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Abstract
Sickle cell disease (SCD) is a hereditary condition characterized by homozygosis of the hemoglobin S (HbS) gene. Marked
morbimortality is observed due to chronic hemolysis, endothelial injury, and episodes of vaso-occlusion, which leads to multi-
organ damage. Renal impairment is common and may have different presentations, such as deficiency in urinary acidification or
concentration, glomerulopathies, proteinuria, and hematuria, frequently resulting in end-stage renal disease (ESRD). Novel
biomarkers of renal function, such as kidney injury molecule 1 (KIM-1), and neutrophil gelatinase-associated lipocalin
(NGAL) and monocyte chemoattractant protein 1 (MCP-1) are being studied in order to enable early diagnosis of kidney damage
in SCD.
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Introduction

Sickle cell disease (SCD) is a common autosomal recessive
hematological condition. Its mortality has risen 42% between
1990 and 2013, reaching 100,000 annual deaths worldwide
[1]. Chronic hemolysis and repeated episodes of vaso-
occlusion result in insidious damage of vital organs, among
which the kidney is frequently affected. Sickle cell nephropa-
thy (SCN) is considered one of the severest complications of
SCD and may have its onset in childhood2. This review dis-
cusses SCD pathophysiology, treatment, clinical features, and

the mechanisms involved in kidney injury. Considering the
burden of this issue, there is an interest in prevention and early
detection of SCN and novel biomarkers are being studied for
that purpose [2–10].

Pathogenesis

Sickle cell disease (SCD) was first reported by Herrick in
1910, who described the characteristic shape of the erythro-
cytes. It is caused by a point mutation in chromosome
11p15.5, replacing timine by adenine in the β-globin gene,
which leads to an aminoacid change from a hydrophilic
glutamic acid to a hydrophobic valine in the sixth position in
the β-globin chain (Fig. 1). As a result, a mutated hemoglobin
S (HbS) tetramer is formed and SCD occurs when homozy-
gous mutation is present [11, 12].

Pathophysiology

There are four main processes involved in SCD pathophysi-
ology: HbS polymerization, vaso-occlusion, hemolysis asso-
ciated with endothelial dysfunction, and inflammation [12].

Once glutamic acid is replaced by valine, HbS polymeriza-
tion is favored in lower oxygen concentrations. HbS becomes
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stretched and the β-globin S chains are pulled closer together.
Such conformational change favors contact between areas of
deoxyhemoglobin, which is not possible in the oxygenated
state. With the binding of multiple HbS tetramers, long poly-
mers of double fibers are formed, which in turn aggregate in
bundles with low solubility, leading to the precipitation of
HbS crystals inside the erythrocytes. This process results in
altered rheology, increased cell rigidity, energetic stress, dehy-
dration, lower deformability, premature hemolysis, and mem-
brane distortion, which is responsible for the sickle-like shape
of the erythrocytes [12, 13].

The formation of HbS polymers inside the red cells causes
potassium efflux, high intracellular calcium concentration,
HbS polymerization with membrane components such as
band 3 proteins and exposure of phosphatidylserine (PS),
and CD36. Such changes facilitate erythrocyte’s endothelial
adhesion, white blood cells migration, endothelial injury of
the microvasculature, and nitric oxide (NO) depletion, creat-
ing a pro-inflammatory and pro-thrombotic environment [13].

Apart from the deoxygenated state, other factors influence
erythrocyte sickling, including pH, temperature and 2,3-
diphosphoglicerate levels, slow blood flow in the spleen and
kidneys, for instance. High levels of fetal hemoglobin (HbF)
prevent polymerization and are an important determinant of
SCD clinical manifestations [12, 14].

The increased viscosity slows blood flow and favors episod-
ic and sustained vaso-occlusion. In addition, due to their
marked rigidity, sickle cells are likely to get trapped in small
vessels, which contribute to vaso-occlusive events and chronic
anaemia, since the erythrocytes trapped in splenic microvascu-
lature are prematurely cleared from the circulation [13, 14].

Intravascular hemolysis of sickle cells releases intracellular
hemoglobin in the circulation, which consumes NO in a reac-
tion which also produces methemoglobin and inert nitrate. NO
is an endothelium-derived regulator of vascular function,
which promotes vasodilation, platelet inhibition, and expres-
sion of adhesion molecules, such as VCAM-1. Hemoglobin,

heme, and ion catalyze the production of reactive oxygen
species (ROS), further limiting NO bioavailability and activat-
ing endothelial cells. Hemolysis also releases arginase, which
consume L-arginine, a substrate for NO synthesis. Chronic
NO depletion may contribute to vasoconstriction, proliferative
angiopathy, pulmonary hypertension, and activation of adhe-
sion molecules, such as VCAM-1, platelet activation, and
production of endothelin-1. The latter promotes vasoconstric-
tion, increases soluble VCAM-1 and ICAM-1 levels, and in-
duces monocytes to secrete inflammatory cytokines (e.g., IL-
1, IL-6, IL-8, TNF-α) and substances which increase super-
oxide production by neutrophils. The physiological balance of
vascular tonus is shift towards vasoconstriction, as well as
endothelial activation and cells proliferation [13, 15, 16].

Therefore, SCD is characterized by decreased NO (which
favors vascular occlusion), hemolysis, and endothelial activa-
tion, resulting in persistent inflammation. Long-term conse-
quences of sustained hemolytic anaemia and episodes of vaso-
occlusion include insidious development of damage to vital
organs (Fig. 2) [17–19].

Such findings contribute to hypoperfusion in the microvas-
culature. In the macrovasculature, however, there is an in-
crease in cardiac index (CI) and a decline in systemic vascular
resistance (SVR), which is mediated by substances such as
endothelium-derived hyperpolarizing factor (EDHF) and
prostaglandins, but not NO, since it is decreased in SCD.
Lower hemoglobin levels in SCD have also been associated
with reduced SVR [20, 21]. Nath et al. have referred to this
hemodinamical difference between macro and microcircula-
tion as the Bperfusion paradox,^ for which the kidney is prob-
ably the best example. While there is glomerular hyperperfu-
sion and hyperfiltration, the renal medulla shows a tendency
to vaso-occlusion and hypoperfusion [20].

Clinical Manifestations of SCD

Patients with SCD present heterogenous and multifactorial
clinical manifestations mainly related to hemolysis and vaso-
occlusion. The former causes chronic anemia and elevation of
serum markers, such as indirect bilirubin, lactate dehydroge-
nase (LDH), and reticulocyte count. Hemolysis is also associ-
ated with priapism, pulmonary hypertension, ulcers of inferior
limbs, and stroke. Pain may be either an acute or chronic
feature of SCD. In the acute setting, pain is related to tissular
ischemia due to vaso-occlusion causing osteonecrosis or acute
chest syndrome (ACS) [15, 16].

The natural history of SCD is marked by a wide range of
complications, which promote multi-organ damage and may
deeply compromise patient’s quality of life. Retinopathy,
osteonecrosis (especially of the femur’s head), gallstones, re-
current infections, and renal failure are among the main com-
plications of SCD [13].

Fig. 1 Point mutation of the β-globin gene
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Clinical determinants of SCD

Although all SCD patients possess the sameβ-globin mutation,
different clinical phenotypes are observed. A known factor to
significantly influence clinical manifestations in SCD is HbF
serum concentration. It is predominantly produced during the
fetal stages of life; thus, HbF is found in very low levels in
adults, accounting for approximately 1% of total Hb, and is
restricted to a small population of red blood cells (RBCs) called
F cells. Levels of HbF vary among individuals and are geneti-
cally determined as a quantitative hereditary inheritance. High
HbF reduces HbS concentration and hinders its polymerization,
resulting in a milder SCD presentation [22, 23].

Apart from HbF levels, other genetic factors, such as coex-
istence ofα-thalassemia andβ-globin haplotypes are also able
to influence SCD clinical course. Many single-nucleotide
polymorphisms (located in the β-globin cluster in chromo-
some 11 or in other chromosomes) as well as epigenetic and
environmental mechanisms are also being identified [14, 22].

Mechanisms of renal injury in SCD

The kidney may be affected by various pathophysiological
pathways in SCD. Damage usually begins in childhood and
progresses through adult life. Sickle cell nephropathy includes
acidification and concentration disturbances, distal tubular
dysfunction, renal papillary necrosis, and proteinuria, which
may progress to ESRD. APOL1 genotypes G1 and G2 have
been associated with worse kidney disease and progression to
ESRD in SCD. A recent experimental study has demonstrated

the upregulation of nephrin on podocytes of zebrafish injected
with APOL1 G2 mRNA, which may be associated with the
development of SCN [24–26].

The acidic, hyperosmolar, and hypoxic environment of
the renal medulla dehydrates RBCs, increasing intracellular
concentration of HbS, leading to polymerization and sick-
ling inside the descending vasa recta. The slower blood
flow through these small renal vessels also favors sickling
and endothelial adhesion, increasing the probability of
vaso-occlusion in the kidney, which results in renal infarc-
tion with tubular and endothelial lesion, reperfusion injury,
oxidative stress, and inflammation with release of vasodi-
lator substances, such as prostaglandins and NO, which in
turn act on the glomeruli increasing the glomerular filtra-
tion rate (GFR). Prolonged hyperfiltration causes protein-
uria, glomerulosclerosis, and eventually progression to
CKD and ESRD. There is also a correlation between
hyperfiltration and chronic hemolysis (Fig. 3) [27–30].

Renal damage in SCD has been associated with chronic
hemolysis and anemia [27, 31]. HbS is an unstable protein
which undergoes auto-oxidation and denaturation, produc-
ing ROS and free heme radical. The passage of HbS
through podocytes and tubular epithelium may cause oxi-
dative damage to these cells. In addition, heme radical is
ligand for type 4 Toll-like receptors, which is found on
the endothelium, tubules, mesangium, and podocytes, lead-
ing to inflammatory responses of these cells. The oxidative
effects of HbS and heme upregulate the transcription of
pro-inflammatory and fibrogenic genes, leading to infiltra-
tion and fibrosis in the glomerular and tubulointerstitial
compartments [27, 30].

Fig. 2 Pathophysiology of SCD. Deoxygenation induces HbS
polymerization, which causes RBCs to take the characteristic sickle-like
shape. Vaso-occlusion stems from the interaction between sickled RBCs
and the endothelium. Vascular occlusion leads to infarction, hemolysis,
and inflammation, which increases expression of adhesion molecules,

worsening vaso-occlusion due to sickle cells adhesion to the endothelium.
Reperfusion of the ischemic tissue originates free radicals and oxidative
stress. Hemolysis releases free hemoglobin in the circulation causing
functional NO deficiency, which contributes to the development of
angiopathy
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Concentration defects

The destruction of the kidney’s medulla begins in childhood and
is responsible for the urinary concentration deficit observed in
many SCDpatients. Hyposthenuria is the first renalmanifestation
of SCD and leads to polyuria and free water loss, which in turn
may increase serum osmolarity if water intake does not balance
the losses. Patients with higher HbF were able to concentrate the
urine better, corroborating the hypothesis that hemoglobin poly-
merization causes renal medulla’s destruction [28, 30, 32, 33].

Hematuria

Hematuria is one of the most common renal manifestations of
SCD, affecting up to 13––30% of patients. The majority is
asymptomatic, but abdominal or back pain is occasionally
reported by patients. Higher prevalence is associates with
older age and male sex. Hematuria may be microscopic or
macroscopic and occurs by capillary congestion, especially
in the medulla, with RBCs leak to the lumen of the renal
tubules. It may also be caused by papillary necrosis due to
occlusion of the vasa recta, which might contribute to the
development of CKD [30, 34, 35].

Hypertension

Patients with SCD present lower blood pressure (BP) in com-
parison with the overall population. This fact has been ascribed
to the fluid loss secondary to concentration defects, but it is
more likely to stem from the reduction in SVR, since lower
BP is observed even in SCD patients with increased plasma
volume [36, 37]. In SCD patients, not only overt hypertension
is deleterious. Relative increments in systolic BP (resulting in
elevated pulse pressure) have been associated with hemolysis

and worse renal and cardiovascular outcomes, such as protein-
uria, chronic kidney disease, pulmonary hypertension, diastolic
heart dysfunction, stroke, and death [36, 38–40]. The term rel-
ative systemic hypertension (RSH) is currently being used to
refer to SCD patients who do not present hypertension accord-
ing to traditional criteria, but have increased risk for worse
outcomes. Defined as systolic BP of 120–139 mmHg and dia-
stolic BP of 70–89 mmHg, RSH is believed to affect approxi-
mately 45% of adult SCD patients, while overt hypertension
has a prevalence of 19% in the same population [41].

Proteinuria and albuminuria

Moderately increased albuminuria (MIA; 30–300 mg/g Cr),
formerly known as microalbuminuria progresses to severely
increased albuminuria (SIA; > 300 mg/g Cr) as renal damage
builds up. As a result, the intensity of proteinuria can be ex-
pected according to the patient’s age. Approximately 20–35%
of patients present MIA in adolescence, whereas SIA is ob-
served in 60% of adults with SCD [31]. Recent evidence has
better defined the association between hyperfiltration in early
childhood and the development of albuminuria later on [42].

Because of its early onset, albuminuria is currently consid-
ered a relevant biomarker of glomerular damage in SCD as-
sociated with hyperfiltration or not. Proteinuria is associated
with a variety of factors, such as high blood pressure, low
hemoglobin levels, hemolysis, leukocytosis, hematuria, previ-
ous episode of vaso-occlusion, β-globin S gene haplotype,
pulmonary hypertension, stroke, and ACS [27, 30, 31, 43].

Chronic kidney disease and ESRD

Following the onset of proteinuria, some SCD patients devel-
op CKD with GFR decrease due to interactions among

Fig. 3 Pathophysiology of sickle
cell nephropathy
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multiple processes in glomerular, vascular, tubular, and inter-
stitial compartments of the kidney. CKDmay be caused either
by repeated mild acute renal injuries or a single severe acute
kidney injury. This concept is especially suitable for SCN,
since it is characterized by intermittent episodes of vaso-
occlusion and there is increased renal susceptibility to acute
damage in SCD. Powars et al. [44] observed that renal failure
in SCDwas preceded by severe anemia, proteinuria, nephrotic
syndrome, hypertension, and microscopic hematuria. In addi-
tion, patients with renal failure were three times more likely to
develop chronic restrictive pulmonary disease, leg ulcers, and
stroke than those without renal failure [28, 30, 44].

Although common, not all SCD patients will develop pro-
teinuria and not all patients with proteinuria will develop
SCN. The factors which influence progression to CKD are
not completely understood, but older age is associated with
development of renal failure in SCD. Also, it has been report-
ed that male sex, hypertension, proteinuria, and worsening of
anemia might be risk factors for ESRD [45]. The presence of
comorbidities, such as chronic heart disease and diabetes, as
well as the patient’s genetic background are related to progres-
sion of CKD in general. The intrarenal renin-angiotensin sys-
tem has also been studied as a major contributor to SCN’s
pathophysiology [2, 28].

Novel biomarkers of kidney injury

The traditional biomarkers of renal damage, such as serum
creatinine, are not very sensitive, especially when
hyperfiltration is present, since it increases GFR and creati-
nine clearance. As a result, a rise in serum creatinine is noticed
in late stages of SCN, usually when GFR is below half of its
normal value and marked proteinuria is present [2, 29, 34].

There is evidence of higher diagnostic accuracy using more
than one biomarker; hence, the interest in validating new bio-
markers for early diagnosis of SCN, before therapeutic inter-
ventions are no longer able to prevent the progression of renal
damage [2, 34].

KIM-1

Kidney injurymolecule 1 (KIM-1) is a transmembrane protein
of the proximal tubule which is not found in normal condi-
tions. It is specifically expressed by dedifferentiated tubular
cells after ischemic or nephrotoxic damage, being associated
with both acute and chronic tubular injury. Several studies
have shown its usefulness in predicting adverse outcomes,
but its role in CKD is still not well established. Sundaram
et al. have demonstrated an association between KIM-1 and
albuminuria in SCD; thus, it is a promising biomarker for
SCN [2, 3, 10, 29].

Although undetectable in the normal kidney, mRNA for
KIM-1 is rapidly produced after kidney injury and KIM-1
can be found in all three segments of the renal tubules, with
especially high levels on the apical membrane of the proximal
tubule. Soluble KIM-1 can be found in the urine of patients
with acute tubular necrosis (ATN) and acts as an early bio-
marker of damage to the proximal tubule [4, 5].

The fact that KIM-1 is not present in normal kidneys but
also increases its expression on the apical membrane of the
injured proximal tubule and persists until it is fully recovered
markedly increases its accuracy as a promising biomarker [4].

MCP-1

Monocyte chemotactic protein 1 (MCP-1) has been described
as an important biomarker of mononuclear cell inflammation
in ischemia-induced acute kidney injury (AKI). It is consid-
ered the most powerful chemotactic molecule for macro-
phages and monocytes recruitment and is expressed mainly
by epithelial cells in the glomeruli and tubules during renal
inflammation [4].

Patients with SCD presented higher MCP-1 levels than the
control group and treatment with hydroxyurea was associated
with a decrease in its measurement. Albuminuria was also
associated with MCP-1 [6].

NGAL

Neutrophil gelatinase-associated lipocalin (NGAL) is a small
protein specialized in the binding and transport of small hy-
drophobic molecules. Since the casual finding that NGAL is
easily detected in the urine of animals with AKI, there is a
growing interest in studying this molecule as a non-invasive
AKI biomarker in humans [7].

Following ischemic renal damage in animal models,
NGAL is sharply induced and its gene is one of the most
up-regulated even in early stages. It has been detected in the
urine in 2 h after the ischemic insult. In tubular injury, NGAL
expression increases 1000 times in both humans and rodents
and is promptly detected in the serum and urine [8–-10].

However, Sundaram et al. [2] have surprisingly found a
subnormal NGAL concentration in the urine of SCD patients.
It was ascribed to the increased reabsorption of NGAL by the
proximal tubules, which are overfunctional in SCD. It was
also hypothesized that the damage to the distal tubules in
SCN would prevent these cells from increasing NGAL ex-
pression. Thus, it appears that the main role of NGAL in
SCN is excluding other mechanisms of renal injury which
are associated with increased urinary NGAL [2, 46].
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Treatment

Despite the recent achievements in the comprehension of
SCD, therapeutic options remain limited. Patients’ manage-
ment is mostly supportive and includes control of symptoms
with antibiotics, analgesic, and anti-inflammatory drugs.
Patient who presented stroke, chronic refractory pain, or re-
peated splenic sequestration crises should receive blood trans-
fusion regularly. Standard therapy also includes oral adminis-
tration of hydroxyurea (HU) and bone marrow transplantation
(BMT). The latter is the only treatment able to provide definite
cure, but requires a compatible donor and may present com-
plications, such as graft versus host disease (GVHD). Studies
involving gene therapy are being carried out in order to devel-
op a new curative treatment using the patient’s own stem cells
without the risks of a BMT [47–49].

Hydroxyurea is a potent ribonucleotide reductase inhibitor
and currently the main drug used to effectively treat SCD. It
improves patient’s clinical course by progressively increasing
HbF levels and lowering HbS concentration. In addition, stud-
ies have also demonstrated that HU is able to decrease RBC’s
endothelial adhesion, endothelial activation and leukocytes
and platelets counts. It also acts as a NO donor, reduces he-
molysis, and effectively prevents acute vaso-occlusive events
(Fig. 4) [50–52].

In kidney disease, higher HbF was associated with lower
incidence of MIA and with milder hyposthenuria. Treatment
with HU decreases hyperfiltration and MIA. Although the
mechanism of MIA reduction is still elusive, it has been pro-
posed that the decrease in hemolysis and RBC sickling asso-
ciated with hydroxyurea would reduce renal ischemic injury.
Another study reported reduction of proteinuria in pediatric
patients following hydroxyurea treatment. However, its use to
specifically prevent the development or progression of SCN
still lacks evidence from larger studies [31, 33, 34, 53–55].
Similarly, the benefit of angiotensin converting enzyme inhib-
itors (ACEI) in reducing proteinuria or preventing chronic
kidney disease in normotensive SCD patients with MIA is
uncertain [56].

Chronic transfusion prevents vaso-occlusive events, espe-
cially childhood strokes, but there is also evidence supporting
a decline in ACS incidence [57]. Its main indication consists
in abnormal transcranial Doppler velocity (> 200 cm/s) in
children [58]. Long-term transfusion is capable of reducing
erythrocyte deformability and improving the capacity of oxy-
gen to be carried. When well-targeted, it increases hematocrit
and hemoglobin levels without significant increments in blood
viscosity in comparison to non-transfused individuals, be-
cause better oxygenation causes a decline in viscosity and
compensates for the higher hematocrit [59]. However, this
therapy should not aim for normal laboratory values, in order
to avoid unnecessary increases in blood viscosity. Targeting
hemoglobin at 10 g/dl (especially before surgical procedures)
and hemoglobin S at < 30% seems to be effective and safe [58,
59].

Side effects of long-term transfusion may include
alloimunization, transfusion reactions and, eventually, iron
overload [60]. The spleen is the most commonly affected or-
gan by iron deposits, followed by the liver, kidney, and pan-
creas [61]. Patients with renal hemosiderosis present higher
urine albumin-creatinine ration and elevatedmarkers of hemo-
lysis [61]. The mechanism of iron deposit formation is deter-
mined by the filtered hemoglobin, which is endocyted into the
proximal and distal tubules [62]. Although chronic transfusion
is able to harm the kidneys in renal hemosiderosis, the overall
impact of this therapy on kidney function and the new bio-
markers are still elusive due to the lack of studies addressing
this issue [56].

Conclusion

Nephropathy remains one of the most common chronic com-
plications in patients with SCD and has its onset in childhood.
It manifests by disturbances in both glomeruli and tubules,
such as proteinuria, hematuria, and hyposthenuria, often
progressing to CKD. The emergence of new non-invasive
biomarkers of renal injury (such as KIM-1, MCP-1, and

Fig. 4 Effects of treatment with
hydroxyurea on SCD. ACS, acute
chest syndrome; HbF, fetal
hemoglobin
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NGAL) and their assimilation into clinical practice is a prom-
ising area of improvement in SCD care. Their combined use in
order to obtain a panel of biomarkers may contribute to the
early diagnosis and the development of strategies to guide
patients’ follow-up and tackle disease progression.
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