus neutrophil
(FcgRIII-B) restriction to the 5’flanking region of both
genes. Enhancer and silencer structures as well as sepa-
rate promoters reside within the 5’flanking regions [75].
In the case of hFcgRIII-A, simultaneously active pro-
moters control for the initiation of multiple transcript
classes a1–a6 in NK cells [66, 75]. As revealed by RT-
PCR analysis, most of them encode for identical
hFcgRIIIa receptor molecules. A notable exception is
the a4 transcript, containing divergent sequences [77].

While the GPI-anchored hFcgRIIIb isoform is ex-
pressed on the cell surface as a monomeric protein, the
hFcgRIIIa receptor complex requires the presence of
dimeric g or z subunits for assembly and signal trans-
duction. Through their differential requirements for
these associated signaling molecules, the hFcgRIII iso-
forms mediate different functions. hFcgRIIIa on NK
cells mediates ADCC (Fig. 3) and all other antibody-
dependent responses, where it represents the only
FcgR [78] (for review see [79]). Furthermore,
hFcgRIIIa triggering of IFN-g-activated mesangial cells
results in the secretion of IL-6. It has been suggested
that the appearance of this receptor on normally FcgR-
negative mesangial cells is critical for the initiation and
progression of chronic glomerular inflammation [73].
Cross-linking of hFcgRIIIb on neutrophils leads to cel-
lular activation [80]. The hFcgRIIIb receptor, like oth-
er GPI-anchored proteins, associates with Src-family ty-
rosine kinases, especially with hck [81]. The activation
of hck might contribute to the increase in calcium mo-
bilization and the induction of the respiratory burst
[82]. Down-regulation of these intracellular events in-
volves the tyrosine phosphatase CD45 [83]. The inter-
action with other cell surface receptors is important for
the achievement of a full effector response. Coopera-
tion of hFcgRIIIb with hFcgRIIa and CR3 is necessary
for efficient phagocytosis, ADCC, and degranulation
[6, 84, 85]. In an in vitro model of immune vasculitis
hFcgRIIIb-mediated activation of neutrophils ap-
peared to be critical for the pathogenesis of cryoglobu-
lin-induced leukocytoclastic vasculitis [86].

mFcgRIII was first classified as an mFcgRII protein
because it reacted with the same anti-FcgRII/III mAb
2.4G2 and shared with mFcgRII identical binding char-
acteristics, interacting with mIgG1, mIgG2b, and
mIgG2a in the form of immune complexes [87].
mFcgRIII is now defined as a class-III receptor by vir-
tue of its similarity to hFcgRIIIa in structure, function,
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Fig. 3a,b. Positive (a) and ne-
gative (b) signal transduction
pathways initiated upon en-
gagement of FcgR. a FcgR ac-
tivation induced by receptor
cross-linking is the crucial first
step in triggering the signaling
cascade, which, in the case of
hFcgRIII-A on NK cells, cul-
minates in the destruction of
IgG-coated target cells
through ADCC. hFcgRIII-A
cross-linking results in the
binding and activation of Src
family PTKs, inducing tyro-
sine phosphorylation of the
ITAM motif in the accessory
FcR g-chain cytoplasmic do-
main. This phosphorylation in-
duces binding and activation
of Syk, followed by several
downstream events leading to
the cellular response of
ADCC. The broken arrow in-
dicates that activation of Syk
may be sufficient to trigger
ADCC even in the absence of
known Src-family PTK (dis-
cussed in [79]). b Down-mod-
ulation of BCR-dependent ac-
tivation signals by FcgRII-B.
Co-cross-linking results in ty-
rosine phosphorylation of the
ITIM motif in FcgRII-B, lead-
ing to the recruitment and ac-
tivation of phosphatases such
as SHIP and SHP-1. These
phosphatases can interact with
different substrates involved
in BCR-mediated activation
which result in inhibition of
the influx of extracellular cal-
cium and B-cell proliferation.
There are some indications for
the primacy of SHIP over
SHP-1 (see text)
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and cell distribution [1, 3]. mFcgRIII is expressed as a
multimeric complex with dimeric g-chains on NK cells,
mast cells, macrophages, and neutrophils, as well as on
mesangial cells [1, 3, 88]. Additional mFcgRIII receptor
complexes, namely an agz structure and a tetrameric
abg2 form, are known in NK cells and mast cells, re-
spectively [89]. mFcgRIIIb receptors similar to the
GPI-linked hFcgRIIIb on human neutrophils are not
present in the murine system. mFcgRIII is the only
FcgR on mature NK cells, where it mediates ADCC. In
addition to mFcgRII, mFcgRIII expression has been
demonstrated on early fetal thymocytes containing pro-
genitor cells of NK and T cells, suggesting a role of
mFcgRIII in NK cell development [90]. mFcgRIII is
coexpressed with mFcgRI and mFcgRII on macro-
phages. Triggering of phagocytosis by activated macro-
phages is mediated mainly by mFcgRIII rather than
mFcgRII. mFcgRIII-mediated endocytosis and antigen
presentation are dependent on the ITAM motif of the
associated FcR g-chain [46, 91, 92].

mFcgRIII is coexpressed with the high-affinity re-
ceptor for IgE, FcεRI, in mast cells. Both receptors as-
sociate with the same FcR b and g subunits and differ
only in terms of their relative ligand-binding a-chains
responsible for the interaction with either IgE or IgG.
It has been shown that the b-subunit acts as an amplif-
ier of signal transduction triggered by the ITAM motif
of the common FcR g-chain [93]. Evidence of competi-
tion between the FcεRI and FcgRIII a-chains for the
FcR b and g subunits has been described. In the ab-
sence of the FcεRI a-chain, an increased association of
FcgRIII with the b and g subunits leads to an up-regu-
lation of cell surface expression of FcgRIII [94, 95]. Un-
der such conditions, IgG-dependent mast cell activation
responses of degranulation and anaphylaxis mediated
by mFcgRIII are enhanced [94].

In vivo role of FcgR assessed in mouse mutants

The structural heterogeneity of FcgRs, combined with
an overlapping pattern of expression on effector cells,
has made it difficult to dissect the specific functions of
individual receptors in in vivo immune responses. This
problem has been addressed in genetic knock-out mice
in which one or more FcgRs have been disrupted by
targeted deletion. KO mice for FcR g-chain, FcgRII,
and FcgRIII show defined specific defects in their im-
mune responses, making them useful as models for
evaluating the distinct roles of individual FcgRs in host
defense and IgG-triggered diseases (Table 4).

FcR g-chain KO

Mice deficient in the common g-chain constituted the
first FcgR mutant strain with which the relative contri-
bution of several structurally related Fc receptors to
normal and pathological in vivo immune responses was

studied [96]. Functional defects in the expression of
FcgRIII on NK cells, FcgRI and FcgRIII on macro-
phages, and FcgRIII and FcεRI on mast cells are evi-
dent in these FcR g KO mice. Macrophage effector
function to phagocytose distinct IgG-opsonized par-
ticles appears to be completely absent in FcR g chain-
deficient mice, despite the normal binding activity of
IgG1 and IgG2b subclasses. This may indicate that
IgG1/IgG2b-dependent phagocytosis is normally me-
diated by mFcgRIII rather than mFcgRII. The FcgRI-
specific binding activity of IgG2a-coated erythrocytes is
undetectable, suggesting FcR g to be critical in facilitat-
ing either surface expression or ligand binding of the
high-affinity FcgRI.

The cytotoxic activity of FcgR-expressing effector
cells is affected by the disruption of the FcR g-chain
gene. The ability to mediate antibody-mediated tumor
cytotoxicity is impaired in FcR g-negative NK cells and
macrophages in vitro. Most importantly, FcgRI- and
FcgRIII-dependent ADCC appears to be a dominant
pathway of melanoma tumor rejection in vivo [97]. This
finding clearly suggests that increasing the efficiency of
antibody-mediated cytotoxicity may be a key step in tu-
mor rejection. Current clinical trials approach this issue
by developing bispecific molecules directed at tumor
cells and either FcgRI or FcgRIII on immune effector
cells [98–100].

The role of FcgR in the pathology induced by infec-
tions has been described in FcR g-chain KO mice [101,
102]. The report by Yuan et al. [102] demonstrates that
the antibody-mediated modulation of Cryptococcus
neoformans (an encapsulated fungus that infects immu-
nosuppressed individuals and is responsible for the
death of 6–8% of AIDS patients) infection is IgG sub-
class dependent, and that FcgRs – most likely FcgRIII
– are essential for IgG1-mediated passive protection
against this pathogen. Importantly, phagocytosis of C.
neoformans opsonized by IgG3 occurs even in the ab-
sence of the FcR g-chain. Together with the observa-
tion that FcgRI is the mouse IgG3 receptor [103], this
finding suggests another additional IgG3/FcgRI-me-
diated signal transduction pathway that is not depend-
ent on the common FcR g-chain.

The analysis of type I and III hypersensitivity im-
mune reactions demonstrates the central role for the g-
chain-associated FcεRI and FcgRIII receptors in the in-
itiation of IgE- and IgG-mediated immunity. Both re-
ceptors mediate degranulation and release of inflam-
matory mediators by mast cells when cross-linked with
IgE and IgG immune complexes, respectively. FcR g-
chain-deficient mice fail to respond to IgE stimulation,
as assessed by early and late mast cell activation re-
sponses. In the model of IgE-dependent passive cuta-
neous anaphylaxis (PCA), the characteristic increase in
vascular permeability occurs in control but not in FcR g
KO mice [96]. A similar phenotype was originally de-
scribed in FcεRI a-chain-deficient mice, indicating that
FcεRI is the dominant FcR necessary for the initiation
of IgE-dependent anaphylactic reactions [95]. Sensitiza-
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Table 4 Phenotypic characteristics of FcgR mouse mutants (n.p. not published)

KO

FcR g FcgRIII FcgRII

a) Effector cell functions in vitro
1) FcR off-signal (B cells) n.d. n.d. Abrogated [59, 117]
2) ADCC (NK cells) Abrogated [96] Abrogated [107] n.d.
3) Degranulation (mast cells)

IgG mediated
IgE mediated

n.d.
Abrogated [96]

Abrogated [107]
n.d.

Enhanced ]59, 117]
Enhanced [59, 117]

4) Phagocytosis (macrophages)
IgG1 dependent
IgG2a dependent
IgG2b dependent

Abrogated [96]
Abrogated [96]
Abrogated [96]

Abrogated [108–109)
Reduced [140]
Not affected [107]

n.d.
n.d.
n.d.

B) Immune responses in vivo
1) Type-I hypersensitivity

– Active systemic anaphylaxis
– Passive anaphylaxis, IgG
– Passive anaphylaxis, IgE

Abrogated [94, 104]
Abrogated ]94, 104]
Abrogated [94, 104]

n.d.
Abrogated [107]
Not affected [107]

n.d.
Enhanced [117]
n.d.

2) Type-II hypersensitivity
– Hemolytic anemia (AIHA)

IgG1 induced
IgG2a induced

– Thrombocytopenia (ITP)
– Melanoma tumor rejection

n.d.
Abrogated [141]
Abrogated [141]
Abrogated [97]

Abrogated [140]
Reduced [140]
n.d.
n.d.

n.d.
n.d.
n.d.
n.d.

3) Type-III hypersensitivity
– reserve passive Arthus reaction
– Arthus reaction after CVF treatment
– Mast cell reconstitution
– Cryoglobulin-induced skin vasculitis
– Autoimmune glomerulonephritis

Abrogated [105]
Abrogated [105]
Abrogated [106]
n.d.
Abrogated [128]

Reduced [107]
Abrogated [107]
n.d.
Abrogated (n.p.)
n.d.

n.d.
n.d.
n.d.
n.d.
n.d.

4) Humoral immune response
– Serum Ab production
– Follicular IC deposition
– Ab affinity maturation
– B cell tolerance

Not affected [168]
Enhanced [169]
Not affected [169]
Not affected [168]

n.d.
n.d.
n.d.
n.d.

Elevated [117, 168]
n.d.
n.d.
Not affected [168]

tion for active systemic anaphylaxis not only induces an
IgE response, but also results in the production of an-
tigen-specific IgG1 antibodies. In a recent study, the re-
lative importance of IgE and FcεRI versus IgG1 and
FcgR in the pathogenesis of active or IgE- or IgG1-de-
pendent passive anaphylaxis was therefore assessed by
analyzing the cardiopulmonary changes and mortalities
in both FcR g-chain and FcεRI a-chain KO mice [104].
These results indicate that IgE and FcεRI contribute in
part to the pathophysiology of active systemic anaphy-
laxis, but they clearly demonstrate that the mortality as-
sociated with active anaphylaxis is dependent on
FcgRs, most likely FcgRIII but not FcεRI.

The significance of defective FcR g-chain expression
has been further evaluated in the experimental system
of the reverse Arthus reaction. This model of IgG im-
mune complex-mediated pathogenesis is characterized
by edema, hemorrhage, and neutrophil infiltration, re-
sulting from the subcutaneous formation of immune
complexes. A strong reduction of the Arthus reaction
in the skin for all three parameters measured is ob-
served in FcR g KO mice as compared with control
mice [105]. Differential in vivo reconstitution experi-
ments have further identified the mast cell expressing
FcgRIII to be a very important cell type for triggering

the initial phase of this type-III inflammatory reaction
[106].

FcgRIII KO

Studies with KO mice deficient for the ligand-binding a
chain of FcgRIII support the critical role of this recep-
tor in IgG inflammatory disease states [107]. FcgRIII
mutant mice show a functional defect in the expression
of FcgRIII and exhibit impaired antibody-mediated re-
sponses, including loss of NK cell-mediated ADCC
[107], neutrophil IgG1-dependent phagocytosis [108],
and mesangial cell-mediated release of inflammatory
cytokines (Gessner and Radeke, unpublished). Phago-
cytosis of IgG1- but not IgG2a- and IgG2b-opsonized
particles by macrophages is strongly diminished. These
data indicate that, in addition to FcgRIII, the other
FcgRs normally expressed by macrophages might con-
tribute to phagocytosis, but apparently with different
IgG isotype specificities [109]. On the other hand, IgG-
mediated mast cell degranulation appeared to be exclu-
sively dependent on FcgRIII. Studies with mast cell-de-
ficient mice indicate that the mast cell might be a cru-
cial effector cell type, not only in IgE- but also in IgG-
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dependent anaphylaxis [110, 111]. Moreover, the con-
tribution of FcgRIII in in vivo IgG-mediated PCA
reactions has been suggested in studies with IgE-defi-
cient mice [112]. The activation of FcgRIII with the
2.4G2 mAb in normal mice results in physiological
changes that are similar to those observed in active
anaphylaxis [94]. FcgRIII-deficient mice are resistent to
IgG-dependent PCA, thus providing direct in vivo evi-
dence for the activatory role of FcgRIII on mast cells in
this process [107].

The absolute requirement of FcgRIII in the experi-
mental model of the reverse Arthus reaction has been
analyzed. Interestingly, the degree of impairment of the
Arthus reaction in the skin varied considerably among
individual FcgRIII-deficient mice, supporting the crit-
ical role of FcgRIII in this process but indicating that
additional factors also play a role [107, 113]. Thus de-
pletion of complement components C3 and C5 by cobra
venom factor (CVF) is necessary to achieve a complete
block of the Arthus reaction in all FcgRIII KO mice
[107]. This is different from what has been observed in
the FcR g KO model, in which complement appears to
play a secondary role [105]. Variations in the genetic
background may differently influence the relative con-
tribution of the complement-mediated pathway in the
FcR g-chain- and FcgRIII-deficient strains of mice. In a
recent experiment, the genetic deletion of the comple-
ment components C3 and C4 did not result in a dimin-
ished responsiveness of type II and III IgG-triggered
inflammation [114]. The distinction between comple-
ment and FcgRIII as primary triggers of tissue injury is
therefore very important, with major therapeutic impli-
cations for human disease. Obviously, however, addi-
tional studies with well-defined mouse mutants in dis-
tinct strain backgrounds using different experimental
protocols for the induction of inflammation are neces-
sary to characterize all the determinants involved in im-
mune complex-mediated disorders. This issue has re-
cently been addressed in mice who are deficient in the
C5a receptor gene, by analyzing three models of im-
mune complex injury. Quantitative differences are evi-
dent, with a key role for C5aR in the initiation of IgG-
hypersensitivity reaction in the lung, but a synergistic
action of C5aR and FcgRs, most likely FcgRIII, in the
skin and peritoneum [115].

FcgRII KO

Despite their widespread distribution, the biological
role of FcgRII receptors is not fully understood. Re-
constitution studies have suggested that FcgRII can in-
hibit activation through ITAM-containing receptors
[40]. In vitro, coligation of FcgRII with the antigen re-
ceptor on B cells and with FcεRI and FcgRIII on mast
cells inhibits B-cell proliferation and receptor-triggered
degranulation, respectively [51, 116]. The significance
of this inhibitory pathway for in vivo immune responses
has been investigated in FcgRII-deficient mice. These

mice show a functional defect in the expression of the
FcgRIIb1 receptor on B cells and of the FcgRIIb2 re-
ceptor on macrophages and mast cells [117]. The in
vivo consequences on B cells were determined by im-
munization with thymus-dependent and thymus-inde-
pendent antigens. FcgRII-deficient mice display ele-
vated immunoglobulin levels to these antigenic stimula-
tions for IgM, IgG, and IgA as compared with normal
mice. Thus, defective FcgRII function may contribute
to the development of autoimmunity. However, the ob-
servation of only a partial reduction of IgG immune
complex-dependent feedback inhibition to regulate an-
tibody production indicates that additional mechanisms
are probably involved in antibody homeostasis [117]. A
potential candidate gene is the CD22 lectin-like mem-
brane protein known to associate with the B-cell antig-
en receptor. Antibody clustering of CD22 before BCR
ligation increases the proliferative capacity of B cells
[118]. CD22-deficient mice have been independently
generated by several groups [119–122]. In one study,
immunization with T-cell-dependent antigens resulted
in augmentation of the humoral response [119]. Thus,
both FcgRII and CD22 might have the potential to act
as negative regulators of the humoral immune response
in vivo. Phosphatase recruitment to the ITIM domains
of FcgRII and CD22 upon coengagement with the
BCR is critical for inhibition. The SH2-containing tyro-
sine phosphatase SHP-1 recruited by CD22 can sup-
press BCR signaling, whereas the inositol polyphos-
phate 5-phosphatase SHIP contributes to the inhibitory
effects of FcgRII. Studies on double CD22/FcgRII-de-
ficient mice with mutations in their ITIM domains will
be helpful to test the possibility that synergisms may be
sufficient for uncontrolled antibody production and the
development of autoimmune disease.

In addition to B cells, FcgRII modulates IgE- and
IgG-triggered mast cell functions via FcεRI and
FcgRIII, respectively [59, 117]. This inhibitory role has
been clearly shown in vivo for IgG-mediated passive
cutaneous anaphylaxis (PCA) reactions in FcgRII-defi-
cient mice. Significant augmentation of the PCA re-
sponse triggered by FcgRIII on mast cells is observed
at antibody concentrations five to ten times lower than
in normal mice [117]. IgE-mediated PCA reactions
have not been analyzed. Repression of IgE-triggered
degranulation is evident in normal as well as mast cells
derived from SHP-1-defective me/me mice [123] but ab-
sent in FcgRII-deficient mice.

FcgRIIb2 expressed on macrophages is functionally
different from FcgRIIb1 on B cells in its ability to me-
diate endocytosis of immune complexes in vitro [48].
However, the contribution of FcgRIIb2 to macrophage
phagocytic function in vivo is less clear. FcgRIIb2 en-
gagement on macrophages from FcgRIII-deficient mice
by SRBCs opsonized with a bispecific antibody has re-
vealed phagocytosis [107]. On the other hand, FcRg-
deficient mice who still express FcgRIIb2 have com-
pletely lost their phagocytic activity [96]. FcgR-me-
diated phagocytosis in FcgRII-deficient mice has not
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yet been analyzed. Therefore, it remains unclear to
what extent FcgRIIb2 contributes to phagocytosis in
vivo.

FcgR KO as experimental models for human disease

In general, the molecular mechanisms by which IgG au-
toantibodies and immune complexes can trigger au-
toimmune disease are due to autoantibody production,
immune complex deposition, and complement activa-
tion. One very important additional pathway in disease
development may depend on the interaction of IgG di-
rectly with effector cells through FcgRs. As described
before, the elimination of individual FcgRs greatly in-
fluences the pathology in the cutaneous Arthus reac-
tion, the murine model of type-III inflammation. Cut-
ting out the functional expression of FcgRIII by dele-
tion of either the a or the g chain results in a dimin-
ished reaction, whereas the deficiency of the counterac-
tive FcgRII leads to enhanced responsiveness. In
FcgRIII, but not FcRg mutant animals complement can
partly compensate for the loss of FcgRIII function as
the primary trigger during the initial phase of the Ar-
thus reaction. Both KO strains are characterized by a
high degree of genetic heterogeneity, which may ac-
count for the variation in complement activation. The
predominant pathway through which an autoantibody
or immune complex triggers disease may further de-
pend on the nature of the self-antigen or the tissue site
of sustained immune complex deposition. Thus, several
clinical outcomes are possible.

Glomerulonephritis

Glomerulonephritis (GN) is a severe complication of
the renal involvement which is the major cause of pa-
thology and death in patients suffering from systemic
lupus erythematosus (SLE). In such cases, immune
complexes may be formed outside the glomerulus un-
der the control of the cellular immune system as a reac-
tion to foreign or self-antigens and captured by the
glomerular structures from the circulation [124]. The
mechanisms of fixation of antigen-antibody aggregates
in the glomerulus have been explained by either
charge-dependent (GBM, matrix) or specific, low-affin-
ity FcR-dependent binding [125]. During initiation of a
glomerular inflammatory or autoimmune reaction,
these events may also precede the invasion of leuko-
cytes [126], and the presence of local FcR-bearing
glomerular cells has been postulated for quite some
time. Two different cell types may be distinguished in
the mesangial area, bone marrow-derived resident mac-
rophages and the mesenchyme-derived mesangial cell
[127].

It has been demonstrated that, upon stimulation,
cultured human glomerular mesangial cells can express
hFcgRIIIa in association with FcRg [73]. Binding of

immune complexes to FcgRIII on mouse and human
MC leads to the production of mediators of inflamma-
tion such as IL-6, MCP-1, and CSF-1 [73, 88]. More re-
cent data on the expression of other FcgRs indicate the
induction of hFcgRI on human MC by IFN-g and IL-10
[13]. A similar expression profile is observed on mouse
MC, which are able to coexpress FcgRI and FcgRIII
upon activation (Gessner and Radeke et al., unpub-
lished). Thus, it appears very likely that triggering of
either FcgRI, FcgRIII, or both on mesangial cells by
IgG complexes is essential in the initiation of autoim-
mune GN. This hypothesis is supported by studies in
which FcR g-chain KO mice with the FcgRIII and
FcgRI deficiencies are crossed into the lupus-prone
NZB/NZW genetic backgrounds. In resulting F1-hy-
brids complete protection from the spontaneous devel-
opment of severe nephritis is observed [128]. Deposi-
tion of immune complexes along with complement C3
occurs in the mesangial space of FcR g mutant B/W
mice, indicating that complement activation is not suffi-
cient to initiate glomerular disease but is more impor-
tant than FcgRI/III in the clearance of immune com-
plexes. This latter finding may explain clinical data
from human beings which show that deficiencies in
complement increase the risk of SLE. A reduction in
immune complex clearance due to defective comple-
ment would increase immune complex deposition,
which then could enhance FcgRI/III-mediated activa-
tion of glomerular mesangial cells, thereby leading to
the initiation and progression of chronic glomerular in-
flammation.

Immune vasculitis

Immune vasculitis (IV) is another immune complex dis-
ease which may require the initial binding of IgG ag-
gregates to FcgRs [129]. Cryoglobulin-induced activa-
tion of neutrophils triggered by hFcgRIIIb plays a con-
tributory role in the pathogenesis of leukocytoclastic
vasculitis [86], the dominant lesion of type-I cryoglobu-
linemia in human beings [130]. Clinical symptoms of
type-I cryoglobulinemia include cold urticaria, Ray-
naud’s phenomenon, cutaneous ulcers, and gangrene of
the fingers and toes upon exposure to cold [131]. Con-
ventionally, cryoglobulins are classified as type I or
type II. Type-I cryoglobulins are usually monoclonal
IgM, IgG, or IgA immunoglobulins, whereas type-II
cryoglobulins are rheumatoid factors which form cryo-
precipitating complexes with polyclonal IgG [132]. In
this light, intermediate-sized IgG-containing rheuma-
toid factor complexes from patients with rheumatoid
arthritis (RA) can interact with FcgRIII on NK cells
and other mononuclear cells [133]. IgG rheumatoid fac-
tor cryoglobulins resembling those found in sera or sy-
novial fluids from RA patients are spontaneously pro-
duced in MRL-lpr but not in other strains of lupus-
prone mice [134]. The injection of hybridomas secreting
pathogenic cryoglobulins with anti-IgG2a rheumatoid
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factor activity obtained from MRL-lpr mice induces
GN and skin leukocytoclastic vasculitis in association
with cryoglobulinemia in normal mice [135]. The induc-
tion of immune vasculitis but not GN is critically de-
pendent on immune complex formation due to the anti-
IgG2a rheumatoid factor activity of cryoglobulins of
the IgG3 subclass [136, 137]. Interestingly, FcgRIII KO
mice crossed to the MRL background are protected
from the development of skin vascular lessions (Izui
and Gessner et al., unpublished). Although the signifi-
cance of these results needs to be tested further and ex-
tended, it may help to explain the immunopathological
effects and clinical features of human cryoglobulinemia
as a primary disorder or secondary to lymphoprolifera-
tive diseases.

Autoimmune hemolytic anemia

Autoimmune hemolytic anemia (AIHA) is one of the
oldest recognized autoimmune disease in human pa-
tients. It is characterized by the production of autoreac-
tive anti-red blood cell antibodies, which are responsi-
ble for the immune destruction of RBC, causing AIHA.
Mice of the NZB inbred strain spontaneously develop
AIHA resembling its human counterpart. A number of
NZB-derived pathogenic anti-mouse RBC (aMRBC)
have been described, demonstrating the aMRBC re-
sponse to be quite heterogeneous in terms of antigen
specificity, pathogenic potential, and the mechanisms
responsible for the anemia observed [138]. Differences
in the cytotoxic activities of two IgG1 aMRBC autoan-
tibodies demonstrate FcR-dependent and FcR-inde-
pendent pathogenic pathways in the development of
AIHA [139]. One antibody, 31–9D, causes anemia after
injection into normal mice due to a marked sequestra-
tion of agglutinated erythrocytes in spleens and livers.
The second antibody, 105–2H, which recognizes a dis-
tinct antigenic epitope, induces anemia as a result of
rapid FcgR-mediated erythrophagocytosis [139]. The
105–2H-induced anemia can be completely prevented
by treatment with the anti-FcgRII/III mAb 2.4G2 [139].
FcgR engagement occurs also in the case of another
34–3C aMRBC. The pathogenic mechanism of the
34–3C and 105–2H mAbs, which recognize the same
antigenic epitope on erythrocytes, is mediated either by
FcgRIII, which interacts exclusively with the IgG1 iso-
type (105–2H), or by FcgRIII and FcgRI, which both
contribute to the binding and phagocytosis of the
IgG2a isotype (34–3C) [140, 141]. Additional evidence
for the important role of individual FcgRs has been ob-
tained in FcR g mutant mice by the use of a polyclonal
rabbit aMRBC serum [141]. In this model, FcR g KO
mice are resistant to the pathogenic effects, preventing
the outcome of AIHA.

Idiopathic thrombocytopenic purpura

Idiopathic thrombocytopenic purpura (ITP) and au-
toimmune neutropenia (AIN) are two other autoim-
mune diseases in which the production of autoreactive
antibodies leads to destruction of IgG-coated platelets
or neutrophils by the mononuclear phagocyte system.
The efficacy of intravenous IgG (IVIG) in the treat-
ment of ITP and AIN has been attributed to FcgR
blockade [142–145], because the administration of
either purified Fc fragments or the anti-hFcgRIII mAb
3G8 successfully restores platelet numbers in ITP pa-
tients refractory to conventional therapies [146, 147].
Furthermore, clinical trials with humanized anti-FcgR
monoclonal antibodies are now being considered for
ITP patients (for review see [98]). Experimental evi-
dence for the direct involvement of FcgRs has been ob-
tained from in vivo animal studies. The (NZW!
BXSB) F1 (W/BF1) mouse strain is used as a model for
ITP, showing a spontaneous thrombocytopenia and the
appearance of autoreactive anti-platelet antibodies
[148]. When injected into nonautoimmune mice, the W/
BF1–derived pathogenic IgG1 autoantibody 6A6, in-
duces a rapid transient thrombocytopenia [149]. FcR g-
chain KO mice are resistant to these pathogenic effects
of 6A6, due to their deficiency in FcgRIII [141].

Conclusions and perspectives

Within the past few years significant progress has been
made in defining the physiological role of FcgRs. The
elucidation of the primary structure, accompanied by
the molecular dissection of FcgR function using various
cellular transfection systems, has provided important
information on the relationship between the structure
of a specific isoform and triggered effector function.
From these studies it has become clear that the struc-
tural heterogeneity of FcgRs, determined by unique
structural features of their transmembrane and cyto-
plasmic domains, influences the specificity of a particu-
lar response induced by FcgRs to cross-linking by IgG
immune complexes. Conserved tyrosine residues within
unique ITAM- (or ITIM- in the case of FcgRIIB) sig-
naling motifs play a central role in the FcgR-triggered
activation (or inhibition) of effector cells.

Functional dissection of the in vivo immune re-
sponse in FcgR KO mouse mutants indicates an essen-
tial role of FcgRs in systemic anaphylaxis (type-I hy-
persensitivity), where the anaphylactic mortality can be
attributed primarily to the FcgRIII/IgG1-dependent as
opposed to the FcεRI/IgE-dependent pathway. In addi-
tion, it is now realized that FcgR-dependent mecha-
nisms contribute significantly to inflammatory type-II
(induced by self-reactive autoantibodies) and type-III
(induced by IgG immune complexes) hypersensitivity
reactions, generally attributed to complement activa-
tion. These studies are of major relevance, in that they
demonstrate the involvement of FcgRs as important
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immunoregulatory receptors in the pathogenesis of al-
lergy, autoimmunity, and inflammation.

The potential of inhibiting the pathophysiological
effects of FcgRs by blocking studies is being considered
for future therapeutic modalities. Approaches involv-
ing the targeting of FcgR-binding sites (reviewed in
[63]) in combination with humanized FcgR mouse
models [76, 150, 151] will be very useful for the devel-
opment of novel strategies in the treatment of IgG-me-
diated human disease in which FcgR activation plays an
integral part. Initial results of clinical trials for several
FcgR-directed immunotherapies have already shown
positive effects (reviewed in [98]), encouraging further
studies in this direction.
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