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Abstract
Azacitidine and decitabine, two hypomethylating agents, are known to be effective in the treatment of high-risk
myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) patients who cannot endure intensive cytotoxic
chemotherapy or are not eligible for transplantation. However, the treatment response rate is low. The molecular mech-
anisms underlying the resistance to demethylation therapy are unclear. Though a wide range of predictors of treatment
response have been investigated, no consensus has been reached. It is imperative to identify certain parameters that can
help distinguish between patients who will obtain a favorable outcome from demethylation therapy and those who will not.
Here, we describe currently researched potential predictors based on clinical characteristics, DNA methylation, gene
mutation, gene expression, microRNAs, and protein expression. Although these parameters are not currently used in
clinical practice, this review provides new sights into available clinical and experimental research. Moreover, this paper
provides useful information on AML/MDS management.
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Background

Azacitidine (5-azacytidine, 5-aza-CR, AZA) and decitabine
(5-aza-2 ′ -deoxycyt idine , 5-aza-CdR, DAC), two
hypomethylating agents (HMAs), are known to be effective
for high-risk myelodysplastic syndromes (MDS) and acute
myeloid leukemia (AML) patients with bone marrow (BM)
blasts at 20–30% [1–3]. AZA was also shown to be effec-
tive in AML patients with BM blasts over 30% [4]. At low
doses , HMAs exer t an t i -neop las t i c ac t iv i t y by

demethylation, thus reactivating some methylation-
silenced genes. At high doses, cytotoxicity accounts for
most of their anti-neoplastic activity [5]. Accumulated data
suggest that some patients undergoing demethylation ther-
apy have better outcomes compared to conventional treat-
ments [6]. Hence, these drugs provide a new therapy for
AML/MDS patients who are not suitable for intensive cy-
totoxic chemotherapy or who are not candidates for trans-
plantation. However, only a proportion of patients who do
not resist demethylation therapy could get favorable out-
comes and several cycles are needed before the efficacy of
the therapy becomes obvious. Therefore, it is essential to
discover parameters that can determine whether a patient
will respond to HMAs, to avoid both delaying other treat-
ments and unwanted adverse effects. Recently, possible
predictive factors for the response to HMAs have been ex-
tensively investigated, including clinical parameters (i.e.,
age, gender, cytogenetics, blast percentage, prior treatment,
etc.), DNA methylation, gene mutation, gene expression,
micro-RNA expression, and expression of relevant pro-
teins. However, the conclusions are controversial and a
consensus has not been reached. Here, we review currently
researched factors, which may be potential predictors of
patient response to HMAs (Table 1).
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Table 1 Predictors of HMA response in patients with AML or MDS

Classification Parameters Prediction Possible mechanisms

Clinical parameters Gender Male: bad response Higher CDA activity in males [7]

Age Older age: poor survival Poor conditions [8]

ECOG > 1 Bad response and poor survival Poor conditions [9]

WBC, Hb, PLT High WBC, low Hb, low PLT: bad
response and poor survival

Disease severity indicator [9–11]

Platelet change Platelet doubling after the first
cycle: good response

Sensitivity to HMAs [12]

BM blasts High BM blasts: bad response Disease severity indicator [13]

Immunophenotype Aberrant immunophenotype of myeloid
progenitors: bad response

Ineffective hematopoiesis [14]

CD25 CD25 on CD34+ cells: poor survival Leukemia stem molecular signature [15]

Cytogenetics Poor cytogenetics: bad response
and poor survival

Loss of genetic stability [8, 9, 11, 12, 16]

chr7 abnormalities Better response Need confirmation [17, 18]

HbF* Better survival A surrogate for demethylation [19]

LDH* Poor survival Adverse prognostic factor [20]

VitD* Better survival Anti-bacteria; regulator of innate immune responses [21]

Prior treatment Untreated patients: better response Cross-resistance [10]

Dose and duration time AZA (75 mg/m2/day) and DAC
(100 mg/m2/course): better response.
Prolonged treatment suggested

Dose and duration influence the efficacy of HMAs [22]

Gene mutation DNMT3A# Better response De novo methylation [23]

TET2# Better response 5-mC to 5-hmC [24]

IDH# Better response α-KG to 2-HG [25]

TP53# Better response TF; tumor suppression gene [26]

DNA methylation Global DNA methylation Decrease: good response Gene silencing by methylation [27]

BCL2L10 Bad response and poor survival Pro- or anti-apoptosis [28]

CDKN2B Bad response Regulator of cell cycles [29]

Gene expression PI-PLCβ1* Better response PI signaling pathway [30]

MLL5* Better response Regulator of HOX gene expression [31, 32]

MYC* Bad response TF in cell cycle regulation [33]

PD-1* Bad response Immune-inhibitor [34, 35]

NKD2* Better survival Negative regulator of Wnt pathway [36]

BNIP3L* Better survival Pro-apoptosis [37]

Micro-RNAs miRNA-126** Better response Anti-DNMT1 miRNA [38]

miR-29b* Better response Anti-DNMT3 miRNA [39]

miR-21* Bad response and poor survival Oncogenic miRNA [40]

miR-181* Bad response and poor survival Associated with FAB AML type [41]

miR-331* Bad response and poor survival Cancer-associated miRNA [42]

miR-29c* Bad response Anti-DNMT3 miRNA [43]

Protein expression hENT1*, hCNT1* Better response Transporter of HMAs [44–46]

UCK*, DCK* Better response Activate HMAs [46, 47]

CDA* Bad response Hydrolyze HMAs [7, 48]

FAS* Better response Apoptosis signal transduction [49]

P53* Bad response Reduce DAC-induced apoptosis [50]

Cell signaling DP subset Low pretreatment levels: better response Involved in Stat3/5 signaling profiles in CD34+ cells and
consist with leukemia propagating cell phenotypes [51]

* High expression vs. low expression; # genetic mutation vs. wild type; DP subset: a CD34+ G-CSF-inducible Stat3/5 double-positive subpopulation
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Clinical parameters

Numerous clinical parameters have prognostic implica-
tions. A study found that males benefit less from HMAs,
presenting lower overall survival (OS) and response rate
[52]. Diverse enzymatic activities between males and fe-
males might account for this difference. Males seem to
have relatively higher cytidine deaminase (CDA) activity
or expression, which is an enzyme responsible for the
metabolism and clearance of cytidine analogues [7].
Advanced age is also a risk factor [8]. Moreover, a rela-
tively poor performance status (ECOG > 1) is associated
with a low response rate [9]. Bone marrow examination
and some hematologic parameters are also of value in
predicting the response to HMAs. For example, higher
than normal white blood count (WBC) [9, 10], low hemo-
globin level, and low platelet count [11] before HMA
therapy are associated with poor response and low surviv-
al. In particular, if the platelet count of a patient rises to
twice the baseline level after the first AZA cycle, the pa-
tient is more likely to respond to AZA [12]. In contrast,
BM blasts > 15% and aberrant immunophenotype of my-
eloid progenitors predict poor responses to AZA in MDS
[13, 14]. Also, late-stage MDS patients with expression of
CD25 antigen on CD34+ cells had poor OS following
treatment with AZA [15]. As for cytogenetics, complex
karyotypes or poor cytogenetics predict a bad response
[8, 9, 11, 12]. In acute erythroleukemia (AEL) patients
treated with AZA, high-risk cytogenetics is also associated
with decreased survival [16]. Based on the ECOG score,
WBC before AZA onset and cytogenetics, Ramos et al.
designed the European ALMA score (E-ALMA), which
was successfully used as a predictor of AZA response in
710 elder ly AML pat ients [9, 53] . The revised
International Prognostic Scoring System (IPSS-R) is also
important in predicting cytogenetic as well as clinical re-
sponses to HMAs [38, 54]. Poor karyotypes are generally
associated with adverse outcomes, but aberrations in chro-
mosome 7 appear to be an exception. Several studies have
shown that patients with chromosome 7 abnormalities had
satisfactory responses to AZA and DAC [17, 18, 55]. As
many genes with vital physiological significance are locat-
ed on chromosome 7, the striking findings of these studies
appear to contradict conventional situations. Therefore,
more studies are needed to clarify whether the findings
about chromosome 7 abnormalities are incidental or not.
Although adverse karyotype remains a poor prognostic
factor, several studies reported the overall survival for
the HMAs group was superior to the conventional chemo-
therapy group in high-risk MDS and older AML patients
with adverse karyotype [6, 56, 57]. So, HMAs are gener-
ally recommended in these patients. In addition, higher
levels of fetal hemoglobin (HbF) [19], normal lactate

dehydrogenase (LDH) level [20], and high vitamin D
(VitD) [21] prior to DAC or AZA therapy have been re-
ported to be associated with longer survival. The response
to AZA of untreated AML patients was better than that of
those with prior chemotherapy [8, 10, 13]. Among patients
with early post-transplant relapse, those who received
more intensive induction chemotherapy (i.e., GCLAM or
FLAG-IDA) before hematopoietic stem cell transplanta-
tion (HSCT) were more likely to respond to AZA than
those who received conventional induction chemotherapy
(B7 + 3^ regimen) [58]. The dose and duration of AZA
therapy also affect the outcome. Although the optimal
dose and cycles of AZA are uncertain, studies have shown
that patients treated with AZA at a dose of 75 mg/m2/day
have a higher probability to achieve a positive response
than those treated with a dose of 100 mg/day [10, 22]. As
for DAC, one study showed that MDS patients treated
with a dose of 100 mg/m2/course were more likely to
respond to treatment than those treated with 60–75 mg/
m2/course and 135 mg/m2/course [59]. Prolonged AZA
treatment was suggested based on that some patients
achieve a response only after six cycles. Furthermore,
some patients with consistent stable disease could benefit
from AZA even without achieving response [10].

Gene mutations

Mutation of methylation modifier genes

Aberrant DNA methylation can promote the initiation and
development of hematopoietic malignancies. Mutations of
methylation modifier genes contribute partly to these aberra-
tions. However, the exact relationship between these muta-
tions and various DNA methylation profiles is uncertain [27,
60, 61]. DNA methyltransferase 3A (DNMT3A), ten-eleven-
translocation 2 (TET2), and isocitrate dehydrogenases 1/2
(IDH1/2) are themost frequently studiedmethylationmodifier
genes [62] (Fig. 1). Increasing evidence suggests that muta-
tions in these genes are linked to the response to HMAs.
However, it remains controversial how these mutations affect
treatment outcome.

DNMT3A encodes a DNAmethyltransferase that catalyzes
the methylation of C5 position of CpG dinucleotides.
Mutations of DNMT3A often result in poor prognosis [63].
However, patients with DNMT3Amutations can benefit from
HMAs. In an analysis on a cohort of 46 AML cases treated
with DAC, six of eight patients with DNMT3A mutations
achieved complete response (CR, 75%) in contrast to 13/28
patients (34%) without DNMT3A mutations [23]. Similarly,
Traina et al. found that DNMT3A mutations are linked to a
higher response rate and prolonged progression-free survival
(PFS) in MDS patients treated with demethylation therapy
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[60]. However, no such relationship was found in a different
study [64]. DNMT3A mutations can lead to epigenetic disor-
ders, whichmight disturb the stability of the genome, enabling
a response to HMAs. However, more studies are needed to
further understand the underlying mechanisms.

TET2 encodes a hydroxylase that catalyzes the hydroxyl-
ation of 5-methylcytosine (5-mC), converting it to 5-
hydroxymethylcytosine (5-hmC). Mutations in TET2 can im-
pair the activity of this hydroxylase and lead to low levels of 5-
hmC, with surprisingly widespread hypomethylation at differ-
entially methylated CpG dinucleotides [61]. A multi-center
study revealed that AML/MDS patients harboring TET2 mu-
tations had a higher response rate to AZA [24]. Moreover, the
increase in response rate was even more prominent when
TET2 mutation was combined with wild-type ASXL1 [65].
In another study, 46% (5/11) and 24% (5/21) of high-risk
MDS patients with mutant TET2 and wild-type TET2
responded to AZA, respectively [28]. Though the aforemen-
tioned studies show better responses to demethylation therapy
in TET2 mutant patients, other studies found the relationship
between TET2 mutations and survival to be unclear [28, 60].

IDH1/2 exert their effects by catalyzing the decarboxyl-
ation of isocitrate into alpha-ketoglutarate (α-KG), which is
essential for DNA demethylation through TET2 and histone
demethylation. In the presence of IDH mutations, α-KG is
converted into 2-hydroxyglutaratea (2-HG), which is an ana-
logue and competitor of α-KG. Through the accumulation of
2-HG, IDH mutations can lead to DNA hypermethylation
[66]. Interestingly, this result appears contradictory to what
is discussed above [61]. In most cases, mutations in IDH1/2
were linked with a poor prognosis, especially those in IDH1
[67]. However, a higher response to HMAs compared to wild
type was recently found in patients with IDH mutations. By
reviewing the clinical data and IDH mutations of 42 AML
patients treated with HMAs, Emadi et al. identified a relation-
ship between IDH mutations and a higher response rate:

71.4% (5/7) of patients with IDH mutations compared to
22.9% (8/35) without IDH mutations (P = 0.01) [25]. A sim-
ilar finding was revealed in a meta-analysis, suggesting the
possible predictor value of IDH mutations [68]. However,
no such correlation was found in two other studies [60, 64],
suggesting unknown mechanisms underlying these findings.
DNMT3A mutations are often accompanied by either TET2
mutations or IDH1/2 mutations, but not by both, implying an
intricate interaction among these mutations [66].

Mutations in TP53

Tumor suppressor gene TP53 encodes the protein p53, an
indispensable transcription factor in regulating cell cycle and
apoptosis [69]. Mutations in TP53 have been consistently
linked to complex karyotypes and poor outcomes in hemato-
poietic malignancies [70–72]. However, it remains controver-
sial whether TP53 mutations influence the response to HMAs
of these patients. In a clinical trial of 10-day courses of DAC,
Welch et al. found a higher response rate among patients with
TP53 mutations compared with those with wild-type TP53 (P
< 0.001) [26]. A similar result was obtained from the analysis
of a cohort of 109 MDS patients, in which, however, the high
response rate did not improve survival [70]. In another study,
the shorter duration of response, rather than the response rate
to HMAs in MDS patients, was associated with TP53 muta-
tions [71]. Other studies found the poor prognosis-related trait
of TP53 mutations, but no significant differences in response
rates between patients with mutated and wild-type TP53
[72–74]. In addition, TP53 mutations were associated with
poor response to AZA in patients who relapsed post-
transplantation [75]. It is possible that TP53 mutations are
related with better HMA response, but the effect might be
compromised by the accompanying complex karyotype.
More in-depth and extensive studies are warranted to provide
new insights into this question.

Fig. 1 Effects of DNMT3A, TET2, and IDH1/2 mutations on aberrant DNA methylation
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DNA methylation

Global DNA methylation

Aberrant DNA methylation plays an indispensable role in on-
cogenesis, including hematopoietic malignancies. Different
from normal cells, cancer cells often undergo genome-wide
hypomethylation together with hypermethylation of
promoter-associated CpG islands [27]. The association be-
tween DNA methylation and prognosis is complicated [76].
A relatively high level of DNAmethylation is often associated
with poor prognosis [77, 78]. Treatment with HMAs was
found to reduce the level of methylation [79]. However, how
DNA methylation patterns influence the clinical response to
HMAs remains unclear. Shen et al. analyzed samples from
317 MDS patients for the methylation of 10 candidate genes.
No association was found between the methylation level of
these genes and clinical responses to HMAs. However, the
DAC responders, when compared with non-responders,
displayed a significant decrease in methylation after therapy
[78]. Zhang et al. also found that a conspicuous drop in global
methylation after DAC therapy was correlated with higher CR
rates, as well as longer PFS [77]. Therefore, it is the decrease
in methylation, rather than the baseline level, that might pre-
dict the outcomes of HMA therapy.

Methylation of documented genes

Numerous genes, including oncogenes, tumor suppressor
genes, signal molecule genes, apoptosis/anti-apoptosis genes,
and transcription factor genes, are methylation targets in he-
matopoietic malignancies [62]. To date, only a few of these
genes have been investigated regarding the relationship be-
tween their methylation status and the outcome of demethyl-
ation therapy.

BCL2 like 10 (BCL2L10) gene belongs to the BCL2 fam-
ily with both pro-apoptotic and anti-apoptotic functions.
BCL2L10 is frequently hypermethylated in several cancers,
such as acute leukemia (AL), and the hypermethylation might
promote the transition from MDS to AML [3, 28]. As a
hypomethylating target of DAC, BCL2L10 expression is up-
regulated in HL60 cells by DAC [3]. In a study containing 27
higher-risk MDS patients treated with AZA, subjects bearing
over 50% BCL2L10 methylation were less likely to achieve
response or have long survival [28]. On the contrary, high
protein expression of BCL2L10 was associated with AZA
resistance in SKM1-R cells [80]. High percentage of
BCL2L10 positive bone marrow cells could predict resistance
to AZA in MDS patients at a cut-off of 50% [80], which was
validated in a prospective study recently [81]. These different
results might be caused by the various functions of BCL2L10
at different expression levels [81], and much remains to be
uncovered between BCL2L10 methylation and protein

expression. The predictor value of BCL2L10 methylation
and the change in BCL2L10 methylation level during HMA
treatment need to be verified in future studies.

Cyclin-dependent kinase inhibitor 2B (CDKN2B) encodes
p15INK4b, which regulates cellular arrest in the GI phase by
inhibiting cyclin-dependent kinase 4 (CDK4), CDK 6, and
CDK4/6 complexes [29]. CDKN2B promoter methylation oc-
curs frequently in AML and high-risk MDS [29]. In addition,
CDKN2B promoter methylation is often associated with poor
prognosis and is increased during MDS progression and evo-
lution to AML [29, 82]. It could be interesting to explore
whether CDKN2B methylation predicts responses to HMAs
because it was reported to have no relationship with the ex-
pression level of DNA methyltransferase genes [83].
CDKN2B promoter methylation is often decreased following
treatment with HMAs. However, whether the demethylation is
correlated with treatment response remains controversial [17,
84]. Raj et al. found that lower baseline CDKN2B promoter
methylation was associated with response (P = 0.07), whereas
when patients harbored baseline methylation > 24%, no re-
sponse was achieved [17]. However, it was reported that a
60-year-old secondary AML patient with CDKN2B promoter
methylation > 24% reached a dramatically favorable response
[85], suggesting that the correlation found by Raj et al. has
exceptions. Together, these studies provide evidence that un-
der most circumstances HMAs might not be efficient enough
in the presence of a high level of CDKN2B promoter
methylation.

Gene expression

Pi-PLCβ1

Phosphoinositide phospholipase Cβ1 (PI-PLCβ1) is a pivotal
enzyme involved in the nuclear phosphoinositide (PI) signal-
ing pathway, which plays important roles in cell proliferation,
growth and differentiation [86]. PI-PLCβ1 exerts its role by
regulating the cell cycle as a checkpoint in the GI phase,
targeting CDK3, and influencing the development of hemato-
logic malignancies through genetic and epigenetic changes
[30, 87]. Recent studies suggest that PI-PLCβ1 could be a
potential target of HMAs. AZA could reduce the methylation
level of PI-PLCβ1 and increase the expression of proteins in
responders with MDS [88], which might become obvious af-
ter three cycles of treatment [30]. As a downstream target of
PI-PLCβ1 signaling, the expression of CKD3 significantly
increases during therapy with AZA, with or without valproic
acid [87, 89]. Furthermore, the recruitment of relevant tran-
scription factors, such as Sp1, CEBPA, and MZF-1, changes
greatly in responders to AZA therapy [87]. Taken together, it
is reasonable to hypothesize that AZA might epigenetically
activate the PI-PLCβ1-dependent signaling pathway.
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Therefore, PI-PLCβ1 might serve as a dynamic indicator of
the effect of HMAs, and the significant changes in PI-PLCβ1
expression after early AZA cycles might become a prognostic
factor for MDS patients.

MLL5

MLL5, a member of the mixed lineage leukemia (MLL)
family, belongs to the trithorax group and plays critical roles
in regulating homeotic gene (HOX) expression [31]. MLL5
is essential in regulating the cell cycle and maintaining ge-
nomic integrity, particularly during hematopoiesis and he-
matopoietic differentiation [32]. An analysis of 509 subjects
with AML demonstrated that patients with high MLL5 ex-
pression tended to have a longer survival [90]. Meanwhile,
loss of MLL5 in murine HSC resulted in pleiotropic hema-
topoietic defects and a dramatic sensitivity to DAC-induced
differentiation [91]. For humans, high expression of MLL5
in AML patients treated with DAC could predict beneficial
outcomes. Additionally, high MLL5 expression was linked
to higher global DNA methylation and could raise the sen-
sitivity to DAC in leukemia cells [92]. Therefore, high
MLL5 expression might lead to a better response and sur-
vival with HMA therapy.

MYC

MYC proto-oncogene (MYC) encodes a transcription factor
involved in cell cycle regulation, cellular transformation, gene
expression, and oncogenesis. MYC is overexpressed in high-
risk MDS and AML in contrast to low-risk MDS, and could
be used as both a predictive tool and therapeutic target [33,
93]. There is convincing evidence that MYC contributes, to
some degree, to drug resistance in AML. Overexpression of
MYC was found in drug-resistant leukemia cells, and the
MYC inhibitor 10058-F4 could restore the sensitivity to cyto-
toxic drugs [94]. In a group of 21 patients under treatment
with AZA, the response rates were 12.5% (1/8) and 61.5%
(8/13) in subgroups with MYC overexpression and low ex-
pression, respectively (P = 0.03), highlighting a predictive
value of MYC for response to AZA [95]. This is also consis-
tent with findings on miR-29b [39], which was reported to be
negatively regulated byMYC [96]. Therefore, overexpression
of MYC might serve as an unfavorable predictor.

PD-1

Programmed death 1 (PD-1) is an immune inhibitor. PD-1
plays an important role as a regulator of T-cell activation,
tolerance, and autoimmunity by interacting with its ligand,
PD-L1 [97]. The PD-1/PD-L1 pathway was associated with
resistance to conventional chemotherapeutic agents and has
been targeted in cancer immunotherapy [98]. Previous studies

suggested that HMAs decrease the methylation level of the
PD-1 promoter in leukemia cells, which was accompanied by
an increase in PD-1 expression. The effect was more visible in
resistant patients, leading to worse survival [34]. Resistant
patients also showed a higher level of PD-1 methylation in T
cells, compared with healthy controls, before treatment
[99]. On the contrary, a moderate rather than a large increase
in PD-1/STAT1 rate was reported to benefit survival in low-
risk MDS [35]. Taken together, the methylation level of PD-1
at baseline might be considered when using HMAs because
the demethylation and increased expression of PD-1 might
contribute to HMA resistance. A combination of PD-1/PD-
L1 inhibitors and HMAs might be a promising therapy in
HMA-resistant patients [99, 100]. The relationship between
the immune system and HMAs is very complex. We could
potentially target the immune system to overcome HMA re-
sistance and vice versa.

NKD2

Naked family 2 (NKD2) is a negative regulator of the Wnt/β-
catenin signaling pathway [36]. NKD2 is often methylated in
many cancers and hypermethylation can lead to decreased
NKD2 expression, which was found to be associated with
poor prognosis [101]. Similarly, in AML, low NKD2 expres-
sion was associated with shorter OS [102]. HMAs could re-
duce the hypermethylation of the NKD2 promoter in leukemia
cell lines and restore its expression [102]. However, more in
vivo evidence is required to verify the association of NKD2
expression and HMA therapy.

BNIP3L

BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3)
and BNIP3-like (BNIP3L), both acting as cellular pro-
apoptotic proteins, are atypical members of the BCL2 family
as they only contain the Bcl-2 homology 3 (BH3) domain (not
BH1 to BH4) [37]. Aberrant methylation of BNIP3/BNIP3L,
along with their aberrant expression, was observed in many
tumors, e.g., hematopoietic tumors [103]. Lazarini et al. found
that BNIP3L expression was decreased in MDS patient bone
marrow cells, which appears to be an independent prognostic
factor for worse OS under DAC therapy [104]. Intriguingly,
DAC could increase the expression of BNIP3L in U937 cells,
whereas loss of BNIP3L expression seemed to strengthen the
apoptosis induced by DAC in U937 cells [104], suggesting a
complex interaction between BNIP3L and DAC in apoptosis.
Therefore, much remains to be understood about the role of
BNIP3L as a potential predictor.

Apart from single gene expression, we can also take groups
of genes into consideration. Research revealed that upregulat-
ed expression of a series of genes which are related to cell
cycle progression was associated with AZA response [105].
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Micro-RNAs

Micro-RNAs (miRNAs) are a family of short non-coding
RNAs that regulate gene expression at post-transcriptional
level. They are involved in most vital physiological processes,
usually through degrading mRNAs or down-regulating the
translation of proteins [106]. Aberrant expression and methyl-
ation of specific miRNAs are associated with hematological
malignancies [107]. In addition, miRNAsmight exert a crucial
effect on resistance to chemotherapeutic drugs [108].
Therefore, the capacity of miRNAs as predictors of response
to HMAs should be exploited. Solly et al. found seven
miRNAs, five of which were considered anti-DNMT1, differ-
entially expressed between AZA resistance and sensitivity in
SKM1 cells. Subsequently, they found that the lower expres-
sion of miRNA-126* (one of the two mature products of miR-
126 precursor derived from the 3′ arm) in MDS could predict
lower response rates and poor outcome [38]. In a single-center
phase II study with a cohort of 53 patients, subjects with
higher pre-treatment miRNA-29b levels showed higher re-
sponse rates [39]. However, the results were opposite to
miR-29c. Butrym et al. showed that a lower expression of
miR-29c in AML patients before treatment was associated
with better response to AZA [43]. The underlying mecha-
nisms remain unknown, and the opposite effects are intriguing
considering that both miRNAs are reported to target DNA
methyltransferases [109]. Higher miR-21 level was also found
to correlate with response to HMAs in MDS patients [40],
which is similar to the study of miR-181 [41]. In a study of
95 AML cases in which some patients were treated with AZA,
the correlation between higher expression of miR-331 and
lower possibi l i ty to achieve CR was signif icant
[42]. However, the correlation between the miR-331 expres-
sion level and the response to AZA remains to be determined.

Protein expression

Proteins involved in HMA transport and metabolism

The mechanisms underlying the resistance to DAC and AZA
remain unknown, with complex pharmacological properties
and metabolic characteristics considered to be partially re-
sponsible (Fig. 2). DAC is effective primarily due to its incor-
poration in DNA, whereas AZA mainly targets the RNA
[110]. The uptake of AZA and DAC into the cell is mediated
by the human nucleoside transporters (hNTs), which are clas-
sified into two different families, namely, the human equili-
brative nucleoside transporters (hENTs) and the human con-
centrative nucleoside transporters (hCNTs). Recent studies
suggested that AZA is transported by both hENTs and
hCNTs, while DAC is transported almost exclusively by
hENT1 or hENT2 [111]. Once inside the cell, DAC is

phosphorylated into its active forms initially by deoxycytidine
kinase (DCK), whereas AZA is phosphorylated by uridine–
cytidine kinase (UCK) [110]. CDA has the opposite effects by
catalyzing the hydrolytic deamination of deoxycytidine and
cytidine to deoxyuridine and uridine, respectively, thus de-
creasing the concentration of the active forms of DAC and
AZA [7]. Any alterations in the transport and metabolism of
these drugs might cause insufficient active forms and insuffi-
cient incorporation into DNA/RNA, resulting in resistance.
An in vitro study using Madin–Darby canine kidney cells
demonstrated that a significantly increased sensitivity to
AZA was associated with hCNT1 expression [44]. Similar
results were obtained for DAC. Higher hENT1 expression
was strongly correlated with response to DAC and prolonged
survival [45, 46].

Regarding enzymes catalyzing phosphorylation, subjects
with higher UCK expression tend to have a good response
to AZA (P = 0.07) [47], whereas those with decreased DCK
expression carry the risk of secondary resistance to DAC in
MDS [46]. An in vitro study found that the transfection of
wild-type DCK into resistant cell lines restored DAC sensitiv-
ity [5]. Given the importance of CDA in the metabolism of
DAC and AZA, CDA expression levels and catalytic activity
were measured in 90 patients under treatment with HMAs.
Higher CDA expression/activity was found to contribute to
reduced exposure to HMAs, leading to poor prognosis
[7]. Considering the opposite influences that DCK/UCK and
CDA exert on the metabolism of cytidine analogues, the ratio
of the two different parameters was analyzed by Qin et al. The
authors found that a high CDA/DCK ratio likely conduced to
primary resistance in MDS patients undergoing DAC therapy
(P = 0.027) [48]. Taken together, these results clarify the fun-
damental function of the genes involved in the transport and
metabolism of AZA/DAC and support the roles of these genes
as prognosis-associated biomarkers.

FAS

FAS is a receptor on the cell surface affecting the apoptosis
signal transduction by binding to the FAS ligand (FASL).
Considering that many drugs act through the FAS/FASL path-
way, high expression of FAS receptor and FASL was sug-
gested to be associated with a favorable prognosis [49]. In
contrast, the absence or low expression of FAS-Associated
Protein with Death Domain (FADD) in AML cells at diagno-
sis was linked with resistance to chemotherapy and poor out-
comes [112]. In addition, functional FAS promoter polymor-
phisms that influence the expression of the FAS receptor were
associated with increased risk of AML [113]. In a multi-sided
study of 169 high-risk MDS and secondary AML patients
[114], low FAS receptor expression before treatment, due to
promoter hypermethylation, was linked to patient response to
AZA [114]. AZA and DAC were found to reduce FAS
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promoter hypermethylation and restore its expression [114,
115]. Hence, FAS receptor expression appears to be a potential
indicator of the response to HMAs.

P53

The p53 protein, encoded by the TP53 gene, is an extensively
studied tumor suppressor in humans. It plays essential roles in
cellular processes such as apoptosis and genomic stability.
High expression of p53 is often used as an alternative readout
for TP53 mutations, for which the exact mechanisms are un-
clear [116]. High protein expression of p53 was rarely linked

with a favorable response or long survival under HMA thera-
py. Mostly, treatment response was low, or the correlation was
insignificant [117, 118]. This result is quite different from that
of TP53 mutations [26]. In contrast, loss of p53 expression in
mice was reported to enhance the apoptosis induced by DAC
[50]. However, the relationship between p53 and the response
to HMAs is not fully known. It seems that p53 expression has
an effect on DAC-induced apoptosis rather than on demethyl-
ation [50], and DAC might influence the methylation of p53
pathway regulators, thus leading to p53 expression changes.

In addition, Miltiades et al. found the Stat3/5 signaling
biosignature in CD34+ cells was associated with AZA

Fig. 2 a Structures of cytidine,
AZA, and DAC. b Transport and
metabolism of AZA (5-aza-CR)
and DAC (5-aza-CdR)
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response and survival in high-risk MDS patients, which may
serve as both a response biomarker and treatment target.
Moreover, the team identified a CD34+ G-CSF-inducible
Stat3/5 double-positive subpopulation (DP subset) with the
characteristics of leukemia propagating cell phenotypes and
low pretreatment levels of DP subset predicted better AZA
response [51].

Conclusions

It is important to identify predictors of the response and out-
come of patients under HMA therapy. Many parameters,
which are commonly associated with poor prognosis, tend to
be associated with favorable responses to HMAs [23, 25, 26].
Recent studies provide evidence that these parameters might
be important targets of HMA therapy. Though the responses
do not always lead to a longer survival, HMA treatments
might provide an opportunity for some patients to pursue oth-
er options such as HSCT. The clinical implications and reli-
ability of these parameters must be further studied to deter-
mine whether these can be clinically used as predictors of
responses to HMAs. This review discusses the potential pre-
dictors of responses to HMAs and provides new insights into
clinical research and AML/MDS management. Clearly,
larger-scale and more extensive studies are needed to better
understand the mechanisms underlying HMA resistance and
validate the predictive value of these parameters.
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