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Abstract
Arsenic trioxide (ATO) treatment effectively prolongs the overall survival of patients with acute promyelocytic leukemia 
(APL). Mutations in the oncogene PML::RARA​ were found in patients with ATO-resistant and relapsed APL. However, some 
relapsed patients do not have such mutations. Here, we performed microarray analysis of samples from newly diagnosed 
and relapsed APL, and found different microRNA (miRNA) expression patterns between these two groups. Among the dif-
ferentially expressed miRNAs, miR-603 was expressed at the lowest level in relapsed patients. The expression of miR-603 
and its predicted target tropomyosin-related kinase B (TrkB) were determined by PCR and Western blot. Proliferation was 
measured using an MTT assay, while apoptosis, cell cycle and CD11b expression were analyzed using flow cytometry. In 
APL patients, the expression of miR-603 was negatively correlated with that of TrkB. miR-603 directly targeted TrkB and 
downregulated TrkB expression in the APL cell line NB4. miR-603 increased cell proliferation by promoting the differentia-
tion and inhibiting the apoptosis of NB4 cells. This study shows that the miR-603/ TrkB axis may be a potent therapeutic 
target for relapsed APL.
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Introduction

Acute promyelocytic leukemia (APL) accounts for approxi-
mately 10–15% of adult acute myeloid leukemias and is 
characterized by a specific reciprocal translocation, t(15;17)
(q22;q21), which results in the formation of the promyelo-
cytic leukemia (PML) and retinoic acid receptor-α (RARα) 
fusion gene [1]. The PML::RARA fusion protein leads to 
differentiation blockade at the promyelocytic stage. Arse-
nic trioxide (ATO) acts on the PML::RARA fusion pro-
tein and reverses the inhibition of cellular differentiation 
mediated by this oncoprotein. The clinical application of 

ATO and all-trans retinoic acid (ATRA) has converted APL 
from a fatal to a highly curable hematological malignancy 
[2]. However, notably, approximately 5–6% of newly diag-
nosed APL patients cannot achieve complete remission, and 
approximately 5–20% experience relapse [3]. Several stud-
ies have shown additional genetic and epigenetic processes 
that accompany the expression of the PML::RARA protein 
[4, 5].

MicroRNAs (miRNAs) are endogenous, non-protein-
coding small RNAs that mediate the regulation of target 
gene expression at the posttranscriptional level by inducing 
translational repression or mRNA degradation [6]. miR-
NAs have been shown to play key roles in hematopoietic 
differentiation as well as in the formation, maintenance 
and progression of leukemia [7, 8]. Several studies have 
shown that some miRNAs, such as miR-223, miR-34 and 
miR-30c, play important roles in myeloid differentiation 
[9–12]. miR-223 has been implicated in APL differentia-
tion and tumorigenesis [13]. However, knowledge about 
the expression and function of other miRNAs during dis-
ease progression, such as relapse after treatment with ATO, 
remains lacking.
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Tropomyosin-related kinase B (TrkB), a member of 
the TRK family, is encoded by the neurotrophic tyrosine 
kinase receptor type 2 (NTRK2) gene and acts as a recep-
tor for brain-derived neurotrophic factor (BDNF) [14]. The 
binding of BDNF to TrkB activates several downstream 
signaling pathways, including the PI3K/AKT and JAK/
STAT pathways [15]. There is increasing evidence for 
involvement of TrkB in normal hematopoiesis and leuke-
mogenesis [16–18].TrkB expression is greatest in precursor 
CD4−CD8− thymocytes and progressively declines through-
out the T-cell differentiation pathway [16]. TrkB plays a 
crucial role in B-cell chronic lymphocytic leukemia cell 
survival by interacting with neurotension receptor 2, and 
then activates survival signaling pathways and expression 
of the anti-apoptotic proteins [17]. Coexpression of TrkB/
BDNF in murine hematopoitic cells induced leukemia [18]. 
TrkB is highly expressed in acute leukemia, and coexpres-
sion of TrkB and BDNF is related to poor prognosis [18]. 
However, the expression of TrkB have not been reported in 
relapsed APL.

In this study, we showed different miRNA expression pat-
terns in patients with relapsed APL compared with newly 
diagnosed patients by microarray analysis. Among the dif-
ferentially expressed miRNAs, miR-603 was the most sig-
nificant. TrkB was indicated by bioinformatic analysis and a 
luciferase activity assay to be a target of miR-603. Further-
more, we found that miR-603 increased cell proliferation by 
promoting differentiation and inhibiting apoptosis and G1 
arrest in the APL cell line NB4.

Materials and methods

Patient samples

From May 2015 to December 2017, bone marrow sam-
ples were collected from patients with newly diagnosed 
and hematologic relapsed APL (according to the WHO 
diagnostic criteria) admitted to the Department of Hema-
tology at the First Affiliated Hospital of Harbin Medi-
cal University. Written informed consent and approval 
from the Ethical Committee of Human Experimentation 
in Harbin were obtained in accordance with the current 
version of the Declaration of Helsinki. Mononuclear 
cells were harvested by Ficoll-Hypaque density gradient 
centrifugation.

miRNA evaluation by quantitative PCR‑based array 
analyses

Using the mirVana miRNA Isolation Kit, total RNA 
enriched with miRNA was isolated and reverse transcribed 
using the TaqMan MicroRNA Reverse Transcription Kit 

(Life Technologies, USA). A TaqMan Low-Density Array 
(TLDA) was used for miRNA analysis in a 7900HT Real-
Time PCR system. The expression of miRNAs was quanti-
fied using TaqMan Array Human MicroRNA A + B Cards 
v3.0 (Life Technologies, USA) with a total of 384 miRNAs 
and controls per card. The relative expression levels were 
calculated from the measured Ct values using the 2−ΔΔCT 
method [19]. The P value (P < 0.05) and fold change 
(FC > 2) thresholds were set for the comparison of miRNA 
expression between different groups of samples.

PCA; GO and KEGG functional enrichment analyses

Principal component analysis (PCA) was performed as 
previously reported [20]. The principal components are 
represented by the 26 miRNAs identified as differentially 
expressed by array analysis listed in Table 1. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed using 

Table 1   Differentially regulated miRNAs in relapsed compared with 
newly diagnosed APL

R: relapsed APL patients (n = 3); N: newly diagnosed APL patients 
(n = 5)

miRNA Expression ratio N/R P-value

hsa-miR-603 590.37 0.026
hsa-miR-549 341.58 0.00045
has-miR-650 295.53 0.037
hsa-miR-129-1-3p 74.32 0.015
hsa-miR-193a-5p 25.76 0.02
hsa-miR-214-5p 24.38 0.021
hsa-miR-302d-3p 18.38 0.009
hsa-miR-124-3p 18.22 0.019
hsa-miR-328 18 0.0076
hsa-let-7e-3p 14.13 0.0057
hsa-miR-502-3p 13.88 0.03
hsa-miR-197-3p 9.85 0.017
hsa-miR-515-3p 9 0.016
hsa-let-7a-5p 8.66 0.014
hsa-miR-217 7.88 0.037
hsa-miR-449b-5p 7.88 0.037
hsa-miR-874 7.87 0.037
hsa-miR-544a 7.87 0.0093
hsa-let-7d-5p 5.45 0.012
hsa-miR-24-3p 5 0.043
hsa-miR-222-3p 4.5 0.0034
hsa-miR-574-3p 4.34 0.013
hsa-miR-103a-3p 2.57 0.037
hsa-let-7e-5p 2.45 0.012
hsa-miR-140-3p 2.15 0.031
hsa-miR-214-3p 0.06 0.026
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DIANA-miRPath v. 3.0. Analyses were performed using the 
human orthologs of the miRNAs with an expression fold 
change of at least ± 10 based on the microarray analysis. 
Predicted gene targets with significant enrichment for these 
miRNAs based on TarBase v. 7.0 were used. Heatmaps were 
generated to show the clusters with significant pathways or 
overlapping categories defined using Fisher's exact test. The 
level of significance was set at P < 0.05.

Cell culture and transfection

Human APL cell lines: NB4 cells were kindly provided by 
Shanghai Cell Bank, Chinese Academy of Sciences (Shang-
hai, China). Cells were maintained in RPMI 1640 culture 
medium containing 10% fetal bovine serum (FBS), 100 U/
mL penicillin and 100 U/ml streptomycin and were incu-
bated in a humidified incubator containing 5% CO2 at 37 °C. 
Cells were plated in growth medium without antibiotics for 
approximately 24 h before transfection. Transient transfec-
tion of precursor miRNAs (Ambion)/siRNAs (Origene, 
USA) was carried out using Lipofectamine 2000 (Invitro-
gen) according to the manufacturer's protocol. Cells were 
harvested at different time points. Transfection reagent alone 
was used as a control. For the luciferase activity assay, the 
293 T cell line was maintained in DMEM containing 10% 
fetal bovine serum.

Luciferase activity assay

To construct the luciferase reporter plasmid, the target frag-
ment (TrkB) was inserted into the psiCHECK™-2 vector 
(Promega, WI, USA). 293 T cells were seeded in 24-well 
plates at a density of 2 × 104 cells/well. The next day, the 
culture medium was replaced with 300 µL of Opti-MEM. 
In each well, 1 µL of wild-type (WT) or mutated (MUT) 
miRNA-603 (20 µM) was cotransfected into cells along with 
0.5 µg of luciferase reporter plasmid using Lipofectamine 
2000 transfection reagent according to the manufacturer's 
instructions (Invitrogen, Grand Island, NY, USA). Forty-
eight hours after transfection, luciferase activity was meas-
ured using the Dual-Luciferase Reporter Assay System 
(Promega). The relative luciferase intensity was determined. 
Each experimental condition was analyzed in triplicate.

PCR

Quantitative reverse transcription PCR (q-RT‒PCR) and 
quantitative PCR (Q-PCR) were used to validate the miRNA 
and mRNA expression data. The reactions were performed 
in an ABI 7900 HT Thermal Cycler (Applied Biosystems, 
Stockholm, Sweden). Relative miRNA expression levels 
(miRNA vs. U6 and mRNA vs. GAPDH) were calculated 
with the 2−ΔΔCT method [16]. All primers were obtained 
from Life Technologies (Grand Island, NY) and are listed in 
Table 2. All reactions were performed in triplicate.

Western blot analysis

Total protein was extracted from cells after lysis with RIPA 
lysis buffer (Beyotime, China). Protein concentration was 
determined using a BCA Protein Assay Kit (Beyotime, 
China). Equal amounts of protein samples were subjected 
to SDS-PAGE and transferred onto polyvinylidene fluoride 
membranes that were blocked with 5% milk powder contain-
ing 0.1% TBS-Tween-20, and incubated with specific pri-
mary antiboides against TrkB (1:2000, ab187041; Abcam, 
Shanghai, China). An anti-GAPDH antibody (1:5000, 
ab128915; Abcam) obtained from Sigma‒Aldrich was used 
as a loading control.

Cell proliferation assay

To evaluate cell proliferation, cells were seeded into a 
96-well plate at a density of 1 × 104 cells/well. A total of 
10 μL of CCK-8 solution was added to 100 μL of culture 
medium. The absorbance of the culture medium was meas-
ured at 450 nm (A450) using a scanning microplate spec-
trophotometer (Multiscan MK3, Thermo Fisher Scientific).

Flow cytometry analysis

For cell cycle analysis, cells were fixed overnight in chilled 
methanol prior to staining with 50 μg/ml propidium iodide 
(PI, Sigma‒Aldrich) in the presence of 1 mg/ml RNase (100 
units/ml; Sigma‒Aldrich) and 0.1% NP40 (Sigma‒Aldrich). 
For apoptosis analysis, samples were incubated with 
Annexin V-fluorescein isothiocyanate (FITC)/PI according 
to the manufacturer’s protocol (Sigma‒Aldrich). For CD11b 
expression, samples were incubated with anti-CD11b-FITC 

Table 2   Primer sequences used 
in the study

miRNA or gene Forward Primer(5'-3') Reverse Primer (5'-3')

miR 603 CGA​GCC​ACA​CAC​TGC​AAT​TAC​ GTG​CAG​GGT​CCG​AGG​TAT​TC
U6 GCT​TCG​GCA​GCA​CAT​ATA​CT GTG​CAG​GGT​CCG​AGG​TAT​TC
TrkB CCA​AGA​GGC​TAA​ATC​CAG​TC GGT​TAC​CAA​CAT​CCC​AAT​ACA​
GAPDH TGG​ACT​CCA​CGA​CGT​ACT​CAG​ CGG​GAA​GCT​TGT​CAT​CAA​TGGAA​
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antibody (Sigma-Aldrich). Cellular fluorescence was ana-
lyzed on a FACSCalibur flow cytometer (Becton Dickinson, 
CA, USA) with Cellquest software.

Statistical analysis

Significant differences in miRNA expression between sam-
ples from patients with newly diagnosed and relapsed APL 
were assessed using the Wilcoxon rank–sum test with cor-
rection for multiple comparisons with the Benjamini–Hoch-
berg false discovery rate (FDR). SPSS 17.0 was used for 
statistical analysis. All results were obtained from at least 
three separate experiments. The data are expressed as the 
means ± SDs. The expression levels of miRNA-603 and 
TrkB in samples were analyzed by ANOVA or a t test. Two-
tailed tests were used for univariate comparisons. P < 0.05 
was considered statistically significant. Correlation analy-
sis between miR-603 and TrkB mRNA expression was per-
formed by Spearman correlation analysis.

Results

miRNAs are differentially expressed in samples 
from newly diagnosed patients and patients 
with relapse

To investigate the involvement of miRNAs in relapsed APL 
after treatment with ATO, TaqMan miRNA assays were per-
formed to analyze the miRNA expression profiles in sam-
ples from 3 patients with relapsed APL(without PML::RARA​ 
mutation) and 5 patients with newly diagnosed APL. miR-
NAs with a fold changes ≥ 2.0 and P values ≤ 0.05 were 
considered significantly differentially expressed. In patients 
with relapsed APL compared with newly diagnosed patients, 
miR-214 was highly expressed, and twenty-five other miR-
NAs were expressed at low levels, with miR-603 exhibiting 
the lowest level (Table 1). The hierarchical clustering heat-
map revealed homogenous but distinctive expression pat-
terns for each sample, with all samples from patients with 
relapse assigned to a cluster distinct from that of newly diag-
nosed APL (Fig. 1A). These data were consistent with the 

PCA data, in which the newly diagnosed and relapsed groups 
were completely separated (Fig. 1B).

GO term and KEGG pathway enrichment analyses

To clarify the biological process related to APL recur-
rence, GO and KEGG pathway enrichment analyses were 
performed with the top 10 dysregulated miRNAs in this 
study. The GO analysis results revealed that these miRNAs 
participated in vital biological processes, including small 
metabolic process and neurotrophin TRK receptor signaling 
pathway (Fig. 1C). The most significant KEGG pathway was 
prion diseases (Fig. 1D). For miR-603, the most significant 
GO biological process term was neurotrophin TRK receptor 
signaling pathway, and the most significant KEGG pathway 
was hippo signaling pathway.

miR‑603 and TrkB expression in APL patients

TrkB, a member of the TRK family, plays an important role 
in the initiation and progression of solid tumors and leuke-
mias [16–18, 21, 22]. It was identified as one of the potential 
targets of miR-603 in the neurotrophin TRK receptor signal-
ing pathway by several algorithms (miRDB, miRanda and 
TargetScan). First, we measured miR-603 and TrkB mRNA 
expression in array samples by PCR. Compared with that in 
patients with newly diagnosed APL, miR-603 expression in 
relapsed patients was low, while TrkB expression in relapsed 
patients was high (Fig. 2A and B). Then, miR-603 and TrkB 
mRNA expression was measured in three healthy volun-
teers, in ten patients with newly diagnosed APL and in seven 
patients with relapsed APL treated with ATO. Compared 
with that in the healthy volunteers, miR-603 expression was 
low in APL patients, especially in those with relapse. TrkB 
was highly expressed in samples from patients with relapse 
compared with samples from healthy volunteers and newly 
diagnosed patients but did not differ significantly between 
the control volunteers and newly diagnosed patients (Fig. 2C 
and D). Spearman correlation analysis showed that miR-603 
expression was negatively correlated with TrkB expression 
in control volunteers, newly diagnosed patients and patients 
with relapsed APL (Fig. 2E and F).

miR‑603 targets TrkB by binding the 3' UTR​

The relationship between miR-603 and TrkB was subse-
quently demonstrated by a luciferase activity assay. Because 
miR-603 was predicted to bind to the 3'-untranslated region 
(UTR) of TrkB by miRanda (Fig. 3A), we constructed firefly 
luciferase reporter vectors containing either the entire WT 
TrkB 3'-UTR or a mutant version (MUT) of the TrkB 3'-UTR. 
Cotransfection of miR-603 and the luciferase reporter with 
the WT TrkB 3'-UTR greatly reduced luciferase activity 

Fig. 1   Different expression patterns of miRNAs and enriched GO 
and KEGG pathways in APL. A Hierarchical clustering of miRNA 
expression in APL patients. miRNA expression profiles of samples 
from 3 relapsed (R) and 5 newly diagnosed (N) patients. The sam-
ples are shown in the columns; the miRNAs, in the rows. ΔCT val-
ues were used in the analysis. B PCA of miRNA expression in APL 
patients. The blue dots indicate samples from relapsed patients; the 
yellow dots, samples from newly diagnosed patients. The significant 
major GO processes C and KEGG pathways D predicted for the gene 
targets of the 10 most altered miRNAs. Log P values are plotted, with 
greater significance indicated in red. GO: Gene Ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes

◂
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(Fig. 3B). No significant difference in luciferase activity 
was found in cells transfected with the MUT TrkB 3'-UTR. 
Then, we measured the TrkB mRNA and protein expression 
levels in NB4 cells transfected with either a miR-603 mimic 
or a miR-603 inhibitor. The miR-603 mimic significantly 
decreased the TrkB mRNA and protein levels, whereas the 
miR-603 inhibitor markedly increased TrkB expression in 
these cells (Fig. 3C and D). This increased expression of 
TrkB was inhibited by si-TrkB. These data indicate that miR-
603 directly binds to the 3'-UTR of TrkB and significantly 
downregulates its mRNA and protein expression.

miR‑603 promotes cell proliferation

Subsequently, we evaluated the effect of miR-603 on NB4 
cell proliferation. As shown in Fig. 4A, the miR-603 mimic 
promoted but the miR-603 inhibitor suppressed the prolifera-
tion of NB4 cells, and these effects were partially reversed 
by si-TrkB. To explore the mechanism(s) by which miR-603 
affects the growth of NB4 cells, apoptosis, the cell cycle 
and differentiation were examined. The number of apoptotic 

cells decreased in response to miR-603 mimic treatment 
but increased in response to miR-603 inhibitor treatment, 
and these effects were decreased by si-TrkB (Fig. 4B). The 
proportions of NB4 cells in the G1 and G2 phases were 
increased by the miR-603 inhibitor but were not affected 
by the miR-603 mimic (Fig. 4C). CD11b expression was 
increased by the miR-603 mimic but decreased by the miR-
603 inhibitor (Fig. 4D). These results indicated that miR-603 
promotes the growth of the NB4 cells by increasing cell 
differentiation and inhibiting apoptosis.

Discussion

As ATO has become a first-line therapeutic strategy, identifi-
cation of the mechanisms underlying APL relapse in patients 
treated with ATO is urgently needed. Studies have focused on 
mutations in the oncogenic PML::RARA​ gene, which can result 
in acquired resistance to ATO and have been found in relapsed 
APL [23–26]. However, some patients who relapse after treat-
ment with ATO-based regimens do not have such mutations. 

Fig. 2   miR-603 and TrkB mRNA expression levels in APL, as eval-
uated by PCR. A and B miR-603 expression was low (A) and TrkB 
expression was high (B) in samples from patients with relapsed APL 
compared with samples from newly diagnosed patients in the array. C 
and D Compared with that in healthy volunteers, miR-603 expres-
sion was low in APL patients, especially relapsed patients (C). TrkB 

was highly expressed in APL patients, especially in relapsed patients 
(D). E and F The miR-603 and TrkB mRNA expression levels were 
negatively correlated among the healthy volunteers, newly diagnosed 
patients and relapsed patients overall (E) and in each comparison (F). 
* indicates P < 0.05. # indicates P < 0.05 compared with newly diag-
nosed patients (C and D)
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Fig. 3   miR-603 downregulates TrkB.  A  Predicted binding sites for 
miR-603 and TrkB. B Luciferase assay results showing the decrease 
in relative luciferase activity in 293 T cells cotransfected with miR-
603 and TrkB. C and D  The TrkB mRNA (C) levels and protein 
expression levels (D-E) changed after transfection with the miR-603 

mimic or miR-603 inhibitor. D The graphs show the fold changes in 
protein expression relative to the untreated control, as measured by 
densitometry. The data are presented as the mean ± SD of three differ-
ent experiments. WT: wild-type; MUT: mutated; NC: negative con-
trol. *: P < 0.05; **: P < 0.01
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Accumulating have shown the importance of miRNAs in the 
initiation, maintenance and progression of leukemia. For exam-
ple, a specific miRNA signature of APL blasts at diagnosis that 
differs from that of normal promyelocytes has been reported 
[27]. In addition, several recent studies have shown that some 
miRNAs are promising indicators of relapse and correlate with 
poor prognosis in acute leukemia [28–30]. In the present study, 
we characterized a small number of miRNAs differentially 
expressed in patients with relapsed APL who were treated with 
ATO compared with newly diagnosed patients.

Among these differentially expressed miRNAs, miR-603 
had the most significant difference in expression. miR-603 has 
been revealed to play different roles in different tumors. miR-
603 has been reported to act as a tumor suppressor in breast 
cancer [31] but as an oncomiR in glioma, osteosarcoma, and 
hepatocellular carcinoma [32, 33]. In this study, we verified 
that miR-603 induced malignant behaviors in an APL cell 
line by increasing cell proliferation and inhibiting apoptosis. 
However, miR-603 also promoted NB4 cell differentiation by 
increasing CD11b expression. In addition, in NB4 cells, miR-
603 silencing led to G1 arrest and inhibition of differentiation, 
which is a main mechanism by which ATO cures APL.

TrkB was identified as a target of miR-603 in this study. As a 
member of TRK family, TrkB is an important regulator of cell 
proliferation, differentiation and survival [15]. Accumulating evi-
dence highlights the role of TrkB in chemoresistance and recur-
rence of both solid and liquid maligancies [17, 34, 35]. Consistent 
with these previous studies, we also found that TrkB is overex-
pressed in relapsed APL patients. However, there was no signifi-
cant difference in the expression of TrkB between newly diag-
nosed APL patients and healthy volunteers in this study. These 
results are consistent with the a previous published report and 
TCGA data [data not show] [18]. This may be partially due to the 
small number of patients and the different gene expression pat-
terns between newly diagnosed and relapsed APL [36]. A recent 
report showed that TrkB was a target of miR-204 and involved 
in differentiation and proliferation of neuroblastoma [37]. We 
also found that TrkB was a target of miR-603 and involved in the 
differentiation and proliferation of NB4 cells. Although there 
have been no previous reports of TrkB involvement in APL cell 
differentiation, activation of TrkB protects myeloid cells from 
apoptosis and supports proliferation [18]. Accumulated evidence 

suggests that some promising differentiation inducers, such as 
epigenetic modifiers, glycosylation modifiers, cytokines, chemo-
therapeutic agents, and some kinase inhibitors [38, 39]. We also 
found that inhibition of TrkB by si-TrkB was shown to promote 
differentiation of NB4 cells. Inducing cellular differentiation is 
the key treatment of APL, suggesting that TrkB might be benefi-
cial in the treatment of relapsed APL.

There are several limitations in our study. As the dramati-
cally effects of ATO treatment in APL and genetic mutations 
were found in some patients with relapsed APL, only 10 
relapsed APL patients (3 cases in microarray and 7 cases in 
PCR) without reported genetic mutations were included in our 
study [23–25, 36]. Because of high expression of PML::RARA​ 
in relapsed APL, we chose the NB4 cell line that contains a 
constitutively active PML::RARA​ rearrangementfor functional 
experiments [40].

In conclusion, we observed different miRNA expression 
patterns in patients with relapsed APL who were treated with 
ATO compared with newly diagnosed patients. In particular, 
miR-603 expression was extremely low and negatively cor-
related with TrkB expression. In NB4 cells, we found that 
miR-603/TrkB may participate in cell differentiation. These 
results may show that differentiation arrest may participate in 
APL relapse and suggest that the miR-603/TrkB axis is a novel 
therapeutic target for relapsed APL.
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