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Abstract
Hereditary spherocytosis (HS) is the most frequently observed chronic non-immune hemolytic disorder caused by altered 
red cell membrane function. SPTB gene mutation is one of the most common causes of HS, but pathogenicity analyses and 
pathogenesis research on these mutations have not been widely conducted. In this study, a novel heterozygous mutation of 
the SPTB gene (c.1509_1518del; p.K503Nfs*67) was identified in a Chinese family with HS by whole-exome sequencing 
(WES) and was then confirmed by Sanger sequencing. Next, the pathogenicity and pathogenesis of this mutation were studied 
using peripheral blood. We found that this mutation disrupted the synthesis and localization of β-spectrin and weakened the 
interaction between β-spectrin and ankyrin, which may be caused by the nonsense-mediated mRNA degradation pathway. 
These changes lead to the transformation of discoid erythrocytes into spherocytes, resulting in hemolytic anemia. Therefore, 
we classified this novel mutation as a pathogenic mutation leading to loss-of-function of β-spectrin. It would be insightful 
to perform the same mutation test and to provide genetic counseling to other relatives of the proband. Our study increases 
the current understanding of the molecular mechanisms related to mutations in SPTB.
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Introduction

Hereditary spherocytosis (HS), the most frequent inherited 
chronic non-immune hemolytic disorder caused by altered 
red cell membrane function, is characterized by the presence 
of spherical-shaped red blood cells (RBCs) on peripheral 
blood smears. HS is prevalent worldwide, with a high inci-
dence in the Northern European population (approximately 
1:2000) [1–3], and the prevalence in China is approximately 

1 in 100,000 people [4]. Individuals affected with HS exhibit 
variable clinical manifestations, ranging from nearly asymp-
tomatic to transfusion-dependent or severe life-threatening 
anemia. Typical HS patients present anemia, splenomegaly, 
jaundice, and reticulocytosis [2, 3]. In most cases, HS can 
be diagnosed by family history, physical examination, and 
hematological parameter tests [3, 5]. Molecular detection 
is very helpful in the diagnosis of atypical HS patients [6].

The defects of RBC membrane components in HS are 
caused by their corresponding gene mutations. Mutations 
associated with HS include those in ANK1, EPB42, SLC4A1, 
SPTA1, and SPTB genes encoding ankyrin, protein 4.2, band 
3 protein, α-spectrin, and β-spectrin, respectively [7]. These 
proteins are essential for maintaining the morphology of 
RBCs, and the absence of any of the above proteins will 
disrupt the vertical linkage between the phospholipid bilayer 
and the membrane skeleton, leading to a loss of erythro-
cyte membrane surface area. Discoid erythrocytes become 
spherocytes with decreased deformability and are easily 
prematurely destroyed by the spleen, consequently resulting 
in hemolytic anemia [1, 8, 9]. The majority (approximately 
75%) of HS cases are inherited in an autosomal dominant 
pattern, although autosomal recessive inheritance and de 
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novo mutation are also described in a subset of patients [9, 
10]. Mutations in the ANK1 gene are the major cause of HS 
followed by mutations in the SPTB, SLC4A1, and SPTA1 
genes [11, 12]. EPB42 gene mutations are generally found 
in the Japanese population [3].

The SPTB gene is located at 14q23.3 and contains 38 
exons that encode β-spectrin with 2137 amino acids (Gen-
Bank accession no. NP_001342366.1). It consists of an 
N-terminal actin-binding domain and 17 spectrin repeats 
that contain a dimerization domain, parts of spectrin repeats, 
an ankyrin binding domain, and a tetramerization domain 
[13]. Spectrin is the major constituent of the membrane skel-
etal network and plays key roles in regulating membrane 
deformability and membrane mechanical stability [1]. To 
date, a total of 206 SPTB mutations have been reported in 
the Human Gene Mutation Database (HGMD, http:// www. 
hgmd. cf. ac. uk/ ac/ index. php, last accessed 26 March 2021), 
161 of which are associated with HS. Although mutations in 
SPTB are common in HS, the pathogenesis of SPTB muta-
tions is not completely understood.

In this study, a novel mutation of SPTB was found in a 
Chinese family with HS and was predicted to be disease-
causing. Then, we used the patient’s peripheral blood to 
further study the pathogenicity and pathogenesis of this 
mutation.

Subjects and methods

Participants and ethics statement

A Chinese nuclear family with HS was recruited for this 
study (Fig. 1A). After obtaining written informed consents, 
peripheral blood samples were obtained from 3 family mem-
bers for mutation analysis. This study was formally approved 
by the Ethics Committee of The First Hospital of Lanzhou 
University. All procedures were performed by the approved 
guidelines.

Whole‑exome sequencing (WES) and mutation 
validation

Genomic DNA of the proband was extracted from periph-
eral blood using the QIAamp DNA Mini Kit (Qiagen, Ger-
many) following the manufacturer’s protocols. Whole-exome 
sequencing services were provided by Basecare Medical 
Device Co., Ltd. (Suzhou, China). Exomes were captured 
by an Agilent Human All Exon 60 M Kit, and the captured 
fragments were amplified and sequenced using an Illumina 
NovaSeq 6000 in 2 × 150-bp paired-end mode. The sequenc-
ing reads from WES were aligned to the human genome 
(NCBI Build37/hg19) with the Burrows-Wheeler Aligner 
(BWA) [14]. The strategies of data filtering were based on 

published documents [15]. WES identified a novel mutation 
in SPTB in the proband, which was verified using Sanger 
sequencing in the proband and parental DNA samples. The 
primers are as follows: forward 5′-CTA GCA CTG GTT CTG 
AAG GGA G-3′, reverse 5′-CCC ACC TTG ATC TCA TCC 
ATCC-3′. Sanger sequencing was performed on an ABI 
3730xl DNA Analyzer at Sangon Biotech, Shanghai, China.

Pathogenicity prediction

MutationTaster software was used to predict the patho-
genicity of novel mutations [16]. SPTB protein structural 
changes caused by the mutation were predicted and analyzed 
by SWISS-MODEL (http:// swiss model. expasy. org) [17]. 
The predicted template was Protein Data Bank ID number 
1sjj.1.A.

RNA extraction, RT‑PCR, qPCR, western blot, 
immunofluorescence, and co‑immunoprecipitation

A detailed description of the methods are given in  
Supplementary file1.

Results

Pedigree and clinical characteristics

The proband (II: 1), an 18-year-old boy, developed anemia, 
jaundice, and splenomegaly when he was 7 years old. At 
that time, blood and serum biochemical test results revealed 
that the number of RBCs and hemoglobin was lower than 
normal standards, while levels of bilirubin, RBC volume dis-
tribution width, and reticulocytes were all higher than health 
standards. Ultrasound showed splenomegaly. Bone marrow 
smear analysis showed hyperplasia with an erythroid pre-
ponderance (myeloid cells were 16%, and erythroid cell was 
69%), increase of middle and late erythroblast, and sphero-
cytes that were approximately 60%. His father (I: 1) shared 
similar clinical symptoms and laboratory results (Table 1), 
but jaundice and splenomegaly were more serious. Father’s 
ultrasound showed extreme splenomegaly. Notably, his 
father had previously been misdiagnosed with ferritin depo-
sition (ferritin: 1966 ng/ml) in another hospital. Their RBC 
size showed disparity, and spherocytes were observed in the 
peripheral blood smear (Fig. 1B). Their red cell osmotic fra-
gility showed elevated. No aberrant changes were identified 
in the direct antiglobulin test and glucose-6-phosphate dehy-
drogenase (G6PD) activity assay. The folic acid and vitamin 
B12 were within normal ranges. According to family history, 
clinical features, and laboratory tests, the proband and his 
father were diagnosed with spherocytosis in our hospital. 
The MCHC of both of our patients is in the normal range 
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or even lower, which is different from most HS patients, 
probably due to interference from other factors such as high 
reticulocytes and high RBC volume distribution width. Six 
years later, his father underwent splenectomy due to the 
aggravation of anemia after cold and anemia heart disease, 

with a spleen size of approximately 26 cm × 18 cm × 10 cm. 
After splenectomy, the clinical symptoms of the father of the 
proband were improved.

As the proband grew older, his jaundice and splenomeg-
aly became more and more serious and began to affect his 

(A) (B)

(C)

Pedigree

Ⅱ:1

Ⅰ:1 Ⅰ: 2

Mutant (gDNA)

Wide-type (gDNA)

Ⅱ:1

Ⅰ:1

(D)
control Ⅰ:1 Ⅰ: 2Ⅱ:1

SPTB (853bp)

GAPDH (113bp)

  

exon 12 exon 13

control &Ⅰ: 2  exon 12 exon 13

Ⅰ:1 &Ⅱ:1  

Fig. 1  Chinese family with HS-associated SPTB mutation. A Two-
generation pedigree of the family with two affected individuals (I: 1 
and II: 1). Filled symbols indicate individuals affected with HS, open 
symbols indicate unaffected individuals, and the black arrow indi-
cates the proband. B Spherocytes were observed in the peripheral 
blood smears of two patients, which are indicated by black arrows. 

C Sanger sequencing revealed a novel heterozygous SPTB mutation 
(black arrows indicate the mutation sites) that was detected in the 
proband and his father (I: 1 and II: 1), whereas the wild-type SPTB 
allele was observed in his mother (I: 2). D RT-PCR showed that the 
mutant transcript of SPTB was undetected in both patients, and the 
wild-type transcript was reduced compared with control and I: 2
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daily life. So when he was 18 years old (after the college 
entrance examination), his parents took him to our hospital 
to ask for a splenectomy. On admission, the proband’s scle-
rae and skin were icteric, splenomegaly, and accompanied by 
easy fatigability. Because the spleen squeezed the stomach, 
the proband had a very poor diet, with a BMI of 16.3. The 
relevant laboratory results are summarized in Table 1. Then, 
he underwent total splenectomy under general anesthesia, 
with a spleen size of approximately 20 cm × 15 cm × 8 cm. 
The pathomorphological results support chronic congestive 
splenomegaly.

Characterization of a novel SPTB mutation 
in a family with HS

A  n ove l  h e t e r o z yg o u s  m u t a t i o n  i n  SPTB 
(NM_001355436.2, c.1509_1518del GGA CAA TATA, 
p.K503Nfs*67) was detected in the proband and his father 
(II: 1 and I: 1), while his mother had wild-type SPTB alleles 

(Fig. 1C). Bioinformatics prediction using MutationTaster 
software revealed that this mutation was disease-causing 
(Table 2). This frameshift mutation, located in exon 12 
of the SPTB gene, resulted in a premature termination 
codon (PTC) within exon 13. PTC might be degraded 
by nonsense-mediated mRNA decay (NMD), leading 
to spectrin haploinsufficiency, or may skip one or more 
exons through nonsense-mediated altered splicing (NAS), 
which has the potential to rescue the function of spectrin 
or possible to produce an N-terminal truncated protein 
with an actin-binding domain, a shortened dimerization 
domain, and no ankyrin-binding domain as well as 
tetramerization domain (Supplementary file1) [18].  
Compared with the tertiary structure of the wild-type 
protein, the truncated protein triggered the loss of the 
subsequent α-spiral and loop regions (Supplementary 
file1), which might influence the combination of β-spectrin 
and ankyrin. The above assumptions require further 
experimental verification.

Table 1  Laboratory test results

Abbreviations: RBC red blood cell, MCV mean corpuscular volume, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin 
concentration, RDW red blood cell distribution width, D-Bil direct bilirubin, T-Bil total bilirubin, NA not available
* Hemolysis begins and hemolysis complete refer to the osmotic fragility test results

Tests II: 1 (7 years 
old, at diag-
nosis)

II: 1 (18 years 
old, before sple-
nectomy)

II: 1 (18 years 
old, after sple-
nectomy)

I: 1 (38 years 
old, at diag-
nosis)

I: 1 (44 years old, 
before splenec-
tomy)

I: 1 (44 years old, 
after splenec-
tomy)

References

RBC (×  1012/L) 3.42 3.01 3.76 3.96 1.20 4.03 4–5.5
Hb (g/L) 114 91 117 135 41 125 120–160
Hct (%) 36.8 28.6 38 42.5 11.9 41.9 42–49
MCV(fL) 97.6 95 101.1 107.3 99.2 104 80–100
MCH (pg) 31.1 30.2 31.0 34.1 34.2 31.0 27–31
MCHC (g/L) 319 318 308 318 345 298 320–360
RDW-CV 19.2 30.1 24.6 22.2 26.7 19.4 10.9–15.5
RDW-SD 70.8 99.2 88.5 79.8 90.4 73.7 39–46
Reticulocyte(%) 13.40 NA NA 17.4 2.9 NA 0.43–1.36
T-Bil (μmol/L) 72.8 190.4 32.8 205.4 66.1 15.6 9.1–30.1
D-Bil (μmol/L) 3.5 17.2 10.9 8.5 12.7 3.3 0–6.8
I-Bil (μmol/L) 69.3 173.2 21.9 196.9 53.40 12.3 0–19
Hemolysis begins 

(g/L)*
5.6 5.6 NA 5.6 5.6 NA 4.2–4.6

Hemolysis com-
plete (g/L)*

4.4 4.4 NA 4.4 4.4 NA 3.2–3.4

Table 2  The information of the 
mutation identified in SPTB 

The pathogenicity was tested using the bioinformatics software MutationTaster
Abbreviations: c variation at cDNA level, ExAC exome aggregation consortium, Hete heterozygote, p vari-
ation at protein level

Prediction information

Nucleotide Amino acid Zygosity Mutation taster ExAC or 1000G

c.1509_1518del GGA CAA TATA P. K503Nfs*67 Hete Disease causing (pro:1) New

734 Annals of Hematology (2022) 101:731–738
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RT‑PCR showed no mutant SPTB transcript present

RT-PCR and subsequent cDNA sequencing revealed 
the presence of only wild-type SPTB transcript, and no 
mutant SPTB transcript was observed in the patients. This 
indicated that the mutant mRNA did not reach detectable 
levels, which was probably degraded by the NMD path-
way. In addition, the wild-type mRNA products of the 
patients were reduced compared with unaffected members 
(Fig. 1D). Meanwhile, RT-PCR excluded NAS that may 
exist in patients.

mRNA and protein expression levels of the SPTB  
gene were decreased in HS patients

The mRNA expression levels of wild-type SPTB in the 
proband and his father were decreased by half compared 
with his mother and normal control (Fig. 2A). Similarly, 
western blot analyses revealed that the amounts of β-spectrin 
present in the red cell membranes of the proband and his 
father were approximately about 70% those in his mother 
and the normal control and no truncated protein was pro-
duced (Fig. 2B). Therefore, this nonsense mutation resulted 
in monoallelic expression of wild-type SPTB mRNA, which 
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Fig. 2  A qPCR revealed that this mutation reduced the mRNA 
expression of the SPTB gene by half. B Western blot analysis indi-
cated that this mutation reduced the β-spectrin amount by approxi-
mately 30% and no truncated protein (65 KDa) was produced. C Co-
immunoprecipitation (Co-IP) of β-spectrin and ankyrin in erythrocyte 
membrane proteins in the normal control and proband. Compared 

with the normal control, the interaction of β-spectrin with ankyrin in 
the proband was significantly weakened, and only approximately 70% 
ankyrin was captured by β-spectrin. Semi-quantitative analysis of the 
captured amount of ankyrin relative to the amount of immunoprecipi-
tated β-spectrin was performed by greyscale scanning of strips
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led to insufficient synthesis of β-spectrin on the erythrocyte 
membrane. This result further confirmed that the mutated 
mRNA might be degraded by NMD.

Decrease in β‑spectrin located on the erythrocyte 
membrane in HS patients

Immunofluorescence was performed to determine the locali-
zation of β-spectrin. The results showed that the distribution 
of β-spectrin on most erythrocyte membrane of the proband 
and his father was significantly less than that of the normal 
control and his mother (Fig. 3), which further indicated that 
this mutation affected the synthesis of β-spectrin, result-
ing in the decrease of β-spectrin targeted to the erythrocyte 
membrane. Thus, the membrane skeletons of some RBCs in 
the patients were incomplete.

Mutation weakens the interaction 
between β‑spectrin and ankyrin

Some β-spectrin failed to target the erythrocyte membrane, 
indicating that its binding to ankyrin might be impaired. 
Thus, we detected the interaction between ankyrin and 
β-spectrin on the erythrocyte membrane by co-immuno-
precipitation. The biochemical interaction between ankyrin 
and β-spectrin in the proband was weaker than that of the 
normal control (Fig. 2C). Therefore, this mutation weakens 
the interaction between ankyrin and β-spectrin.

Discussion

In this report, we reported a Chinese family with two 
members affected by HS and identified a novel mutation 
of SPTB in the patient by WES, which is confirmed by 
Sanger sequencing. This mutation leads to a premature 
termination codon within exon 13, resulting in a nonsense 

mutation (p.K503Nfs*67). Then, we performed a series of 
pathogenicity studies using peripheral blood to identify the 
pathogenesis of this novel mutation. The results indicated 
that this mutation disrupted the synthesis and localization of 
β-spectrin and weakened the interaction between β-spectrin 
and ankyrin, which may be caused by the nonsense-mediated 
mRNA degradation pathway. These changes led to the trans-
formation of discoid erythrocytes into becoming sphero-
cytes, resulting in hemolytic anemia.

At present, the clinical diagnosis of HS mainly relies on 
clinical presentation, family history, and peripheral blood 
smear results [3]. The eosin-5-maleimide binding test and 
osmotic gradient ektacytometry are also started for auxiliary 
diagnosis of HS [19–21]. However, these routine tests may 
be inconclusive, particularly in no family history, newborn 
infants, or different testing results are not consistent [6, 22]. 
Molecular genetic testing is an effective method to further 
determine the diagnosis of HS, and it can help reduce the 
incidence of misdiagnosis and shed new light on HS clinical 
management and genetic counseling of the family [6]. In our 
study, patient I: 1 was misdiagnosed as ferritin deposition 
disease in another hospital. It was not until his son came to 
our hospital for jaundice and fatigue at the age of 7 years that 
he was diagnosed with HS. Our molecular genetic testing 
further confirmed the diagnosis of HS, identified the genetic 
cause of HS, and ruled out Gilbert syndrome. Patients with 
combined HS and GS have been reported, but their coexist-
ence is often underdiagnosed, which may be attributed to 
one condition masking another. The possibility of coexist-
ence should be considered when serum bilirubin levels are 
discordant with the degree of hemolysis. Molecular genetic 
testing was crucial to confirm the diagnosis and to avoid 
underdiagnosis [23–25].

SPTB gene mutation is the second most common cause 
of HS. SPTB encodes β-spectrin protein, which is the rate-
limiting protein of α2β2-tetramerization network formation 
and plays a key role in the formation of the erythrocyte 

(A)  Control (C)  Ⅱ: 1 (D)  Ⅰ: 2 (B)  Ⅰ: 1

Fig. 3  Green fluorescent signal represents β-spectrin. The β-spectrin 
on the erythrocyte membranes of normal people showed a circle of 
green fluorescence, while some erythrocytes of the patient only had 

a few fluorescence points, suggesting the decrease of β-spectrin tar-
geted to erythrocyte membrane. A Normal control. B I: 1. C II: 1. D 
I: 2
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membrane skeleton [1, 7, 8]. With the development of 
molecular genetic testing technology, an increasing num-
ber of SPTB mutations causing HS have been identified. 
Previously reported hereditary spherocytosis cases with 
SPTB mutations were summarized in Supplementary  
file1 and 2. In the dimerization domain, at least eleven 
mutations, p.K379Nfs*12, p.Q357*, p.Q417*, p.W437*, 
p.A455Qfs*24, p.T471M, p.Q442*, p.K463*, p.Q514*, 
p.Y474*, and p.R498Pfs*72, have been identified in HS 
patients, but the pathogenesis of these mutations has sel-
dom been studied. Among the discovered SPTB mutations, 
about 70% are nonsense or frameshift mutations that can 
produce PTC, suggesting that NMD [26, 27], NAS [28], or 
the production of truncated protein [29] may play an impor-
tant role in the pathogenesis of HS. In our study, we used the 
patient’s peripheral blood to further study the pathogenicity 
and pathogenesis of the p.K503Nfs*67 mutation. We found 
that this mutation resulted in a halving of mRNA expression 
of the SPTB gene, a reduction in β-spectrin expression of 
approximately 30%, no truncated protein production, and 
no detectable levels of mutated mRNA. Thus, we specu-
lated that the mRNA produced by this mutation is degraded 
by the nonsense-mediated mRNA decay pathway, resulting 
in β-spectrin haploinsufficiency. Next, we found that the 
distribution of β-spectrin on most erythrocytes of patients 
was less than that of normal control, which further indi-
cated insufficient synthesis of β-spectrin on the patient’s 
erythrocyte membrane. Furthermore, it was confirmed by 
co-immunoprecipitation that this mutation led to the weak-
ening of the interaction between ankyrin and β-spectrin; the 
above evidence indicated that most of the erythrocytes in 
the patients could not form a complete α2β2-tetramerization 
network structure, which affected the reversible deforma-
tion ability of RBCs and led to the premature destruction 
of erythrocytes by the spleen. Therefore, it is certain that 
the mutation is a pathogenic mutation leading to loss-of-
function of β-spectrin.

Here, we report a novel mutation in the SPTB gene in 
a Chinese family. We also provided powerful evidence for 
the pathogenicity of this mutation. It is meaningful to con-
duct the same mutation test and provide genetic counseling 
to other relatives of the proband, which can identify other 
asymptomatic mutation carriers in the family and carry out 
appropriate life or medical management in advance. More 
generally, our study expands the spectrum of SPTB muta-
tions, especially in the Chinese population, and increases the 
current understanding of the molecular mechanisms related 
to frameshift mutations in SPTB. Moreover, our study also 
provided an example of using peripheral blood to research 
the pathogenicity of novel mutations found in HS patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00277- 022- 04773-3.
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