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Abstract
Our understanding of MM genomics has expanded rapidly in the past 5–10 years as a consequence of cytogenetic analyses obtained 
in routine clinical practice as well as the ability to perform whole-exome/genome sequencing and gene expression profiling on large 
patient data sets. This knowledge has offered new insights into disease biology and is increasingly defining high-risk genomic pat-
terns. In this manuscript, we present a thorough review of our current knowledge of MM genomics. The epidemiology and biology 
of chromosomal abnormalities including both copy number abnormalities and chromosomal translocation are described in full with 
a focus on those most clinically impactful such as 1q amplification and del(17p) as well as certain chromosome 14 translocations. A 
review of our ever-expanding knowledge of genetic mutations derived from recent whole-genome/exome data sets is then reviewed 
including those that drive disease pathogenesis from precursor states as well as those that may impact clinical outcomes. We then 
transition and attempt to elucidate how both chromosomal abnormalities and gene mutations are evolving our understanding of 
disease risk. We conclude by offering our perspectives moving forward as to how we might apply whole-genome/exome-level data 
in addition to routine cytogenetic analyses to improve patient outcomes as well as further knowledge gaps that must be addressed.
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Introduction

Multiple myeloma (MM) is an acquired malignant plasma cell 
disorder that typically develops late in life with a median age 
at diagnosis of 69 years. Although it is a rare disorder account-
ing for just 1.8% of all new cancers in the USA and a lifetime 
risk of just 0.76%, it is the second commonest hematological 
malignancy [1]. With the advent of new therapeutics and the 
increasing utilization of high-dose melphalan and autologous 
stem cell transplantation (ASCT) over the last 20 years [2], 
5- and 10-year overall survivals (OS) have improved across 
all age, race, and ethnic groups [3]. These benefits are more 
tempered in those with high-risk disease with revised interna-
tional staging system (R-ISS) stage III [4] patients achieving 
only a 24% 5-year progression-free survival (PFS) and 40% 
5-year overall survival (OS). MM remains incurable with only 
10–15% of MM patients achieving or exceeding expected sur-
vival as compared with the matched general population.

Our understanding of MM genomics has expanded rapidly 
in the past 5–10 years. This is a consequence of cytogenetic 
analyses obtained in routine clinical practice guided by the 
International Myeloma Working Group (IMWG) [5] and 
R-ISS [4] staging systems as well as the ability to perform 
whole-exome/genome sequencing and gene expression pro-
filing on large patient data sets. Consequently, the driving 
genomic events that lead to the development of MM from 
its precursor states as well as the cytogenetic and mutational 
changes that drive disease progression and relapse are being 
elucidated. Given the clonal heterogeneity between and within 
MM patients, this knowledge has not directly translated into 
targeted therapeutics but has greatly increased our understand-
ing of drug resistance mechanisms and the biology of risk.

Below, we first present a thorough review of our current 
knowledge of MM genomics including chromosomal abnor-
malities and genetic mutations. We subsequently explore how 
they drive MM disease pathogenesis and have translated into 
better risk stratification in newly diagnosed multiple myeloma 
(NDMM) patients. We conclude with our perspective moving 
forward as to how we might apply whole-genome/exome-level 
data in addition to routine cytogenetic analyses to improve 
patient outcomes as well as define and prioritize further knowl-
edge gaps moving forward.

Chromosomal abnormalities in multiple 
myeloma pathogenesis: copy number 
abnormalities and translocations

MM is known to evolve from the precursor diseases mono-
clonal gammopathy of undetermined significance (MGUS) 
and smoldering myeloma (SMM). Genetic events detected 
at the MGUS stage are likely to be primary events involved 

in tumor development whereas events present at the MM 
stage and absent in MGUS are likely secondary events 
leading to tumor progression. The genetic abnormalities 
in MM are complex and heterogenic but molecular sub-
groups have been clearly defined. Primary events in MM 
can be generally grouped into two categories: cases with 
primary immunoglobulin translocations; and those that 
are hyperdiploid (HD) with trisomies of the odd-number 
chromosomes also referred to as cases with copy number 
abnormalities (CNAs known as aneuploidies, abnormal in 
whole chromosome or arm level) [6].

Of note, the methodology of detecting cytogenetic 
abnormalities has evolved in MM over the past several 
decades. During early risk stratification and genomic 
assessment of MM patients, specific abnormalities on 
metaphase cytogenetics were found to be associated with 
inferior survival. However, this assay relies on the pres-
ence of actively dividing cells, and as terminally differ-
entiated B cells, plasma cells have limited proliferative 
capacity [7, 8]. For example, the t(4;14) translocation is 
karyotypically silent with conventional cytogenetics but 
detected by FISH probes for breakpoints on chromosome 
4 in the FGFR3 gene. Consequently, only one-third of 
MM patients have metaphase cytogenetic abnormalities 
at diagnosis. Interphase FISH (iFISH) is a more sensitive 
modality for identifying specific cytogenetic abnormali-
ties of pathological significance. Subsequent to the Inter-
national Staging System (ISS) development [9], chromo-
somal abnormalities (CA) detected by iFISH have become 
a standard of care in risk stratifying MM patients [10, 11]. 
MM may have chromosomal aberrations carried by only a 
subset of tumor cells, and the cytogenetic heterogeneity of 
individual cases reflects the coexistence of cytogenetically 
defined aberrant plasma cell clones [12].

Copy number abnormalities

Karyotyping and iFISH studies have demonstrated that 
almost all MM are aneuploid. Based on the types of 
CNAs, MM is divided into two main groups: HD and non-
hyperdiploid (NHD) which compose 60% and 40% of MM 
respectively. HD (with a number of chromosomes between 
48 and 74) is characterized by trisomies of odd-numbered 
chromosomes 3, 5, 7, 9, 11, 15, 19, and/or 21 [13–15]; 
while NHD is characterized by hypodiploid (up to 44/45 
chromosomes), pseudodiploid (44/45 to 46/47), near-
tetraploid (more than 74), hyperhaploid (loss of nearly a 
haploid set of chromosomes with 24–34 chromosomes), 
and tetraploid [14]. The HD state may be a consequence 
of simultaneous gain of all additional chromosomes in a 
single abnormal mitosis. Only a limited percentage of HD 
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tumors (<10%) have a concurrent primary translocation 
affecting IGH [16]. Single-cell sequencing has shown that 
HD can precede primary translocations affecting the Ig 
heavy chain (IgH) locus in some patients [17].

In addition to aneuploidy changes, copy number gains or 
losses of chromosomes at an entire arm level are frequent 
including del13q (45–59%), +1q (35–40%), del14q (39%), 
del6q (33%), del1p (30%), and del17p (8%) [18]. Below, 
the biology and pathogenesis of several CNAs of note are 
discussed.

1q amplification (+1q)  The gain/amplification of CKS1B 
gene at chromosome region 1q21 (1q+) is seen in approxi-
mately one-third of NDMM patients making it one of the 
commonest copy number abnormality [19]. CKS1B is a 
member of the cyclin kinase subunit 1 protein family and 
is essential for cell growth and division [20]. It is widely 
expressed in various tissues but universally in the bone mar-
row where it associates with p27kip1-Cdk/cyclin complex 
and acts as a cofactor for Skp2-dependent ubiquitination of 
p27 [19–21]. When amplified, it activates the Cdk/cyclin 
complex and leads to greater degradation of p27, and ulti-
mately cell cycle upregulation by promoting the G1/S transi-
tion this leading to MM cell survival and growth.

1p deletion  CKS1B amplification often co-occurs with 
CDKN2C gene deletion at chromosome 1p32.3 (1p-) locus 
[19]. Approximately 10% of NDMM will have a 1p dele-
tion [22]. CDKN2C is a tumor suppressor gene that leads to 
deregulation of the G1/S transition resulting in proliferation 
of plasma cells in patients with MM [22].

Del(17p)/TP53  Loss of the short arm of chromosome 17 
[17p13 [del(17p)] is seen in 5–10% of ND-MM. The meth-
odology for identifying deletions varies but the techniques 
employed include metaphase cytogenetics, iFISH, Seq-
FISH, and whole-genome/exome sequencing. Importantly, 
cytogenetic analysis of chromosome 17p deletions which 
spans the TP53 gene is typically performed by FISH probes 
against 17p and does not probe TP53 in isolation. Although 
the clinical relevance of del17p is well established in MM, 
the exact mechanism by which del17p promotes aggres-
sive disease biology remains unclear [23]. The length of 
the deleted region can vary from a few megabases (MBs) 
to deletion of the entire short arm of chromosome 17. The 
TP53 gene is located in the minimally deleted region (0.25 
MB) suggesting that it is a critical gene in the 17p13 region 
[24]. TP53 mutation has been identified as a driver muta-
tion in MM [25]. However, a deletion event usually involves 
several genes, and co-deletion of TP53 along with Eif5a and 
Alox15b has resulted in more aggressive disease [26] and it 
remains unclear how genes other than TP53 contribute to 
tumorigenesis.

From the myeloma genome project (MGP), Walker et al. 
[ 25] demonstrated that TP53 deletion is the most common 
abnormality at 8%, followed by mutation (~6%) and bi-
allelic inactivation (~4%). Deletions in TP53 induce clonal 
immortalization and survival of tumor cells as well as drug 
resistance which is thought to drive poor prognosis [27, 
28]. Missense mutations of TP53 might associate with even 
worse outcomes in some cases. As in other tumor types, 
TP53 mutations in MM are spread across the entire gene, 
with many mutations occurring within the DNA-binding 
domain. Missense mutations in TP53 produce mutant TP53 
proteins that not only result in loss of normal TP53 function 
(LOF), but also gain of oncogenic functions (GOF) [29, 30].

Early studies from analyses of small numbers of patients 
suggested an association between deletion on one allele and 
mutation on the second allele of chromosome 17p, putatively 
resulting in complete inactivation of P53 function [31]. In a 
larger NDMM dataset (n = 779) where both TP53 mutation 
and FISH data were available (n = 72), a significant correla-
tion between mutation and deletion was observed [32]. The 
MGP data also showed a significant association between 
the presence of del(17p) cancer clone fraction (CCF) >0.55 
and mutation on the second allele of TP53, where 27 of 28 
patients with a TP53 mutation had CCF >0.55 [25]. Finally, 
the relationship between mono and bi-allelic del(17p) and 
TP53 mutational status remains to be clarified. Additional 
research is needed to improve our understanding of driv-
ers of high-risk biology in MM patients with del17p and or 
TP53 deletions.

Chromosome translocations

NHD MM includes tumors that harbor chromosomal trans-
locations and often involve the IgH locus, light chain kappa 
(IgK) locus at chromosome 2, light chain lambda (IgL) locus 
at chromosome 22, and MYC locus in the chromosome 8q24 
region. The largest majority (>90%) of chromosomal trans-
locations in MM affect chromosome 14, specifically the 
IGH locus at 14q32.33, which is one of the most heavily 
transcribed genes in plasma cells [33]. The landscape of 
translocations with particular attention to those involving the 
immunoglobulin (Ig) heavy chains (IGH) is described below.

Translocations into the immunoglobulin heavy chain 
locus located at 14q23

The translocation of oncogenes to the IgH locus at 
14q32 is thought to be the seminal event in the develop-
ment of MM [33, 34]. Translocations into the immuno-
globulin heavy chain locus located at 14q23 occur in early 
stages of disease development suggesting this may be a 
primer driver event.

There are well-established translocation partners with 
varying frequencies:
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•	 Common; seen in more than 10% of patients: t(4;14) and 
t(11;14) translocations [34]

•	 Less common; ≤5% of patients: t(14;16), t(6;14), t(8;14), 
and t(14;20) translocations [34].

Deregulation of a D group cyclin is consistent across 
translocation subgroups. This can occur either directly as 
seen in t(11;14) (cyclin D1) and t(6;14) (cyclin D3); or 
indirectly as seen in t(4;14) or in the MAF translocation 
(t(14;20) and t(14;16)) [33–38]. Translocations into 14q32 
influence prognosis due to an upregulation of oncogenes. 
Depending on the partner, this varies but can include both 
the MAF family members (such as MafA, MafB, and c-Maf) 
as well as D-type cyclins (such as cyclin D1, D2, and D3) 
[33–36].

t(4;14) was initially identified based on breakpoints 
on chromosome 4 in the FGFR3 gene and subsequently 
involved the MMSET gene (MMSET: multiple myeloma SET 
domain; also known as Wolf-Hirschhorn syndrome candi-
date 1 (WHSC1) or nuclear receptor-binding SET domain 
2 (NSD2)). The t(4:14) translocation was the first example 
of an IgH translocation that simultaneously dysregulated 
two genes with oncogenic potential: FGFR3 on der(14) and 
MMSET on der(4) [36]. Importantly, FGFR3 shows only 
weak transforming activity and is eventually lost in 30% 
of patients suggesting that it is not the main oncogenic fac-
tor [37], whereas MMSET is known to have histone methyl 
transferase activity and is deregulated early on in the genesis 
of developing MM [38].

In 15–20% MM cases whose IgH spilt can be detected 
by FISH, no specific partner chromosomes can be iden-
tified. Despite its remarkable prevalence with t(14; 
unknown) being as common as t(4;14) or t(11;14), its 
impact on risk and prognosis as well as biology is not well 
described albeit it is thought to be neutral [39]. Finally, the 
partners in ~15% of IgH translocations are defined most 
recently by using next-generation sequence techniques. 
Partner genes in this group are mainly MYC, and less fre-
quently WWOX, B2M, ERF, RND3, JUN PAX5, DPF3, and 
MTMR1 [40, 41].

IgK and IgL translocations  IgK and IgL translocations 
are detected in 4.5% and 10% of ND-MM cases [42, 43]. 
Approximately 41% of IgL translocations and most IgK 
translocations involve MYC locus. Other recurrent part-
ners include MAP3K14, CD40, MAFB, TXNDC5, CCND1, 
CCND2, and CCND3 but with lower frequencies (1 to 7%).

Myc translocations  Myc translocations and aberrations 
are common and frequently lead to an upregulation of the 
oncogene MYC which like in other B-cell malignancies has 
been shown to be unfavorable. In the CoMMpass study, a 

comprehensive natural history myeloma genomic project 
spearheaded by the Multiple Myeloma Research Founda-
tion (MMRF) that has currently enrolled over 1150 patients 
from 76 sites in North America and Europe, MYC translo-
cations occurred in 182 (23%) of 795 patients evaluated on 
trial and were juxtaposed to a large number of regions [43]. 
Among MYC structural alterations, translocations involv-
ing the immunoglobulin lambda (IgL) locus are present 
in 9.8% of patients and of which IgL-MYC translocations 
accounted for 41% of IgL translocations overall. t(8;14) is 
uncommon in myeloma with a prevalence of only 1–2%. 
Of note, there are significant associations between Myc and 
other abnormalities highlighting oncogenic dependencies in 
MM. For example, Myc rearrangements can lead to deregu-
lation of FAM46C which has been associated with hyperdip-
loid MM [25]. 8q24 breakpoints have been found to partner 
with the immunoglobulin enhancers IGH, IGK, and IGL, 
important B-cell maturation loci including XBP1, FAM46C, 
CCND1, KRAS, and other superenhancers such as NSMCE2, 
TXNDC5, FOXO3, IGJ, and PRDM1 [40].

Genetic mutations in MM pathogenesis

The development of MM from precursor diseases such 
as MGUS and SMM is driven by secondary events which 
provide a fitness advantage to a particular subclone and 
are required for tumor progression. For example, most 
copy number variations (CNV), translocations involving 
MYC, and somatic mutations affecting MAPK, NF-κB, 
and DNA repair pathways are observed during MM and 
less frequently in pre-malignant stages. Next-generation 
sequence techniques have demonstrated recurrent gene 
mutations detected in almost all MM cases. There is 
significant molecular heterogeneity and a well-defined 
hierarchy of frequencies but most mutations are found 
in less than 10% of patients. Genes that are involved in 
MM mutations include KRAS (23–36%), NRAS (20–21%), 
BRAF (6–8%), FAM46C (11–12%), DIS3 (11–16%), 
TP53 (8–16%), TRAF3 (5%), CYLD (2%), RB1 (3%), 
PRDM1/BLIMP1 (5%), ACTG1 (2%), RYR2 (5%), SVIL 
(5%), TTN (8%), MUC16 (8%), IGKC (2%), FAT3 (4–7%), 
SP140 (7–12%), CCND1 (3–10%), ROBO1 (2–5%), 
EGR1 (4–6%), P140 (5–7%), IgHJ6, and SDNAH5 [25, 
44–48]. Through utilization of whole-genome sequencing 
in NDMM patients, Bolli et al. [ 48] showed the perva-
siveness of driver mutations. When considering recur-
rent translocations and aneuploidies, deletions of tumor 
suppressor genes, amplification of oncogenes, and muta-
tions pertaining to “oncogenic” or “possible oncogenic” 
classes, at least one such driver event was present in 
>99% of patients and overall a median of 6 events were 
present in each patient.
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Affected signaling pathways by genetic abnormalities in 
MM  Among all the genetic abnormalities in MM patho-
genesis, the majority are involved in two main pathways: 
RAS/MAPK--43% (KRAS, NRAS, BRAF, FGFR3, RASA2, 
PTPN11); and NF-κB--17% (TRAF2, TRAF3, CYLD, 
BIRC2, BIRC3, SP140, TWEAK, MAP3K14, COBLL1, 
and PRKD2). Such mutations lead to abnormal activa-
tion of RAS/MAPK and NF-κB signaling, promoting 
the proliferation and survival of the mutant cells. NF-κB 
gene signature analysis suggests that NF-κB signaling is 
inversely associated with RAS-RAF mutations, suggesting 
2 distinct subsets of diseases [25, 46, 49, 50]. The remain-
ing affected genes are involved in the following pathways 
[51–54] (Fig. 1):

•	 Cell cycle: LEMD2, CCND1/2/3, RB1, CDKN1B, 
c-MAF, and MAF-B

•	 p53-DNA repair: TP53, ATM, ATR​, BAX, ZNFHX4, 
SAMHD1

•	 Plasma differentiation: IRF4, PRDM1/BLIMP1, MYC-
MAX, ZNF208, HOXB3

•	 RNA process: DIS3, FAM46C, FCF1, RPL10, RP53A, 
and PABPC1

•	 Protein translation: FBXO4, RPN1, PTH2, and ST6GAL1
•	 Epigenomic modification: MMSET, PHF19, EZH2, 

HIST1H1E, KMT2B, KMT2C, CREBBP, ARID1A, ATRX, 
EP300, SETD2, TET2, KDM5C, ARID2, DNMT3A, 
KDM6A, NCOR1, IDH1, HistH1E, HistH14H

During this disease development process, multiple 
genetic abnormalities are dynamically accumulated and 
can be detected in the same patient suggesting the collabo-
ration of these abnormalities in disease development and 
progression. Primary genetic events including hyperdiploid 
and IgH translocations can be detected in all disease stages 
from MGUS to SMM to MM [6]. On the contrary, genetic 
mutations are thought to be secondary genetic events that 
are acquired during disease progression to smoldering 
myeloma and eventually to symptomatic MM [55]. These 
secondary genetic events cause activation of oncogenic 
signaling and inactivation of tumor suppression signaling. 
Del17p/TP53 double-hit and Myc mutations (a rare event) 
are associated with drug resistance which are expanded in 
RR-MM cases [56, 57]. In addition, mutations that involve 
the proteasome, ER-stress, and CRBN as well as those that 
lead to an increased exportin 1 (XPO1) activation are also 
expanded in RR-MM cases and related to drug resistance 
(Fig. 2) [56, 57].

“Double‑hit” and myeloma pathogenesis  In HD-MM and 
NHD-MM, the increase or decrease in the numbers of 
whole chromosomes results in expansion or reduction of 
both oncogenes and tumor repressor genes which may par-
tially neutralize the oncogenic effects. This might explain 
why such dramatic change fails to induce malignant trans-
formation when it happens alone. Such level change of 
oncogenes or tumor suppressor genes seems insufficient to 

Fig. 1   Genetic alterations 
involved pathways in MM. 
Genetic abnormalities in MM 
cause changes in at least 8 
signaling pathways
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induce malignant transformation. Clinical studies suggest 
that “double-hit” in the same gene or functional pathway 
are commonly observed in MM suggesting a critical role 
of threshold activity of the functional pathway in disease 
development. For example:

1.	 Several tumor repressor genes (RB1, DIS3, DLEU2/miR-
15a/16-1) have been identified in the deletion region of 
del13q. DIS3 inactive mutations commonly coincide 
with del13q which results in bi-allelic inactivation of 
DIS3 [58].

2.	 Putative oncogenes in +1q include CKS1B (a negative 
regulator of CDKN1B), MCL1, BCL9, and ADAR1 [59–
61]. The common coincidence of +1q and del13q results 
in double hits on the CDKN1B-RB1 pathway.

3.	 The t(11;14) leads to cyclin D1 overexpression. An 
increase in CCND1 mutations is detected in MM with 
t(11;14) [34–38].

4.	 The t(14;16) and t(14;20) lead to overexpression of 
c-MAF and MAF-B respectively. MAF is only signifi-
cantly mutated in t(14;16) MM, while MAFB mutations 
are only detected in t(14;20) MM [62, 63].

5.	 The t(4;14) results in MMSET overexpression in 100% 
of cases and FGFR3 overexpression in 70% of cases 
depending on the breakpoint site. FGFR3 mutations are 
detected in 17% of patients harboring t(4;14), and prob-
ably result from somatic hypermutations on der14 [11, 
64, 65].

6.	 MM with del1p often co-occurs with mutations of tumor 
repressors CDKN2C or FAM46C leading to double hits 
on the CDKN2C or FAM46C gene [66].

7.	 MYC region implication or duplication is commonly 
detected in MYC translocations, leading to double hit 
on the MYC gene [40, 41].

8.	 TP53 mutation or deletion often detected in patients with 
del17p, especially RR-MM cases, results in bi-allele 
deletion (or mutation) in the TP53 gene [19, 31].

MM pathogenesis is a result of multiple genetic abnor-
malities which collaboratively stimulate malignant trans-
formation and uncontrolled expansion of malignant cells 
by inducing differentiation blockage and enhanced sur-
vival and uncontrolled proliferation. This explains the 
preferential coexistence of certain genetic abnormalities 
in the same patient. Several well-described and notable 
oncogenic co-occurrences and or dependencies of note 
include:

1.	 Patients harboring t(4;14) co-segregate with mutations 
in FGFR3, DIS3, and PRKD2, or with del12p, del13q, 
and gain of 1q9 [36, 67].

2.	 Patients with t(14;16) preferentially have co-occurring 
mutations in MAF, BRAF, DIS3, or ATM genes [25, 67].

3.	 Mutations in CCND1, KRAS, IRF4, LTB, and HUWE1 
genes are commonly detected in patients with t(11;14) 
[36, 48, 49, 67].

Fig. 2   Genetic alterations involved pathways in MM development, 
progress, and relapse. GC: germinal center; MGUS: monoclonal 
gammopathy of undetermined significance; NDMM: newly diag-

nosed multiple myeloma; PCL: plasma cell leukemia; RRMM: 
relapsed refractory multiple myeloma; SMM: smoldering myeloma
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4.	 CDKN1B, FUBP1, NFKB2, PRDM1, PTPN11, RASA2, 
RFTN1, and SP140 are significantly mutated only in 
HD-MM samples [68, 69].

5.	 Del13q is commonly associated with NHD-MM [70–72].
6.	 Monosomy 17 or del17p is identified in patients with 

hyperhaploid [68, 69].

Several recently published large clinical databases have 
elucidated true genomic clustering resulting from oncogenic 
dependencies. In an enlightening analysis of both clinical 
and genomic data from the MGP, Walker and colleagues [25] 
evaluated whole-exome and in many cases whole-genome 
sequencing of 1273 NDMM patients. They identified 9 total 
clusters, two of which were hyperdiploid (cluster 1: gains in 
chromosomes 3, 5, 9, 15, 19, and 21; cluster 2: gains in the 
same chromosomes plus chromosome 11 and mutation of 
FAM46C) while 7 were non-hyperdiploid (cluster 3: del1p; 
cluster 4 by del12p and 13q; cluster 5: del13q and 14q and 
mutations in MAX, TRAF3, and NFKBIA; cluster 6: del16q; 
cluster 7: t(14;16), del11q, 1q gain, and mutation of DIS3; 
cluster 8: t(11;14); cluster 9: t(11;14) with gain 11q). Other 
groups have shown similar clustering and co-segregating 
genomic patterns [46, 49].

The clinical significance of genetic 
abnormalities in multiple myeloma

As with other hematological malignancies, the accumulation 
of genomic aberrations is not only a hallmark of MM but 
also is associated with patient outcomes. Whole-genome/
exome sequencing as well as the review of large patient 
data sets in the modern era has improved our knowledge of 
disease biology and pathogenesis from mutations to chro-
mosomal. Although direct correlations with mutations have 
been linked to risk and patient outcomes, the implementation 
of this granulation genomic data into routine clinical prac-
tice remains an enormous barrier to improving risk stratifi-
cation in NDMM. Thus, defining uniform characteristics of 
risk in NDMM remains elusive despite several validated risk 
stratification systemic in routine clinical use. The accurate 
assessment of risk at diagnosis is critical for many reasons 
including but not limited to:

1.	 The longest remission period being achieved by initial 
therapy and thus the duration of the first remission is one 
of the most important factors impacting patient progno-
sis and long-term outcomes in general

2.	 Accurate definition of risk for clinical trial design and 
enrollment

3.	 Establishing which clinical data should be obtained rou-
tinely in practice given certain tools such as gene expres-
sion profiling are challenging to obtain while others such 
as serum lactate dehydrogenase (LDH) can easily be 
incorporated into routine clinical care.

Clinical staging systems  The international staging system 
(or ISS) is an early risk stratification for NDMM patients [9]. 
It incorporated a combination of serum beta2 microglobulin 
(B2M) and albumin into a simple powerful three-stage clas-
sification predictive of OS. Subsequent to the ISS develop-
ment, chromosomal abnormalities detected by iFISH have 
become a standard of care in risk stratifying MM patients 
and thus integrated genetic abnormalities into routine clini-
cal practice. In 2014, the IMWG published and updated risk 
stratification focusing on differentiating high-risk patients, 
those with an expected OS of less than 2 years despite the 
use of novel agents, from low-risk patients, those with 
expected survival greater than 10 years. The staging sys-
tem combines the ISS with certain high-risk iFISH changes 
including t(4;14), 17p13, and 1q21 [5]. The revised inter-
national staging system (R-ISS) was also developed which 
combines iFISH changes, serum (LDH), and ISS features 
and is the most widely recognized risk stratification tool for 
NDMM patients today [4]. Although it incorporates impor-
tant genetic markers including t(4;14), t(14;16), and del17p, 
it does not include some important genomic data including 
1q gain/amplification an increasingly important prognostic 
marker [19, 25] nor mutational data from TP53 as the data 
were not available.

High‑risk genetic lesions including copy number abnor‑
malities, chromosomal translocations, and mutations  In 
addition to well established clinical staging system incor-
porating iFISH as outlined above, certain high-risk genomic 
lesions are well established. Table 1 outlines select high-
risk iFISH changes detectable in routine clinical prac-
tice with supporting literature to summarize their impact 
on risk. In addition to having a single high-risk genomic 
lesion, what is frequently being referred to as double-hit 
myeloma (different from the double hit concept described 
above driving myeloma pathogenesis) includes patients 
who have more than 1 adverse cytogenetic lesions (such 
as del(17p), t(4;14), and gain of 1q) or an adverse cytoge-
netic lesion concurrently with a high-risk mutation. These 
patients display dismal survival outcomes. For example, in 
the Bolli et al. [ 49] experience, patients with both t(4;14) 
and PRDM1 deletion had a dismal median OS of 265 days 
whereas data from the MGP shows that patients with bi-
allelic TP53 mutation have a PFS of only 15.4 months and 
OS of just 20.7 months [79].w
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Mutations  Although the duration of follow-up is limited on 
large datasets of NDMM with extensive genomic sequenc-
ing, it is apparent that few solitary mutations drive progno-
sis. TP53 mutation is the only consistent adverse finding in 
addition to a link between general mutational burden and 
clinical outcomes [25, 28, 49]. The impact of bi-allelic/dou-
ble hit v monoallelic TP53 inactivation or del(17p) remains 
unclear. The MPG had only 33 patients with monoallelic 
deletion/mutation of TP53 [25]. These patients did not have 
an inferior outcome when compared to patients without a 
TP53 abnormality. This observation could be explained 
by the subclonal nature of TP53 deletions in these patients 
[28]. Table 1 outlines a higher cancer clone fraction (CCF) 
may be required to drive poor outcomes. TP53 mutations in 
isolation may have additional pathological significance yet 
to be determined such as driving and/or propagating MM 
clones leading to a selective clonal advantage [28] and the 
co-occurrence of TP53 mutations with other gene mutations 
may in the end be synergistic.

The MGP found 63 driver genes including novel previ-
ously unidentified oncogenes PTPN11 (activator of MEK/
ERK signaling), PRKD2 (protein kinase D), IDH1 and IDH2 
(DNA methylation), and SF3B1 (spliceosome factor). Novel 
tumor suppressor genes including UBR5 (a ubiquitin ligase) 
and HUWE1 (a ubiquitin ligase that can affect MUC expres-
sion via MIZ1) were also described. Of the 63 driver genes 
identified in their study, only TP53, TRAF3, and TGDS had 
an impact on outcome in univariate analyses. Driver gene 
mutational burden did lead to worse PFS and OS (P=0.001). 
Furthermore, two markers of genomic instability were asso-
ciated with outcomes including an APOBEC mutational 
signature and loss of heterozygosity [25]. Interestingly, the 
extent of LOH was positively correlated with the APOBEC 
signature (P=0.039), loss of TP53 (P=0.001), and presence 
of mutation in at least 1 of 15 genes involved in homologous 
recombination deficiency (P < 0.001). Updated analyses 
focused on the key clinical problem of identifying high-risk 
patients destined for early relapse and death where a change 
in treatment strategy could result in improved outcome [79]. 
On multivariate modeling, only t(4;14) and bi-allelic TP53 
inactivation were predictive of PFS while bi-allelic TP53 
inactivation and amplification of CKS1B (1q21) were pre-
dictive of OS.

Bolli et al. [ 49] found similar results performing whole-
genome sequencing of a total of 418 NDMM patients. Risk 
as defined by worsening survival leads to clustering of 
patients based on the number of mutations as well as the 
number/type of cytogenetic abnormalities. In multivariate 
analyses, they found that mutations in SP140 and NRAS, 
t(4;14), amp(1q), and del(17p13) and deletions of FAT1 
and PRDM1 negatively impacted PFS. Conversely, t(4;14), 
amp(1q), del(17p13), and del(1p) negatively impacted OS. 
The only mutation that negatively impacted both PFS and 

OS was TP53; DNAH11 mutations lead to worse OS only 
[49]. Similar to Walker et al. [25], they discovered clusters 
of patients stratified based on the overall number of muta-
tions and number/type of CNAs that lead to distinct effects 
on survival. Thus, individual mutations and performing 
an extended genotype at diagnosis likely lead to improved 
prognostication in NDMM. Finally, as seen from the MGP, 
they found distinct genomic clustering patterns leading to 
poor prognosis. For example, cluster 2 was enriched for 
IGH translocations and a high number of CNAs, enriched 
for amp(1q), del (13), del(17p), and deletions of BIRC2/3 
and XBP1, and carried more TP53 mutations [49].

The CoMMpass study (as described above) found 55 
genes that were significantly mutated and there was a 
65% overlap with the MGP. After a median follow-up of 
39 months, early progressive disease (PD) was detected in 
191/926 (20.6%) patients. In a multivariate logistic regres-
sion model, independent factors increasing the early PD risk 
were TP53 mutation (OR, 3.78, P < 0.001), high LDH (OR, 
3.15, P 0.006), IgL-chain translocation (OR, 2.25, P 0.033), 
and IGLL5 mutation (OR, 2.15, P 0.007) [67].

Perspectives moving forward

Our ability to define risk in NDMM has vastly improved as 
our knowledge of the pathogenesis, biology, and genom-
ics of MM has rapidly expanded. However, we continue to 
struggle to standardize risk as is evident by the routine use 
of several risk staging systems that do not completely align 
including the R-ISS, IMWG, and mSMART [77]. With the 
R-ISS being now nearly a decade old, it is likely time to 
formally revisit and develop an updated risk stratification 
system wielding the power of our increased knowledge of 
myeloma genomics. The biggest barrier to implementing 
our improved knowledge of mutations and other genomic 
factors impacting risk is the ability to perform such assays 
(advanced mutational profiling, whole-genome/exome 
sequencing, and even gene expression profiling (GEP) as 
outlined below) in routine clinical practice outside of clinical 
trials or major academic centers where the vast majority of 
NDMM patients are treated. Furthermore, payer reimburse-
ment for such testing is likely to continue to be a problem.

This is particularly important given the rapid expansion 
and Food and Drug Administration (FDA) approval of new 
therapeutics since the R-ISS 2014 publication including but 
not limited to ixazomib (2015), carfilzomib (in combination 
with lenalidomide and dexamethasone; 2015), daratumumab 
(2015), elotuzumab (2015), selinexor (2019), belantamab 
mafodotin-blmf (2020), isatuximab (2020), and idecabta-
gene vicleucel (2021). These therapeutics have improved 
MM outcomes and may influence the impact of genomic risk 
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in MM patients. It is critical to accurately identify high-risk 
patients at diagnosis and move toward the establishment of 
risk-adapted treatments. While many studies are targeting 
improved outcomes in high-risk myeloma [91], there has 
yet to be a randomized trial that has demonstrated a defini-
tive preferred approach in this challenging patient population 
with the most recent negative study being the SWOG1211 
(bortezomib, dexamethasone, and lenalidomide with or 
without elotuzumab in treating patients with newly diag-
nosed high-risk multiple myeloma) [92].

Is there a way to incorporate whole-genome/exome-level 
genomic data into routine clinical use? Gene expression pro-
filing may very well be the answer. Gene expression profil-
ing measures which genes are being expressed in a myeloma 
cell and specifically measures mRNA levels, showing the 
pattern of genes expressed by a cell at the transcription 
level. Given that DNA-based assays such as whole genomic 
sequencing are able to identify individual lesions and mark-
ers of global genomic instability and ultimately prognosis, it 
is not surprising that the development and now validation of 
several GEP score systems that have prognostic value have 
increased interest in incorporating GEP into routine clinical 
practice. Various reports, using distinct approaches, have 
identified gene expression signatures capable of predicting 
event-free survival and OS in multiple myeloma [93–95]. 
Although a variety of other GEP have been developed, only 
two have matured into validated clinical tests: MMprofiler 
(EMC92/SYK92) and MyPRS (UAMS GEP 70). Despite 
growing evidence of the prognostic value of GEP, its appli-
cation to routine clinical care remains challenging. There 
is not a consensus on a universal adaptation of a particular 
GEP system. GEP remains an investigational tool and is not 
yet validated by the FDA.

In order to best define risk in NDMM patients, we would 
recommend the following cytogenetic and mutational assess-
ments be obtained at diagnosis prior to treatment initiation 
whenever possible. We understand that currently the scope 
of advanced genomic sequencing is limited thus many of 
the mutations listed below. Most recommended cytogenetic 
studies below are readily available in MM FISH panels:

•	 High risk:

–	 Cytogenetics:

t(14;16)
t(4;14)
IgL-MYC translocation
+1q amplification (≥4 copies)
1p-
del(17p)

–	 Mutations/advanced genomic sequencing

TP53 deletion
LOH and APOEBEC signature
CKS1B amplification

•	 Potentially high risk:

–	 Cytogenetics:

t(14;20)
t(8;14) and other MYC translocations
+1q gain (3 copies)
del 13q/-13

–	 Mutations/advanced genomic sequencing

TRAF3
TGDS
PRDM1
DNAH11
FAT1
NRAS
SP140
IGLL5
Driver gene mutational burden

In conclusion, as we move forward, there is a need for 
improved longitudinal genomic data in addition to that already 
described above. This will require large-scale collaboration 
between researchers and institutions but will help further eluci-
date key genomics driving pathogenesis and risk. Importantly, 
this may translate into an improved understanding of poor out-
comes, drug resistance, and potentially targetable pathways for 
new therapeutics.
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