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Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the West. With CLL’s heterogeneity, some people 
still develop disease refractory and relapse despite advances in treatment. Thus, early diagnosis and treatment of high-risk 
CLL patients is critical. Fatty acid (FA) metabolism contributes to tumorigenesis, progression, and therapy resistance through 
enhanced lipid synthesis, storage, and catabolism. In this study, we aimed to construct a prognostic model to improve the 
risk stratification of CLL and reveal the link between FA metabolism and CLL. The differentially expressed FA metabolism-
related genes (FMGs) in CLL were filtered through univariate Cox regression analysis based on public databases. Functional 
enrichment was examined using prognostic FA metabolism-related gene enrichment analysis. CIBERSORT and single-sample 
gene set enrichment analysis (ssGSEA) estimated immune infiltration score and immune-related pathways. Pearson’s correla-
tion analysis investigated FA metabolism-related genes and drug sensitivity. A novel prognostic model was built using least 
absolute shrinkage and selection operator (LASSO) Cox algorithms. This validation cohort included 36 CLL patients from 
our center. We obtained CLL RNA microarray profiles from public databases and identified 15 prognostic-related FMGs. 
CLL patients were divided into two molecular clusters based on the expression of FMGs. The Kaplan–Meier analysis revealed 
a significant difference in TFS (P < 0.001) and OS (P < 0.001) between the two clusters. KEGG functional analysis showed 
that several pathways were enriched, including the chemokine and immune-related signaling pathways. In the training and 
validation cohorts, patients with higher FA metabolism-related prognostic index (FAPI) levels had worse outcomes. Finally, 
a novel nomogram prognostic model including CLL international prognostic index (CLL-IPI) was constructed, exhibiting 
reliable effectiveness and accuracy. In conclusion, we established a reliable predictive signature based on FA metabolism-
related genes and constructed a novel nomogram prognostic model, supporting the potential preclinical implications of FA 
metabolism in CLL research.
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Introduction

Chronic lymphocytic leukemia (CLL), the most prevalent 
adult leukemia in the Western World, has a wide spectrum 
of disease courses [1, 2]. Some patients require little or no 
treatment while others need immediate therapy at the time of Bihui Pan, Zhangdi Xu, and Kaixin Du contributed equally to this 
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diagnosis. Overall survival (OS) is divergent, ranging from 
a few years postdiagnosis to decades as almost normal life 
expectancy [3]. Over the past few decades, despite the devel-
opment of emerging therapeutic targets is rapidly advancing, 
such as BTK inhibitors, BCL-2 inhibitors, and PI3K inhibi-
tors, CLL is still incurable [4, 5]; some patients continue to 
experience disease relapse and refractoriness, indicating the 
heterogeneity of CLL and the need to differentiate various 
prognosis risk groups as a way to replenish the CLL inter-
national prognostic index (CLL-IPI).

Metabolic reprogramming is a hallmark of many can-
cers [6]. In recent years, various metabolic alterations have 
been identified in hematological tumors, including glucose 
metabolism, nucleotide metabolism, and fatty acid (FA) 
metabolism [7]. FA synthesis is required for anabolic reac-
tions such as membrane biosynthesis and the production of 
signaling molecules. Oxidation of FA produces more than 
twice the ATP yield of glucose or amino acids, making FA 
an important fuel [8]. On the other hand, metabolic repro-
gramming leads to abnormal lipid metabolism, in particular, 
the de novo synthesis of FA is increased by hypoxia and 
malnutrition. The significance of lipid metabolism in differ-
ent kinds of cancers is well-recognized [9]. Wu et al. sug-
gested that FA synthesis was considered a vital metabolism 
pathway in colon adenocarcinoma. Another study found that 
expression patterns of FA metabolism genes were associ-
ated with glioma prognosis and immunophenotype [10]. 
Targeting metabolism to overcome cancer drug resistance 
is thought as a promising therapeutic strategy for diffuse 
large B cell lymphoma [11]. In hematological malignancy, 
active FA oxidation may promote acute myeloblastic leuke-
mia cells to survive and bone marrow adipocytes to resolve. 
Unlike normal B lymphocytes or other leukemia cells, CLL 
cells, like adipocytes, store lipids and use free FAs (FFA) 
to generate chemical energy, using oxidative phosphoryla-
tion of free FAs to meet the high metabolism required for 
proliferation need [12, 13]. Furthermore, studies have shown 
that high levels of FAs are rapidly internalized by CLL cells 
rather than glucose uptake. Higher animal fat and saturated 
fat intake were positively associated with CLL risk. Epi-
demiologic evidence also suggests that dietary fat intake 
significantly increases the risk of non-Hodgkin lymphomas 
[14]. In addition, higher animal and saturated fat intakes 
are positively associated with the risk of CLL in the MCC-
Spain study [15]. Lipoprotein lipase (LPL) is conventionally 
regarded as the principal enzyme involved in lipid metabo-
lism. Numerous studies have validated that the presence 
of LPL mRNA is strongly linked to unfavorable prognosis 
and serves as the most reliable molecular indicator of CLL 
[16–20]. However, fewer prognostic indicators or models 
for CLL exploit reprogrammed lipid metabolism except 
for LPL. Our team has previously investigated the associa-
tion between certain metabolic indicators and the clinical 

manifestations and prognosis of CLL, including low choles-
terol levels and low T3 syndrome, which serve as biomarkers 
of tumor activity [21, 22]. Currently, the FA metabolism-
related gene set in CLL has not been systematically studied.

To further explore the association between CLL and FA 
metabolism, we filtered differentially expressed and prog-
nostic-related FA metabolic genes in CLL based on pub-
lic databases to build a novel prognostic risk model in this 
study. The relationship between the tumor microenvironment 
(TME) cell infiltration characteristics and the prediction risk 
rating model was also investigated. The predictive risk score 
approach correctly identifies CLL patients who are immu-
notherapy candidates. Ultimately, our research aims to build 
a prognostic model based on FA metabolism-related genes 
to improve risk stratification in CLL patients and facilitate 
more accurate assessment for their clinical management.

Materials and methods

Database resource collecting

The RNA microarray profiles for 151 CLL patients were 
extracted from the GSE22762 dataset in the Gene Expres-
sion Omnibus (GEO) database (https:// www. ncbi. nlm. nih. 
gov/ geo/) as the training cohort. The microarray data from 
the GSE50006 dataset including another 188 CLL patients 
and 32 normal samples were used to analyze differentially 
expressed genes (DEGs). All expression data were normal-
ized using the “sva” R package. The data from GEO is pub-
licly available.

Clinical sample preparation and RNA sequencing

As the validation cohort, the RNA sequencing (RNA-seq) 
data of thirty-six CLL patients diagnosed between 2012 
and 2017 in the First Affiliated Hospital of Nanjing Medi-
cal University were enrolled. All the total RNA samples in 
our center were obtained from the purified  CD19+ B cells 
of CLL patients using  CD19+ B cells selection kit (Milte-
nyi Biotech, Gladbach, Germany). Sequencing libraries 
were prepared by NEBNext Ultra RNA Library Prep Kit 
for Illumina (New England Biolabs, Ipswich, MA) and 
sequenced by HiSeq 2500 high-throughput sequencing sys-
tem. Sequences were mapped to hg38 and aligned using 
bowtie and blat. Obtained fragments per kilobase million 
(FPKM) values were normalized in log2 (FPKM + 1).

Additionally, clinical characteristics including age, sex, 
Binet stage, B symptoms, lymphocyte count, hemoglobin 
level, platelet count, lactate dehydrogenase (LDH) level, 
β2-microglobulin (β2-MG) level, complex karyotype, 
TP53 disruption, and IGHV mutation status were extracted 
from medical records. This study was approved by the 
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institutional review board of the First Affiliated Hospital of 
Nanjing Medical University.

Acquisition and enrichment analysis of prognostic 
FA metabolism‑related genes

FA metabolism-related genes were gathered from three 
gene sets in Gene Set Enrichment Analysis (GSEA) data-
base (http:// www. gsea- msigdb. org/ gsea/), including HALL-
MARK FA metabolism, KEGG FA metabolism, and REAC-
TOME FA metabolism, and were provided in Table S1. 
Univariate Cox regression analysis was performed to iden-
tify prognostic-related genes. The t-test was used to distin-
guish the DEGs based on the GSE50006. Venn diagram 
was showing up the intersection genes of FA metabolism-
related genes, prognostic-related genes, and DEGs. Moreo-
ver, Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were performed to explore 
the functional enrichment of the intersection genes via the 
“clusterprofiler” R package.

Unsupervised clustering for FA metabolism‑related 
genes

Unsupervised clustering analysis was used to divide patients 
into two different molecular clusters based on the expres-
sion of differentially expressed FA metabolism-related genes 
via the “clusterprofiler” R package. Survival curves on OS 
time, treatment-free survival (TFS) time, and progress-free 
survival (PFS) time of two clusters were calculated by the 
Kaplan–Meier method and compared by the log-rank test 
with the “survminer” R package. The DEGs between two 
clusters were identified by “limma” R package; furthermore, 
the functional enrichment and tumor immune microenvi-
ronment were carried out to investigate potential biological 
behavior.

Tumor immune microenvironment, m6A regulators, 
and drug sensitivity analysis

Single-sample gene set enrichment analysis (ssGSEA) 
was performed to estimate the immune infiltration score of 
twenty-eight immune cell subtypes and thirteen immune 
pathways. The gene sets included in ssGSEA are listed in 
Table S2. The relative proportion of twenty-two infiltrating 
immune cell subtypes was estimated by the CIBERSORT 
(https:// ciber sort. stanf ord. edu/) algorithm. The expression 
value of immune checkpoint genes is compared between 
different subtypes by Wilcox test. The checkpoint genes 
and m6A-related gene sets are listed in Table S3. Finally, 
the CellMiner database (https:// disco ver. nci. nih. gov/ cellm 
iner/ home. do) was used to explore the relationship between 
DEGs and common FDA-approved antineoplastic drug 

sensitivity by a panel of 60 diverse human cancer cell lines. 
The half maximal inhibitory concentration (IC50) was used 
to predict the treatment response of the cell lines to the 
drugs.

Construction of the risk score prognostic model 
and nomogram models

Least absolute contraction and selection operator (LASSO) 
regression analysis was established to minimize the potential 
overfitting risk via the “glmnet” R package. Fifteen prog-
nostic FA metabolism-related genes were included in the 
LASSO analysis, and the risk score was calculated by the 
formula 

∑n

i=1
�
i
∗ x

i
 , β represents the coefficients, and x rep-

resents the gene expression. According to the optimal cut-off 
value of risk score, patients were divided into a low-risk 
group and a high-risk group. Principal component analy-
sis (PCA) and t-distributed stochastic neighbor embedding 
(tSNE) were used to visualize the distribution of groups 
through the “ggbiplot” R package. The receiver-operator 
characteristic curve (ROC) and corresponding area under 
the curve (AUC) were calculated to evaluate the prognostic 
ability of the risk-scoring model. A nomogram model was 
constructed to estimate the probability of 1-year, 3-year, and 
5-year OS by the “rms” R package. The capacity for prog-
nostic prediction was evaluated by the concordance index 
(C-index).

Statistical analysis

Statistical analyses were performed by R software (version 
4.1.1) and IBM SPSS (version 21.0). Continuous variables 
were compared by the t-test or Kruskal–Wallis test. P < 0.05 
was considered statistically significant.

Results

Identification of prognostic FA metabolism‑related 
DEGs in CLL

FA metabolism-related genes were collected from three gene 
sets in GSEA; after removing duplicate genes, a total of 291 
FA metabolism-related genes were acquired. Based on the 
GSE22762 dataset as a training cohort, 3081 genes were 
found to be associated with poor OS outcomes by univari-
ate Cox regression analysis. Based on the GSE50006 data-
set, 6213 statistically significant DEGs were screened by 
comparing the gene expression in CLL patients and normal 
samples. Filter conditions were set for log fold change > 0.4 
and adjusted P value < 0.05. Venn diagram was showing 
up that there are 15 overlapping genes of FA metabolism-
related genes, prognostic-related genes, and DEGs (Fig. 1A). 

http://www.gsea-msigdb.org/gsea/
https://cibersort.stanford.edu/
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
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Among them, ten genes (ACACA, ACOT7, ADH1A, 
ALOXE3, ECI1, FASN, GSTZ1, HMGCS1, HSD17B3, 
and PON2) were correlated with poor outcomes, and five 
genes (AKR1C3, CBR3, CYP1B1, DLD, and HPGD) were 
associated with favored OS (Fig. 1B). Moreover, we used 
GO and KEGG analyses to explore the functional enrich-
ment of the 15 intersection genes. GO enrichment analy-
sis revealed that these FA metabolism-related genes were 
highly enriched in biological processes of FA metabolic, 
acyl-CoA metabolic, and thioester metabolic, enriched in 
molecular function of oxidoreductase activity, acting on the 
CH-OH group of donors, NAD or NADP as acceptor and 
oxidoreductase activity, acting on CH-OH group of donors 
(Fig. 1C). KEGG analysis found that FRGs were enriched in 

pyruvate metabolism, steroid hormone biosynthesis, metab-
olism of xenobiotics by cytochrome P450, FA biosynthesis, 
FA degradation, FA metabolism, as well as AMPK signaling 
pathway (Fig. 1D).

Two FA metabolism‑related molecular clusters 
of CLL identified by unsupervised clustering

As shown in Fig. 2A, based on the expression of 15 over-
lapping genes in Fig. 1A, CLL patients were divided into 
two molecular clusters (Cluster 1, n = 99, 65.6%, and Cluster 
2, n = 52, 34.4%). PCA and tSNE were used to visualize 
the distinct differences between different molecular clus-
ters (Fig. S1A-B). The Kaplan–Meier analysis showed that 

Fig. 1  Identification of prognostic FA metabolism-related DEGs in 
CLL. A Venn diagram was showing up the intersection genes of FA 
metabolism-related genes, prognostic-related genes, and DEGs. B 
Forest plot with hazard ratios of the univariate Cox regression analy-

sis showing the prognostic value in the GSE22762 dataset. C, D GO 
and KEGG analyses of the functional enrichment of the FA metabo-
lism-related DEGs
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patients in Cluster 1 had statistically significantly worse TFS 
(P < 0.001) and OS (P < 0.001) (Fig. 2B, C). Furthermore, 
to investigate the difference in characterization and biologi-
cal behavior between the two clusters, we performed 419 
DEGs with log fold change > 0.6 and adjust P value < 0.05 
(Fig. 2D). The heatmap depicting DEGs is shown in Fig. 2E. 
All the DEGs were used to perform KEGG and GO func-
tional enrichment analysis to unearth potential biological 
functions. KEGG functional analysis showed that several 
pathways, including the chemokine signaling pathway, 
IL-17 signaling pathway, NF-κB signaling pathway, PD-L1 
expression and PD-1 checkpoint pathway in cancer, and T 
cell receptor signaling pathway, were enriched (Fig. 2F–H). 
GO functional analysis showed that DEGs were signifi-
cantly enriched in neutrophil activation, neutrophil-mediated 
immunity, and T cell activation (Fig. 2I–K).

Tumor immune microenvironment and m6A 
regulator analysis between different FA 
metabolism‑related phenotypes

Considering that immune response and T cell activa-
tion pathway were enriched by KEGG and GO functional 
enrichment analysis, we further used two algorithms, which 
were ssGSEA and CIBERSORT, to estimate the infiltrating 
immune cell types and related immune pathways between 
the two clusters. The ssGSEA analysis performed that Clus-
ter 2 patients exhibited an abundance of immune cell infil-
tration, including activated  CD4+ T cells, activated  CD8+ T 
cells, activated dendritic cells, activated killer (NK) cells, 
central memory  CD4+ T cells, central memory  CD8+ T 
cells, effector memory  CD4+ T cells, effector memory  CD8+ 
T cells, eosinophil, gamma delta T cells, immature dendritic 
cells, macrophage, mast cells, myeloid-derived suppressor 
cell, NK cells, NKT cells, neutrophil, plasmacytoid dendritic 
cells, regulatory T cells (Tregs), follicular helper T cells, 
type 1 T helper cell, type 17 T helper cell, and type 2 T 
helper cell (Fig. 3A). Additionally, the score of immune-
related pathways, including APC co-inhibition, APC co-
stimulation, C–C chemokine receptor (CCR), check-point, 
cytokine activity, inflammation-promoting, parainflamma-
tion, T cell co-inhibition, T cell co-stimulation, and type II 
IFN response, was higher in Cluster 2, while the score of 
HLA pathway was higher in Cluster 1 (Fig. 3B). Further-
more, we also used CIBERSORT algorithms to estimate the 
infiltrating immune cell types. Compared with patients in 
Cluster 1, Cluster 2 had significantly higher relative fractions 
of naive  CD4+ T cells, activated memory  CD4+ T cells, rest-
ing NK cells, monocytes, activated mast cells, eosinophils, 
and neutrophils (Fig. 3C). In addition, we compared the 
expression of 47 checkpoint genes between two clusters. Sta-
tistically, there were 23 genes significantly different; among 
them, six checkpoint genes (BTLA, CD200, CD27, CD40, 

CTLA4, and TNFSF9) were highly expressed in Cluster 1; 
contrarily, other 17 genes were dramatically upregulated in 
Cluster 2 (Fig. 3D). Subsequently, we compared 20 m6A-
related gene expressions in different FA metabolism-related 
phenotypes. The results demonstrated remarkable differ-
ences in four genes, such as HNRNPC, IGF2BP2, METTL3, 
and YTHDF1 (Fig. 3E).

The correlation between the expression of FA 
metabolism‑related genes and the sensitivity 
of chemotherapy

We used Pearson’s correlation analysis to explore the rela-
tionship between 15 FA metabolism-related genes and drug 
sensitivity. These FA metabolism-related genes have been 
implicated in 99 FDA-certified drug sensitivity with P 
value < 0.05 (Table S4), including 8 common chemothera-
peutic drugs for CLL (Fig. 4). The analysis demonstrated 
that increased ACOT7 expression was associated with 
increased drug IC50 of fludarabine and decreased IC50 
of umbralisib, increased ALOXE3 expression was associ-
ated with decreased IC50 of ABT-199, increased CYP1B1 
expression was associated with increased IC50 of ibrutinib 
and decreased IC50 of oxaliplatin, increased ECI1 expres-
sion was associated with decreased IC50 of bendamustine, 
and increased HMGCS1 was associated with increased drug 
sensitivity of dexamethasone Decadron; furthermore, as 
HPGD expression increased, cancer cell drug sensitivity to 
dexamethasone Decadron and cyclophosphamide decreased 
(Fig. 4).

Establishment of a novel prognostic model based 
on FA metabolism‑related genes

Correlation analysis on 15 FA metabolism-related genes 
was performed to elucidate the interaction between these 
genes (Fig. 5A). Then, we conducted LASSO Cox regres-
sion analysis to establish the FA metabolism-related 
prognostic index (FAPI). Based on optimal weight coef-
ficients (λ) , four genes were identified in this novel prog-
nostic model, comprising AKR1C3, CYP1B1, GSTZ1, and 
HSD17B3. The FAPI score was calculated by the formula 
(− 0.1209) *AKR1C3 + (− 0.0287) *CYP1B1 + (0.2286) 
*GSTZ1 + (0.2772) *HSD17B3 (Fig. 5B, C). According 
to the optimal cut-off values (cut-off = 2.4230), the patients 
could be stratified into two groups: 70 (46.36%) patients in 
the low-risk group and 81 (53.64%) patients in the high-
risk group. Survival status, distribution of risk scores, and 
gene expression heatmap are shown in Fig. 5D, F, respec-
tively. PCA and tSNE analysis illustrated that patients in 
different risk groups were well separated into two different 
groups (Fig. 5G, H). The Kaplan–Meier analysis showed 
that patients with high FAPI levels had a statistically 
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significantly worse OS (P < 0.0001) and TFS (P < 0.0001) 
(Fig. 5I, J). Moreover, the AUC values of the ROC curves for 
predicting the 1-, 3-, and 5-year OS were 0.786, 0.787, and 
0.772, respectively, and 1-, 3-, and 5-year TFS were 0.760, 
0.798, and 0.717 (Fig. 5K, L). In addition, Kaplan–Meier 
curves of the expression of 4 genes in FAPI are shown in 
Fig. S2, respectively.

Independence validation of the FAPI model

To further verify the FAPI model effectiveness, we 
applied the same formula mentioned above to calculate the 
FAPI score in 36 patients from our center as a validation 
cohort. The clinical characteristics are listed in Table S5. 
Kaplan–Meier curves of the expression level of AKR1C3, 
CYP1B1, GSTZ1, and HSD17B3 in the validation set are 
shown in Fig. S3, respectively. Survival status and risk score 
distribution of the validation cohort are shown in Fig. 6A, 
B, respectively. Like the GEO cohort, patients with higher 
FAPI levels were associated with poorer OS (P < 0.0001), 
PFS (P = 0.0003), and TFS (P = 0.0071, Fig. 6C–E). We per-
formed AUCs of 1-, 3-, and 5-years OS, PFS, and TFS in 
Fig. 6F–H and indicated that the FAPI model has a satisfac-
tory ability to assess the prognosis in CLL.

Meanwhile, the univariate analysis exhibited FAPI 
high risk (P < 0.001), Binet stage B or C (P = 0.038), 
B symptoms (P = 0.045), age > 65  years (P = 0.047), 
hemoglobin < 100  g/L (P = 0.002), β2-MG > 3.5  mg/L 
(P = 0.011), TP53 disruption (P = 0.032), IGHV unmutated 
(P = 0.001), and CLL International Prognosis Index (CLL-
IPI) (P < 0.001) which were significantly correlated with 
inferior OS (Fig. 7A). Considering CLL-IPI included age, 
Binet stage, β2-MG, TP53 disruption, and unmutated IGHV, 
we only put FAPI, B symptoms, hemoglobin, and CLL-IPI 
in the multivariate analysis. The results demonstrated that 
FAPI (P = 0.014), hemoglobin < 100 g/L (P = 0.012), and 
CLL-IPI (P = 0.034) were independent prognostic indica-
tors (Fig. 7B).

Construction nomogram models

Based on the result of multivariate analysis, a novel 
nomogram prognostic model was constructed by FAPI, 

hemoglobin, and CLL-IPI level, to predict 2-, 3-, and 
5-year OS (Fig. 7C). The C-index of the nomogram model 
was 0.907. The nomogram calibration plots for 2-, 3-, and 
5-year OS demonstrated an impressive relationship between 
the predicted and actual survival rates, suggesting that the 
nomogram model is a dependable tool for predicting the 
prognosis of patients with CLL (Fig. 7D–F).

Discussion

Currently, CLL-IPI prognostic model is mainly established 
based on the era of traditional immunochemotherapy [23]. 
In the era of new drugs, especially the era of chemo-free 
therapy, its guiding significance for clinicians to carry out 
personalized treatment is gradually being challenged. Meta-
bolic reprogramming is a critical factor in the development 
of tumors. Tumor cells utilize environmental nutrients to 
sustain their survival and proliferation [24]. Accumulating 
evidence has delineated that dysregulated metabolism in 
cancer cells and tumor environment is of pivotal contribu-
tion to the cancer progression, treatment, recurrence, and 
metastasis, including FA metabolism. Therefore, targeting 
cancer metabolism has emerged as a promising approach 
in cancer research and therapy [25]. The endeavor to create 
prognostic signatures utilizing gene sets linked to distinct 
biological characteristics has been a pursuit within the field 
of cancer research. However, the specific involvement of 
FA metabolic reprogramming in CLL remains incompletely 
understood, and the essential molecular markers related to 
FA metabolism in CLL remain unclear [26].

This is the first study to investigate the relationship 
between genes involved in FA metabolism and CLL and 
has gained a more thorough comprehension of the function 
of these genes in CLL. Using univariate Cox regression 
analysis and LASSO Cox regression analysis, a prognostic 
risk score model of differentially expressed FA metabolism-
related genes in CLL and normal samples was established in 
the GEO cohort. The prognostic risk score model was used 
to predict the outcome of CLL patients from the training set. 
There were survival disparities between CLL patients with 
low- and high-risk scores. The same outcome was reported 
in the validation set, indicating that the prognostic risk score 
model can identify patients with a poor prognosis for sur-
vival. In addition, the predictive power of this prognostic 
risk score model was enhanced by incorporating CLL-IPI 
into a risk assessment nomogram.

Two molecular clusters of CLL were identified based 
on the expression of 15 genes related to FA metabolism. 
Patients were accurately classified into these two clusters, 
with those in Cluster 1 having a significantly worse prog-
nosis compared to those in Cluster 2. Analysis of intrin-
sic biological function was performed using differentially 

Fig. 2  Two FA metabolism-related molecular phenotypes of CLL. A 
Unsupervised clustering analysis was used to divide patients into two 
different molecular clusters based on the expression of differentially 
expressed FA metabolism-related genes. B, C) Kaplan–Meier sur-
vival curves for OS and TFS of CLL patients into two molecular clus-
ters. D, E Volcano and heatmap plots displayed the DEGs between 
different FA metabolism-related phenotypes. F–H KEGG functional 
enrichment analysis of the DEGs between two molecular clusters. 
I–K GO functional enrichment analysis of the DEGs between two 
molecular clusters

◂
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Fig. 3  Tumor immune microenvironment and m6A regulator analy-
sis between different FA metabolism-related phenotypes. A, B The 
score of immune cell types and immune-related functions using 
ssGSEA analysis between two molecular clusters. C Boxplots of 
the relative fraction of 22 immune cell types between two groups. D 

The expression value of immune checkpoint genes between different 
FA metabolism-related phenotypes. E The expression value of m6A 
regulator genes between different FA metabolism-related phenotypes. 
(***P < 0.001; **P < 0.01; *P < 0.05; ns, no significance)



1249Annals of Hematology (2024) 103:1241–1254 

1 3

expressed genes between two clusters, including the 
chemokine signaling pathway, IL-17 signaling pathway, 
NF-κB signaling pathway, PD-L1 expression and PD-1 
checkpoint pathway in cancer, and T cell receptor signaling 
pathway. Chemokine signaling and FA metabolism are dis-
tinct biological processes that can exert mutual influence in 
various ways, frequently leading to significant implications 
for immunity and cancer. NF-κB pathway is constitutively 
activated in CLL and plays a major role in disease devel-
opment and evolution [27]. It has been reported to play a 
key role in regulating the immune response to infection and 
inflammation [28]. Notably, it can interact with FA metabo-
lism in several ways. For instance, it can induce the tran-
scription of FA synthase (FASN) to catalyze the synthesis of 
long-chain saturated FA. Meanwhile, different types of FA 
can also modulate the NF-κB pathway. Studies have shown 
that saturated FA such as palmitate can activate the NF-κB 

pathway, leading to increased expression of inflammatory 
genes [29]. Our findings back up the involvement of the 
NF-κB signaling pathway in the metabolism of FAs in CLL.

FA metabolism influences the function of immune cells in 
TME, so it is worth exploring the differences in the degree 
of immune cell infiltration in our analysis of FA metabolism 
genes. As we expected, these data revealed a strong cor-
relation between FA metabolism and immune-related path-
ways in CLL, which suggested that FA metabolism could 
be involved in TME remodeling. The immune function 
analysis demonstrated that Cluster 2 obtained higher scores 
both in immune inhibition and stimulation processes, check-
point, cytolytic activity, and inflammation-promoting and 
IFN response. In addition, the prognostic risk was tightly 
related to immune cell infiltration. Our data also suggested 
that strong immunosuppressive TME was present in the FA 
metabolism high-risk group. The pivotal role of Tregs in the 

Fig. 4  The relationship between DEGs and common FDA-approved antineoplastic drug sensitivity by CellMiner database
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Fig. 5  Establishment and assessment of the novel prognostic model 
based on FA metabolism-related genes. A Correlation analysis of the 
15 FA metabolism-related genes. B Four prognostic FA metabolism-
related genes were identified by LASSO analysis based on optimal 
weight coefficients. C The LASSO coefficient profiles of the four 
genes signature. D The distribution and optimal cutoff value of risk 
scores in training cohort. E The distributions of OS status, OS, and 

risk score. F Heatmap of the expression of the four genes in prognos-
tic model. G, H PCA and t-SNE analysis of the CLL visualizing the 
distribution of the low- and high-risk groups. I, J Kaplan–Meier sur-
vival curves for OS and TFS of FAPI model. K, L Time-dependent 
ROC curves of FAPI model for predicting the 1-, 3-, and 5-year OS 
and TFS
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immunosuppressive TME with dysregulated FA metabolism 
is noteworthy, with significant differences in the enrichment 
of Tregs between the two clusters in CLL. Treg cells are 
more dependent on FA oxidation (FAO) under the metabolic 
stress of the TME [30]. Inhibition of FAO, attenuation of 
function, and reduction in the number of Tregs could be 
observed. As an important regulator of Treg development 
and function, FOXP3 can promote FA uptake and FAO and 
enhance Treg resistance to lipotoxic environments to allow 
for expansion [31]. Tregs may promote tumor survival and 
proliferation by suppressing anti-tumor immune responses. 
In 2011, Weiss et al. reported that high Treg levels are 
an indicator for predicting the time to initial treatment in 
patients with CLL in the low to intermediate stages [32]. 
Subsequent studies also have found that CLL is associated 
with profound defects in T cells and T cell functions, failing 

T cell antitumor activity [33]. Other reports also noted that 
the number and function of Tregs are often enhanced, which 
may help tumor cells evade attack by the immune system. 
Of note, in our study, although NK cell activation increased 
in the high-risk group, it did not necessarily predict a better 
anti-tumor effect. Previous studies indicated that increased 
lipid metabolism impairs NK cell function and mediates 
adaptation to the lymphoma environment [34]. This provided 
a plausible explanation for our results. We also observed 
neutrophil activation involved in immune response.

In recent years, immune checkpoint inhibitors (ICI), as an 
overall strategy of immunotherapy, have gradually become 
effective drugs for the treatment of tumors [35]. However, 
only a minority of patients benefit from ICIs targeting PD-1, 
PD-L1, or CTLA-4. We estimated the relationship between 
risk score and the immune checkpoints by comparing the 

Fig. 6  Validation of the FAPI prognostic model. A The distribution 
and the value of risk scores in the validation cohort. B The distribu-
tions of OS status, OS, and risk score. C–E Kaplan–Meier survival 

curves for OS, PFS, and TFS of CLL patients stratified by FAPI risk 
score. F–H Time-dependent ROC curves of the risk model for pre-
dicting the 1-, 3-, and 5-year OS, PFS, and TFS
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expression levels of 47 selective immune checkpoints in 
CLL patients for potential implications for immunotherapy. 
These results showed that the expression levels of mostly 
targeted checkpoints were significantly amplified in Clus-
ter 2, suggesting that a cluster of CLL patients may obtain 
stronger responses to treatments targeting these check-
points. Among them, PD-1, PD-L1 and CTLA4 are hot star 
checkpoints as reported previously. We also observed some 
emerging immune checkpoints such as LAG3, ICOS, and 
TIGIT. These data are consistent with previously published 
articles showing that FA metabolism is important player in 
the immunosuppressive process of TME [34, 36]. These 
immune components of the TME plays different roles in 
various immune responses that promote or inhibit tumor 
survival. Different levels of immune cell infiltration and 
ICIs in the two subtypes may also cause patients to show 
different outcomes when receiving immunotherapy. Further-
more, tumor FA metabolism has been thought to be involved 
in resistance to chemotherapy, endocrine-targeted therapy, 
and radiotherapy. Cell membrane changes, energy changes, 
signal transmission, and anti-oxidation are all related to 
the response and resistance of tumor cells to chemotherapy 
drugs [37].

Notably, the FAPI model was established through LASSO 
Cox regression analysis. The reliability of the model can be 
partially confirmed by examining the roles of four metabo-
lism-related genes in other diseases. AKR1C3 is a member 
of the aldo–keto reductase superfamily and is involved in the 

metabolism of steroid hormones and prostaglandins. It has 
been implicated in cancer progression and its mRNA expres-
sion was significantly higher in primary T-lineage ALL than 
B-lineage ALL. OBI-3424, an AKR1C3 inhibitor, can exert 
potent cytotoxicity against T-ALL cell lines and PDXs. It 
tends to be an inferior factor, which was consistent with 
our results [38]. CYP1B1 is primarily associated with the 
metabolism of estrogen and other endogenous compounds. 
It is expressed in several tissues, including the liver, adrenal 
glands, and various reproductive tissues. Moreover, GSTZ1 
is responsible for the conversion of dichloroacetic acid to 
its inactive metabolite. It was significantly downregulated 
in sorafenib-resistant hepatoma cells and reduced the level 
of GSH, thereby inhibiting tumor progression via promoting 
sorafenib-induced ferroptosis in hepatocellular carcinoma 
tissues [39]. On the contrary, another study found that high 
expression of GSTZ1 was associated with poor prognosis 
in neuroblastoma, which may be due to the role of GSTZ1 
in detoxification leading to resistance to chemotherapeutic 
drugs [40]. In CLL, our research shows the similar prog-
nostic significance of GSTZ1 with glioblastoma and neuro-
blastoma other than breast cancer and hepatocellular carci-
noma [39, 41]. Additionally, HSD17B3, primarily found in 
reproductive organs, is an enzyme that plays a key role in 
steroid biosynthesis, and its protein expression levels were 
significantly upregulated in primary and metastatic prostate 
cancer patients compared with non-tumor samples [42]. 
However, the biological role of HSD17B3 in hematological 

Fig. 7  Construction nomogram models. A, B The univariate and mul-
tivariate Cox regression model analyses of clinical characteristics and 
FAPI. C The nomogram model for predicting 2-, 3-, and 5-year OS 

rate of CLL patients. D–F The calibration plot analysis to assess the 
nomogram accuracy for OS prediction at 2-, 3-, and 5-year
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malignancy remains poorly understood. In our study, ele-
vated HSD17B3 was associated with inferior OS and PFS.

Overall, we performed a systematic analysis of FA metab-
olism in CLL and constructed a new nomogram prognostic 
model FAPI. Nevertheless, this study still contains some 
limitations. Due to the small number of samples in the exter-
nal cohort and the internal validation cohort, this needs to be 
validated in more CLL patients. Additionally, we identified 
multiple FA metabolism-related molecules with prognostic 
significance, but lack of profound mechanism in CLL. The 
relationship between FA metabolism and immunosuppres-
sive TME as well as drug resistance in CLL could be further 
explored. In conclusion, these findings can effectively guide 
clinical practice to achieve a more personalized clinical fol-
low-up strategy, paving the way for the future development 
of personalized cancer chemotherapy and immunotherapy.
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