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Promyelocytic leukemia protein in mesenchymal stem cells is essential
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Abstract
The dynamic interactions between leukemic cells and cells resident within the bone marrow microenvironment are vital for
leukemia progression. The lack of detailed knowledge about the cellular and molecular mechanisms involved in this cross-talk
restricts the design of effective treatments. Guarnerio et al. (2018) by using state-of-the-art techniques, including sophisticated
Cre/loxP technologies in combination with leukemia mouse models, reveal that mesenchymal stem cells via promyelocytic
leukemia protein (Pml) maintain leukemic cells in the bone marrow niche. Strikingly, genetic deletion of Pml in mesenchymal
stem cells raised survival of leukemic mice under chemotherapeutic treatment. The emerging knowledge from this research
provides a novel target in the bone marrow niche for therapeutic benefit in leukemia.
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Introduction

Cancer is the leading cause of death worldwide [1]. The he-
matologic cancers, leukemias, are caused by the acquisition of
malignant mutations in hematopoietic progenitor cells which
confer their clonal expansion, aberrant self-renewal capacity,
allowing them to proliferate indefinitely without differentia-
tion, and prejudicing their normal functions [2]. Leukemia is
characterized by the unrestrained formation of leukemic cells
and defective normal hematopoiesis [3]. Despite significant
improvements in the outcome of leukemic patients due to
modern chemotherapeutic treatments combined with bone

marrow transplants, leukemia relapse after therapy is still
common.

Leukemia, similarly to other malignancies, depends not
only on intrinsic genetic alterations but is supported by coop-
eration with bystander cells residing in the bone marrow mi-
croenvironment [4, 5]. Signals emanating from these cells are
essential for leukemic clones’ maintenance, supporting sur-
vival, resistance to chemotherapy, proliferation, and migration
[6]. Albeit the importance of the microenvironment for leuke-
mic progression is well accepted, the detailed mechanisms
involved in the complex interplay between the cells present
in the leukemic niche and cancer cells are poorly understood.
Deep understanding of the active involvement niche cells in
shaping the leukemic microenvironment may offer novel
clues for designing therapeutic strategies. The discovery of
molecules that strengthen the niche-mediated resistance to
chemotherapy challenges the eradication of residual leukemic
cells hiding in the bone marrow microenvironment.
Elucidating the effect of microenvironmental cues on leuke-
mic cells will bring novel targets to achieve complete
remission.

Bone marrow niches within the bones provide a sanctuary
for leukemic cells to evade death. Even though it is well ac-
cepted that bone marrow stromal cells promote leukemic cells
resistance to chemotherapy [7], the details of the cellular and
molecular mechanisms involved in this support remain

* Alexander Birbrair
birbrair@icb.ufmg.br

1 Department of Natural Sciences, Federal University of São João del
Rei, São João Del Rey, MG, Brazil

2 Department of Pathology, Federal University of Minas Gerais, Belo
Horizonte, MG, Brazil

3 Department of Biochemistry, Federal University of São Paulo, São
Paulo, SP, Brazil

4 Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal
University of Mato Grosso do Sul, Campo Grande, MS, Brazil

5 Department of Radiology, Columbia University Medical Center,
New York, NY, USA

Annals of Hematology (2018) 97:1749–1755
https://doi.org/10.1007/s00277-018-3463-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00277-018-3463-x&domain=pdf
http://orcid.org/0000-0003-1015-2561
mailto:birbrair@icb.ufmg.br


unclear. Mesenchymal stem cells are found throughout the
body [8, 9]. These cells are able to self-renew and differentiate
into various cell populations. In the bone marrow, they pro-
vide a niche for growth, differentiation, and survival of normal
and malignant hematopoietic cells [10–12]. Now, in a recent
article in Nature Communications, Guarnerio and colleagues
reveal that the promyelocytic leukemia protein (Pml) in mes-
enchymal stem cells is as a therapeutic target for leukemia
[13]. The authors investigated the role of mesenchymal stem
cells in leukemia progression by using state-of-the-art tech-
niques, including in vivo serial transplantation, sophisticated
Cre/loxP technologies in combination with leukemia mouse
models, and in vitro elegant co-culture assays. Using Prx1-
Cre/Pml-floxed mice, these experiments revealed that mesen-
chymal stem cells expand after Pml loss in the bone marrow
[13]. Interestingly, Guarnerio and colleagues showed that leu-
kemic cell growth decreased in the bone marrow of Pml
knockout mice as compared with controls, suggesting that
sustainability of leukemic cells within the bone marrow de-
pends on the expression of Pml in niche cells. Strikingly, de-
letion of Pml in mesenchymal stem cells increased survival of
mice transplantedwith leukemic cells under chemotherapeutic
treatment via induction of leukemic cell cycle arrest and
inhibiting leukemic reconstitution ability [13]. Moreover,
Guarnerio and colleagues discovered that several pro-
inflammatory molecules are downregulated post-deletion of
Pml in cultured mesenchymal stem cells. Using blocking an-
tibodies and recombinant proteins in co-cultures of leukemic
cells with mesenchymal stem cells, the authors showed that
chemokine (C-X-C motif) ligand 1 (CXCL1) and interleukin
6 (IL6) production depends on mesenchymal stem cells’ Pml,
and this Pml is important maintenance of leukemic cells by
mesenchymal stem cells. Thus, this study brings novel targets
for leukemia, which is urgently needed in the clinic (Fig. 1).

Here, we discuss the findings from this study and evaluate
recent advances in our understanding of the leukemic micro-
environment in the bone marrow.

Perspectives/future directions

Specificity of the use of Prx-Cre drivers

The use of conventional knockout mousemodels has been prov-
en useful to understand the role of key genes in physiological
and pathological states. Nevertheless, these technologies pro-
duce broad changes in gene function throughout the body since
embryonic stages, affecting several cell populations. Thus, they
are limited in that they do little to contribute with knowledge
about specific roles of a gene in a precise cell type. Since the
molecular functions of proteins may depend on the particular
cell subset in which they are expressed, restricting gene manip-
ulation to unique cells in the bone marrow may be useful to

comprehend protein functions. Thus, conditional gene manipu-
lationmethods offermighty alternatives [14–18]. Themain find-
ings from this study are based on the data obtained from Prx1-
Cre/Pml-floxed mice [13]. It is known that paired-related ho-
meobox 1 (Prx1) gene is expressed in mesenchymal stem cells
[19]. Note, however, that expression of Prx1 is not restricted to
mesenchymal stem cells. For instance, cells from the adipogenic
lineage also may express Prx1 [20]. Additionally, Prx1 is broad-
ly expressed early during limb bud mesoderm development [21,
22]. Consistent with this, Prx1-Cre mice may exhibit Cre
recombinase activity in various cell populations during embryo-
genesis, in addition to mesenchymal stem cells [20]. Therefore,
it is possible that the effect on leukemic cells could be due to a
cell distinct from mesenchymal stem cells, in which Pml was
also deleted in Prx1-Cre/Pml-floxed mice. Because of this, to
avoid Cre recombinase activity in other cell types during devel-
opment, a mouse model in which recombination only occur in
adult Prx1-expressing cells (mesenchymal stem cells) should be
used in future studies, i.e., Prx1-CreER mice [23]. In Prx1-
CreER/Pml-floxedmice, it will be possible to temporally control
Pml expression in mesenchymal stem cells.

According to the International Society for Cellular Therapy
(ISCT), mesenchymal stem cells are defined partially based
on their capacity to form colony-forming fibroblast units
(CFU-F) [24–26]. All CFU-F activity in the bone marrow
was reported to be targeted in Prx1-Cre/TdTomato mice
[27]. Cells targeted in those mice are heterogeneous and reside
within distinct bone marrow niches within the bone marrow
[28]. Interestingly, recent work has shown that deletion of
specific cytokines from mesenchymal stem cells in separate
vascular beds in the bone marrow, arterioles, and sinusoids,
affects differently hematopoietic stem cells in these niches
[11]. It remains unknown whether the arteriolar niche cells
are targeted in Prx1-Cre/Pml-floxed mice. Thus, multiple
questions arise from this study. Guarnerio and colleagues in-
dicate that in Prx1-Cre/Pml-floxed mice, normal hematopoi-
etic stem cells are not affected [13]. If arteriolar cells are not
targeted in Prx1-Cre mice, does deletion of Pml in arteriolar
niche cells influence normal hematopoietic stem cells?
Myh11-CreER driver could be used for this purpose [11].
On the other hand, if arteriolar cells are targeted in Prx1-Cre
mice, future studies will need to explore which cell popula-
tions are important for leukemic cell maintenance via expres-
sion of Pml. Are arteriolar and sinusoid niches participating in
a similar manner?

Effect of Pml deletion on mesenchymal stem cells
differentiation capacity

Bone marrow mesenchymal stem cells are multipotent cells,
being able to differentiate into a variety of other cell types
during development, such as osteoblasts, chondrocytes, and
fat cells [9, 11, 12]. Guarnerio and colleagues described that
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upon Pml deletion, mesenchymal stem cells do not change
their differentiation capacity in vitro after exposure to special
factors [13]. Nevertheless, cell culture system may cause al-
terations in the cultured cells, leading them to behave differ-
ently than the same cells in vivo. These artificial conditions
and high concentration of mitogens can induce differentiation
ability in the cultured cells that may not be shared by the
corresponding endogenous mesenchymal stem cells in vivo
after Pml deletion [29]. Therefore, future studies should
thoroughly explore the differentiation capacity of mesenchy-
mal stem cells in vivo in Prx1-Cre/Pml-floxed mice.
Mesenchymal stem cells expand upon Pml loss in the bone
marrow [13]. As those cells originate osteocytes,
chondrocytes, and adipocytes during development, and if the

differentiation capacity of mesenchymal stem cells is not al-
tered, we expect that the numbers of cells derived from mes-
enchymal stem cells will be increased as well. Therefore, these
other cell types, at a higher number, may also affect the devel-
opment of leukemia seen in Prx1-Cre/Pml-floxed mice. Thus,
future studies should clarify the role of Pml in mesenchymal
stem cell biology in the bone marrow.

Pro-inflammatory role of Pml from mesenchymal
stem cells

Inflammation is a physiological process which happens
in response to tissue stressors, generating several inflam-
matory mediators, including chemokines and cytokines

Fig. 1 Pml role in mesenchymal stem cells in the leukemia
microenvironment. Bone marrow microenvironment is critical for the
maintenance and expansion of leukemic cells. The study of Guarnerio
and colleagues now suggests that mesenchymal stem cells’ control of
leukemic cells in the bone marrow niche is dependent on Pml
expression [13]. Pml expression in mesenchymal stem cells induces the
production of pro-inflammatorymolecules, including CXCL1 and IL6, in

the leukemia microenvironment. Genetic deletion of Pml in bone marrow
mesenchymal stem cells increased survival of mice under chemothera-
peutic treatment after transplantation with leukemic cells. With the ap-
pearance of state-of-art technologies, future studies will reveal in detail
the cellular and molecular mechanisms involved in leukemia progression
in the bone marrow niche

Ann Hematol (2018) 97:1749–1755 1751



[30]. Multiple studies have reported that chronic inflam-
mation elevates the risk for progression of certain types
of cancer, and that the inflamed microenvironment facil-
itates cancer development via modulation of expression
of growth factors and suppression of the immune re-
sponse [31, 32]. Guarnerio and colleagues suggest, based
on ELISA immunoassays, that Pml expression induces
mesenchymal stem cells to produce various pro-
inflammatory molecules [13]. Elegant co-culture systems
between mesenchymal stem cells from Pml knockout
mice and leukemic cells show that CXCL1 and IL6 de-
rived from mesenchymal stem cells are important for the
maintenance of leukemic cells. Nevertheless, CXCL1 and
IL6 have not been conditionally deleted from bone mar-
row mesenchymal stem cells, so there is no direct evi-
dence that mesenchymal stem cells are the only/main
functionally important source of these factors. This may
be addressed by analyzing the effect of genetic ablation
of mesenchymal stem cells from leukemic bone marrow
by using Prx1-Cre/iDTR mice [11]. Also, the generation
of CXCL1-floxed and IL6-floxed mice to be crossed
with mesenchymal stem cell-specific Cre drivers, such
as Prx1-Cre mice [21], will allow to specifically delete
CXCL1 and IL6 from mesenchymal stem cells. In addi-
tion to studies in genetic mouse models, transcriptomic
and single bone marrow mesenchymal stem cell analysis,
such as RNA sequencing upon Pml deletion, represent
fundamental tools that will help to understand the roles
of mesenchymal stem cells within the bone marrow leu-
kemic microenvironment.

Bone marrow heterogeneity

The bone marrow consists of a variety of cell populations
among hematopoietic and non-hematopoietic cells, in-
cluding mesenchymal stem cells, osteoblasts, endothelial
cells, pericytes, smooth muscle cells, fibroblasts, adipo-
cytes, glial cells, macrophages, osteoclasts, megakaryo-
cytes, lymphocytes, and neutrophils [8, 33–57]. Several
of those cellular subtypes within the bone marrow micro-
environment contribute to the complex regulation of he-
matopoietic stem cells function and may contribute to
leukemic cells maintenance as well [58]. It will be inter-
esting to explore in future studies what is the role of Pml
expressed by other cell types, besides mesenchymal stem
cells, in the regulation of normal and leukemic stem cells
function. Moreover, recently, it was revealed that leuke-
mic cells create changes in the bone marrow nerves that
affect the activity of mesenchymal stem cells [59–61].
Since Pml may be expressed in the nervous system [62],
whether Pml expression affects nerves in leukemic set-
tings should be examined in future studies.

Clinical relevance

Leukemias are heterogeneous and are classified based on their
lymphoid or myeloid origins, as well as on their acute or chronic
progress into four common types: chronic myeloid leukemia,
acute myeloid leukemia, chronic lymphocytic leukemia, and
acute lymphocytic leukemia [63]. Guarnerio and colleagues re-
port that not all leukemic models tested are affected by Pml
ablation [13]. Future studies will reveal the molecular mecha-
nisms induced by Pml deletion in mesenchymal stem cells, and
why for some leukemias Pml expression in mesenchymal stem
cells is not essential for their progression.

Arsenic trioxide (As2O3) is a small molecular inhibitor of
Pml, used for acute promyelocytic leukemia therapy, ap-
proved by the Food and Drug Administration (FDA) [64].
The authors suggest that the benefic effects of AS2O3 proba-
bly come from targeting mesenchymal stem cells as well.
Nonetheless, As2O3 has major limitations associated with tox-
ic side effects, such as gastrointestinal reactions, skin damage,
differentiation syndrome, cardiovascular defects, and liver and
kidney dysfunctions [65–68]. Future works should develop
Pml inhibitors that would block Pml function specifically in
mesenchymal stem cells and leukemic cells to avoid side
effects.

The role of mesenchymal stem cells Pml in other
cancers

In addition to leukemia, mesenchymal stem cells have been
shown to play important roles in the growth and progression
of other cancers, such as lymphoma [69], breast cancer [70],
prostate cancer [71], head and neck carcinoma [72], colon can-
cer [73], gastric cancer [74], and glioblastoma [75, 76]. Also,
mesenchymal stem cells may activate the motility and invasive-
ness of cancer cells, inducing metastatic potential in those cells
[77]. It remains completely unknown what is the role of Pml in
mesenchymal stem cells in the primary as well as secondary
sites of other tumors outside the bone marrow. Future studies
will address this question, exploring the potential of using Pml
inhibitors, utilized in leukemia clinics, for other cancers.

Conclusion

In conclusion, the study by Guarnerio and colleagues reveal that
mesenchymal stem cells via Pml expression maintain leukemic
cells within the bone marrow [13]. Yet, our understanding of
cross-talk between different constituents of the bone marrow
leukemic niche still remains limited, and the complexity of these
interactions during leukemia progression should be elucidated in
future studies. A big challenge that we face is how to translate
animal research into humans. Improving the availability of hu-
man tissue samples may help to reach this goal.
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