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Abstract Recently, there has been remarkable progress in ba-
sic and preclinical studies of acute myeloid leukemia (AML).
The improved outcomes of AML can largely be attributed to
advances in supportive care and hematopoietic cell transplan-
tation as opposed to conventional chemotherapy. However, as
the 5-year survival rate remains low due to a high incidence of
relapse, novel and effective treatments are urgently needed.
Increasing attention is focusing on identifying suitable immu-
notherapeutic strategies for AML. Here, we describe the immu-
nological features, mechanisms of immune escape, and recent
progress in immunotherapy for AML. Problems encountered in
the clinic will also be discussed. Although current outcomes
may be limited, ongoing preclinical or clinical efforts are aimed
at improving immunotherapy modalities and designing novel
therapies, such as vaccines, monoclonal antibody therapy, chi-
meric antibody receptor-engineered T cells (CAR-T),
TCR-engineered T cells (TCR-T), and checkpoint inhibitors,
which may provide promising and effective therapies with
higher specificity and efficacy for AML.
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Background

Acute myeloid leukemia (AML) is a malignant hyperpla-
sia disease characterized by the ability of blasts to self-
renew, continuously proliferate, and escape apoptosis, ul-
timately resulting in the inhibition of normal hematopoi-
esis. As blasts originate from leukemia stem cells, which
exhibit diversity in expression, immunophenotype, and
differentiation, AML is also a heterogeneous disease [1].
Furthermore, the major therapies for AML are chemother-
apeutic approaches, yet only approximately one third of
elderly patients are eligible for intensive chemotherapeu-
tic treatments [2]. Due to the limitations of current thera-
pies, effective and individualized treatments are urgently
needed for patients with AML.

Forty years ago, the conventional chemotherapy regi-
men consisted of 7 days of cytarabine and 3 days of dau-
norubicin (B7 + 3^) [3]. However, no regimen can effec-
tively protect against AML relapse and achieve sustained
remission for patients. Given that AML typically arises
from genetic defects and causes damage to the immune
system, strategies to improve immune function have been
extrapolated to the anti-leukemia field. Hematopoietic
stem cell transplantation (HSCT) has demonstrated that
donor T cells and natural killer (NK) cells are able to
suppress and eliminate blasts [4], providing a theoretical
foundation for cellular immunotherapy in AML. Here, we
review the association of the immune system with AML
and the progress of immunotherapy. Furthermore, active
and passive immunity, results from recent trials, and de-
veloping immunotherapeutic strategies will also be ex-
plained in this review.
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Association of the immune system with AML

Features of the immune system in AML

Interactions between immunotherapy and AML are today
clearer than ever. However, the most dramatic data regard-
ing AML cell susceptibility to immune attack derive from
efforts at allogeneic hematopoietic stem cell transplanta-
tion (allo-HSCT) [4]. The benefits of HSCT in AML are
that it represents an available treatment that improves
overall survival and that it shows an immunotherapeutic
approach that depends on the graft-versus-leukemia effect
to eradicate leukemia cells [4].

The susceptibility of AML to immune attack is indicat-
ed by its immunological characteristics, making the dis-
ease an appropriate candidate for immunotherapy. In this
regard, AML cells express both major histocompatibility
complex (MHC) classes I and II, and they are therefore
susceptible to T cell recognition and attack [5]. In addi-
tion, expression of co-stimulatory molecules CD80,
CD86, and CD40 on AML blast cells is required for T
cell stimulation [6], further indicating their susceptibility
to T cells. Although there are many obvious characteris-
tics of AML antigens, identifying an ideal target for AML
remains challenging due to the clonal and genetic diver-
sity of leukemia.

The mechanism of immune escape in AML

There is little doubt that therapeutic resistance and disease
recurrence still occur in a considerable number of patients
with AML, which may be partially explained by the es-
cape of leukemic blasts from immune control. In Fig. 1,
we illustrate the mechanisms of immune escape in
AML. First, as shown in Fig. 1a, blockade of the
immunosurveillance function of NK cells is caused by
genetic features found in AML. The targeting of AML
cells by NK cells depends on the balance between inhib-
itory and activating receptors and their ligands; AML
blas t s more s t rong ly express inh ib i to ry k i l l e r
immunoglobulin-like receptor (KIR) ligands, suggesting
a predisposition for AML to escape immune responses
by reducing the cytotoxic potential of NK cells [7].
Natural killer group 2 member D (NKG2D) was initially
discovered as an activating receptor expressed on NK
cells, T cells, or NKT cells, which can promote tumor
immune surveillance; however, based on further research,
it is clear that tumor cells themselves, including AML
blasts, also express NKG2D to activate oncogenic path-
ways by reducing NK cell-mediated immunosurveillance,
leading to tumor cell growth [8, 9]. In addition, AML
cells can shed ligands for NKG2D, which contributes to
their escape from immune recognition [10]. Furthermore,

studies have demonstrated that AML patients display
surface-expressed and soluble glucocorticoid-induced tu-
mor necrosis factor-related protein ligand (GITRL), which
impairs NK cell effector functions and IFN-gamma pro-
duction by inducing the release of tumor necrosis factor or
interleukin-10 [11]. Regarding the mechanism, Salih et al.
discovered that an Fc-engineered GITR-Fc-ADCC fusion
protein can neutralize the inhibitory effects of GITR-
GITRL on NK cells and target GITRL-expressing malig-
nant cells [12]. Second, as shown in Fig. 1b, co-
stimulatory molecules play an important role in the acti-
vation of T cells. Expression of negative co-stimulatory
molecules, such as programmed cell death protein (PD-1)
and its two ligands, PD-L1 and PD-L2, as well as cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4), is ab-
errantly upregulated in AML, which is involved in the
incidence of relapse and the short survival of AML pa-
tients [13]. In addition, downregulation of positive co-
stimulatory molecules for CD4+ and, in particular, CD8+

T cells has been shown to have a significant role in tumor
cell escape from immune surveillance by limiting T cell
activation [14, 15]. Third, one outstanding issue is the
self-inhibitory activity of T cells in AML, which can be
used to evade immune surveillance. Rifca et al. demon-
strated that although T cells efficiently conjugated with
blasts, a marked decrease in T cell immunologic synapse
formation and recruitment of phosphotyrosine signaling
molecules as well as altered actin cytoskeletal reorganiza-
tion leads to T cell dysfunction in AML, which may have
contributed to the failure of anti-leukemic immune re-
sponses [16, 17]. Also, Buggins et al. showed that the
tumor cell supernatant (TSN) of AML cells blocked T cell
mitogenesis and T helper cell 1 (Th1) cytokine production
and prevented activated T cells from entering the cell cy-
cle [18]. Moreover, severe T cell immunodeficiency in
AML patients is associated with reduced levels of thymic
emigrants and thymus atrophy [19, 20]. Finally, it is be-
coming evident that the bone marrow microenvironment
protects and supports AML cells through an immunosup-
pressive milieu. The vascular niche regulates AML cell
survival, cell cycling, and even resistance to cytotoxic
chemotherapy via both paracrine secretion and adhesive
contact with endothelial cells [21]. This hostile milieu
consists of certain soluble factors secreted by AML cells,
such as expressed signal transducer and activator of tran-
scription 3, indoleamine 2,3-dioxygenase (IDO), and ni-
tric oxide synthase (NOS), which impair the function of T
and NK cells [22]. In this immune scenario, clinical im-
munotherapeutic trials have explored various cytokines,
vaccines, and treatments to boost T cell immunity and
increase the susceptibility of target cells as well as strate-
gies to direct ly at tack AML cel ls or overcome
immune escape.
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The evolution of immunotherapy for AML

The necessity of immunotherapy for AML

Despite advances in AML therapy in recent decades, survival
has not improved substantially due to a high incidence of
leukemic relapse, suggesting that new therapeutic approaches
are needed [23]. In addition to chemotherapy and the emerg-
ing field of targeted therapy, immunotherapy for AML is an
important and appealing area of research. The strong intrinsic
interactions of myeloid cells with the immune system direct
immunotherapeutic exploration with the purpose of targeting
leukemic blasts. Besides, achievements in AML immunother-
apy have suggested the possibility of improved outcomes.
Induction chemotherapy for AML aims to achieve complete
remission (CR), yet immunotherapy has generally been
thought of as a means of sustaining remission and avoiding
relapse. Although immunotherapy for AML is in its infancy, it
is proceeding in multiple directions at an accelerating rate.

Active immunotherapy for AML

Active tumor immunotherapy consists of a tumor antigen that
stimulates the immune system to produce a specific anti-tumor
response, which requires identification and characterization of
appropriate antigen structures. Along with the apparent out-
comes of cancer vaccines for solid tumors, researchers have
extrapolated the utility of cancer vaccines to hematologic ma-
lignancies in view of their immunological and clinical fea-
tures. Currently, four types of vaccines are used in AML treat-
ment as shown in Fig. 2c: autologous whole AML cells, pep-
tide vaccines, dendritic cell (DC)-based vaccines, and DNA
vaccines.

Autologous whole AML cells

A tumor cell vaccine is a vaccine that utilizes modified autol-
ogous whole tumor cells, which stimulate the body to produce
anti-tumor responses. Given the presence of multiple known

Fig. 1 Mechanisms of immune escape in AML. a NK cells play an
important role in the immune system, targeting and killing leukemia
cells, and are regulated by the balance between inhibitory and activating
signals. In AML, overexpressed inhibitory receptor KIR ligands can
reduce the cytotoxicity of NK cells. Expression of NKG2D and GITRL
on AML cells and shedding of NKG2D ligands from AML cells can also
impair NK cell function. b Co-stimulatory molecules play an important
role in the activation of T cells. Aberrantly upregulated negative co-
stimulatory molecules such as PD-1/PD-L1 and CTLA-4 and

downregulation of positive co-stimulatory molecules for T cell
activation are involved in the incidence of relapse and the shorter
survival of AML patients. c The reduced activity of T cells in AML can
be used to evade immune surveillance through a decrease in T cell
immunologic synapse formation, blocked mitogenesis, and thymic
dysfunction. d The bone marrow microenvironment protects and
supports AML cells through an immunosuppressive milieu generated
by vascular niche and soluble factors secreted by AML cells
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and unknown antigens on the surface of AML blasts, autolo-
gous whole AML cells appear to be useful for stimulating
AML-specific immune responses that are directed against
multiple antigens, providing a customized treatment vaccine
for each individual. This approach can decrease the risk of the
generation of tumor escape variants. In one of the pioneer
vaccination trials using autologous whole AML cells, re-
searchers analyzed the capacity of lymphocytes collected from
patients pre and post vaccination to react to their own leuke-
mia cells in vitro, revealing upregulation of the activity of

peripheral blood effector cells against autologous leukemic
cells after vaccination with whole AML cells [24]. However,
several studies have noted the issues and disadvantages of
vaccines, including adverse autoimmune events. Although re-
searchers and clinicians have sought methods to improve the
effects of cell vaccines, such as transferring cytokine or co-
stimulatory into AML cells [25], mixing cells with
interleukin-2 (IL-2), granulocyte-macrophage colony-stimu-
lating factor (GM-CSF) and IL-6 [26], and transfecting
AML c e l l s w i t h To l l - l i k e r e c e p t o r 3 l i g a n d

Fig. 2 Immunotherapeutic approaches to AML. a Adoptive
immunotherapy is a novel therapy that uses autologous or allogeneic
immune molecules or cells with anti-tumor activity, such as LAK, TILs,
CTLs, NK, CIK, and CAPRI, for infusion into patients to treat
hematological malignancies, with many novel methods to improve
efficacy. b Antigen-specific MoAb immunotherapy is regarded as a
means to improve the outcomes of patients with AML. CD33 and
CD123 are typical targets in MoAb therapy, and to improve anti-tumor
activity, studies of antibody-based immunotherapies such as bispecific
antibodies and radioimmunotherapy are ongoing. c In view of their
immunological and clinical features, researchers have extrapolated the
utility of cancer vaccines to hematologic malignancies. There are
currently four types of vaccines that have been used in AML treatment:
autologous whole AML cells, peptide vaccines, dendritic cell (DC)-based

vaccines, and DNA vaccines. d CAR-T and TCR-T technologies both
employ genetic engineering to improve the ability of T cell receptors to
recognize and attack specific cancer cell antigens. Ongoing trials with
novel designs, as well as previous results, show enhanced efficacy of
CAR-T and TCR-T cell-based therapy in AML. e Regulatory signals of
immune checkpoints are essential to maintain immune homeostasis and
self-tolerance and prevent autoimmunity. However, negative immune
regulatory factors have been implicated in immune escape mechanisms
of cancer cells. The two common immune checkpoints are CTLA-4 and
PD-1, and clinical studies have focused on targeting these checkpoints or
the ligands PD-L1/PD-L2 to block immune checkpoints. Aiming to
identify efficacy for extensive use in the clinic, there are many ongoing
clinical trials about PD-1/PD-L1 and CTLA-4 inhibition in patients with
AML
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polyinosinic:polycytidylic acid (poly(I:C)) [27], no explicit
data have demonstrated the clinical effects of these approaches
or the potency of whole AML cells, both of which require
further evaluation in larger cohorts.

Peptide vaccines

A peptide vaccine is prepared via exogenous chemical synthe-
sis technology based on the amino acid sequence of known or
predicted epitopes of leukemia-associated antigens (LAAs) to
induce a T cell response. Peptide vaccines developed from
LAAs, such as Wilms’ tumor 1 (WT1) antigen, proteinase-3
(PR-3) peptide, preferentially expressed antigen of melanoma
(PRAME), and receptor for hyaluronic acid-mediated motility
(RHAMM), have been explored and/or are under clinical in-
vestigation for the treatment of AML [28].

WT1 gene is overexpressed in > 90% of patients with
AML and associated with adverse prognosis risk[29]. So
WT1 is a promising and attractive target for immunotherapy.
Several studies have already suggested that WT1 peptide vac-
cination may be effective in inducing a functional immune
response associated with clinical improvement [30]. And
WT1 peptide vaccine can control the minimal residual disease
(MRD) to prevent recurrence in AML patients [31].

Proteinase-1 (PR1) is a 9-amino acid HLA-A*0201 (HLA-
A2)-restricted peptide derived from PR3 that evokes myeloid
leukemia-specific cytotoxic T lymphocyte (CTL) responses
that selectively kill leukemic CD34+ cells in vitro, which sug-
gests that CTLs specific for PR1 (PR1-CTL) can be used for
AML patients [32]. Molldrem et al. have shown that adoptive
transfer of PR1-CTL can reduce AML cells in NOD/SCID
mice, and these authors developed a T cell receptor (TCR)-
like anti-PR1/HLA-A2 antibody, 8F4, that can mediate lysis
of AML cells in vitro [33, 34]. Based on preclinical results,
TCR-like CAR with specificity for the PR1/HLA-A2 epitope
has been transduced into adult human peripheral blood or
umbilical cord blood T cells to produce h8F4-CAR-T cells,
which can rapidly and efficiently kill AML in vitro. This may
be a feasible and effective therapy for AML patients in the
future [35]. In a phase I/II trial comprising 66 HLA-A2+ pa-
tients, including 42 AML patients receiving PR1 peptide vac-
cinations, 12 (24%) of 53 evaluable patients with active dis-
ease exhibited objective clinical responses [36].

The PRAME gene, which has been the focus of much
attention in recent years, is highly expressed in acute leuke-
mia; this gene is an ideal target antigen for AML immunother-
apy and a useful marker for detecting minimal residual disease
(MRD) in patients with leukemia [37]. For example, Concetta
et al. developed a high-avidity CTL specific for the PRAME-
derived peptide, generated from normal donors and from sub-
jects with PRAME+ disease by using professional and artifi-
cial antigen-presenting cells (APCs) loaded with a PRAME
peptide library, which can target leukemic blasts and leukemic

progenitor cells without affecting normal hematopoietic pre-
cursors [38]. Based on these results, the PRAME-specific
CTL can be further studied in preclinical and clinical trials
with regard to the efficacy in AML patients and clinical
outcomes.

RHAMM is an immunogenic antigen that plays a funda-
mental role in cell growth, differentiation, and motility [39]; it
is overexpressed in AML, providing a theoretical foundation
for the development of RHAMM vaccines for AML [40]. In a
phase I clinical trial, 10 patients received a RHAMM-R3 pep-
tide vaccine, a highly immunogenic CD8+ T cell epitope pep-
tide derived from RHAMM, and three of six patients with
myeloid disorders (1/3 AML, 2/3 myelodysplastic syndrome
(MDS)) achieved a clinical response [41]. In addition, Stefani
et al. explored TCR-transgenic lymphocytes specific for the
impact of RHAMM on HMMR+ solid tumors and AML
cells in vivo, reporting attack of residual leukemia and
HLA-A2+ hematopoietic stem cells after HLA-A2-
mismatched stem cell transplantation (SCT) [42]. Moreover,
the above antigens are well suited for AML immunotherapy
due to their expression in AML. These antigens may also
represent suitable simultaneous targets of a polyvalent vac-
cine, such as WT1-PR1 [43], which may be an important
focus of upcoming studies.

Dendritic cell (DC)-based vaccines

DCs are professional antigen-presenting cells (APCs) and
known as the Bsentinels^ of the immune system because of
their ability to provide all the signals required for antigen-
specific T cell activation to induce efficient anti-microbial or
anti-tumor responses [44]. Accordingly, DC-based vaccines
have received significant interest over the past decade and
have occupied a foremost position in this research area.
Broadly, DC-based vaccines can be divided into two catego-
ries. The first is DC vaccines, which are prepared in vitro
using tumor antigens to stimulate DCs that can recognize
and engulf antigens. Reinfusion of these DCs can then induce
anti-tumor immunity. An advantage of this vaccine is that it is
easy to prepare; a shortcoming is its lack of specificity, which
may induce autoimmune diseases [45]. The second category is
transfected DC-based vaccines. Within the context of the co-
stimulatory machinery delivered to DCs, a variety of strategies
for loading tumor antigens onto DCs have been evaluated in
clinical studies, including individual peptides, proteins, DNA/
RNA-encoding tumor-associated antigens, apoptotic bodies
derived from tumor cells, or whole tumor cell antigens [46,
47]. For instance, a WT1-targeted DC cell vaccine has been
explored, asWT1 is a known immunotherapeutic target due to
its role in leukemogenesis and relapse prediction, as men-
tioned above. Zwi N Berneman and colleagues conducted a
phase I/II trial of the DC-WT1 vaccine in 10 AML patients
who achieved complete remission (CR) or partial remission
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(PR) after chemotherapy with a high risk of relapse. Two
patients in the PR group were able to reach CR, and these
two patients as well as three other patients in the CR group
had been induced into molecular remission after DC-WT1
vaccination [48]. Subsequently, the clinical outcomes of DC-
WT1 vaccination in 66 cancer patients, including 30 AML
patients, were reported: 8 of 23 patients with AML had in-
creased WT1 transcript levels, an assessment of residual dis-
ease, and achieved a clinical and molecular response, and 8 of
30 AML patients had not relapsed by the time of publication
[49]. Vaccines such as DC-WT1 have strong immunogenicity
and high specificity, though the preparation methods have not
yet been optimized and require further study. Although the
technique has resulted in new treatments for patients, further
studies are needed to address several issues such as improving
DC vaccine design, including controlling DC maturation, and
optimizing the route of vaccination and the dose and schedule
of application, and to suppress the negative immune regulato-
ry mechanisms that hamper the development of effective
vaccine-induced immunity.

DNA vaccines and genetic adjuvants for vaccines

DNAvaccines are bacterial plasmids constructed to express an
encoded protein following in vivo administration and subse-
quent cell transcription and translation after uptake. Such pro-
tein antigens can stimulate immune responses. Some studies
have shown that DNA vaccination with a PML-RARA
cDNA can induce protective immunity against acute
promyelocytic leukemia (APL) in mouse models [50], suggest-
ing that therapeutic DNAvaccines may be suitable for treating
this disease when relevant tumor-specific antigens are identi-
fied. However, most ongoing clinical trials have reported un-
impressive immune responses to the majority of clinically test-
ed DNAvaccines, emphasizing many different effects between
animal models and patients [51, 52]. Further optimization using
adjuvant delivery systems or prime-boost-based schedules may
boost the efficiency of DNA vaccines. Genetic adjuvants are
typically cytokine genes, such as granulocyte-macrophage col-
ony-stimulating factor (GM-CSF), IL-2, IL-7, IL-12, CpG-
ODN, and ubiquitin, that provide general immune stimulation
and increase the immunogenicity of vaccines [53]. Many ef-
forts have been made to develop genetic adjuvants that increase
the immunogenicity of vaccines and activate the immune sys-
tem, but there are limited data concerning the clinical efficacy
of vaccine-based approaches in AML.

The above-described vaccines have recently been reported
as potentially promising methods to prolong disease-free sur-
vival in patients with AML after induction therapy. However,
successfully combining various vaccines with induction che-
motherapy and determining the optimal timing and schedule
of these therapies during the course of AML represent major
challenges in the use of vaccines.

Passive immunotherapy for AML

Passive immunization is an approach by which the body ob-
tains specific immunity via passive acceptance of antibodies
or sensitized lymphocytes. It is distinct from active immuni-
zation and is characterized by a rapid effect without the incu-
bation period; once the antibodies or sensitized lymphocytes
enter the body, the host will immediately obtain immunity.
Thus far, several passive strategies have been studied, includ-
ing monoclonal antibody (MoAb) therapies, adoptive immu-
notherapies, chimeric antibody receptor-engineered T cells
(CAR-T) and TCR-engineered T cells (TCR-T), and check-
point inhibitors.

Monoclonal antibody therapy

Hematopoietic cells express surface antigens that are critical
for normal immune responses and immunotherapies. In 1975,
Kohler and Milstein developed a technique for producing
antigen-specific MoAbs that represents a cornerstone for the
feasibility of MoAbs to treat tumors [54]. Overall, antigen-
specific MoAb immunotherapy is regarded as a means to im-
prove the outcomes of patients with AML as shown in Fig. 2b.

Anti-CD33 antibodies

CD33 is a myeloid differentiation antigen displayed on AML
blasts in most patients, and this antigen is a target for
antibody-based therapies [55]. The unconjugated antibody
lintuzumab (SGN-33, HuM195), a humanized immunoglob-
ulin IgG1 with a high affinity for CD33, has been extensively
tested in humans. Unfortunately, the response in clinical trials
was not promising [56, 57]. To increase the potency of the
antibody without invoking non-specific cytotoxicity, the α-
particle-emitting radionuclide bismuth-213 has been conju-
gated to lintuzumab, which can induce remission in some
patients with AML [58]. Conjugated antibodies are a long-
pursued strategy to improve the efficacy of MoAbs and are
created by linking antibodies to an effector molecule, such as a
small molecule drug, a radionuclide, or a toxic protein from a
plant or bacterium, in an effort to combine the specificity and
selectivity of the antibody with the anti-tumor activity of the
effector molecule. In clinical trials, the CD33 antibody-drug
conjugate gemtuzumab ozogamicin (GO), which employs a
calicheamicin derivative to induce DNA strand breaks, apo-
ptosis, and cell death [59], provided the most prominent ben-
efit for AML patients [60]. Despite these positive results, GO
was withdrawn from most commercial markets in 2010 be-
cause it showed no benefit and increased toxicity in a phase III
trial [61]. However, some researchers thought that this regu-
lation was to some extent premature [62], thus supporting
further investigations of GO in combination with other
methods in a larger patient population [63]. Additionally,
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CD33-based immunotoxins have sparked strong interest due
to favorable outcomes in different cohorts of patients treated
with GO. Advancements in the technology of conjugation and
linkers to the cytotoxic drug have resulted in the production of
SGN-CD33A, a humanized CD33 antibody with engineered
cysteines conjugated to synthetic DNA cross-linking a
pyrrolobenzodiazepine dimer via a protease cleavable linker.
According to preclinical tests in AML models, the anti-
leukemic activity of SGN-CD33A was more potent than that
of GO [64]. An interim analysis of an ongoing phase I trial of
SGN-CD33A in patients with CD33-positive AML who ei-
ther had relapsed/refractory AML or had declined intensive
therapy demonstrated that 8 of 17 patients (47%) treated at
40 mcg/kg experienced clearance of marrow blasts, with 5
(29%) achieving either CR or complete remission with incom-
plete marrow recovery (Cri) [65]. IMGN779 is another CD33-
targeting antibody-drug conjugate comprising a humanized
anti-CD33 antibody conjugated to DGN462, a novel DNA-
alkylating agent, via a cleavable disulfide linker [66]. It
showed potent in vitro activity against primary patient AML
cells isolated from peripheral blood or bone marrow samples
and contributed to enhanced anti-leukemia potency in a pre-
clinical AML model when combined with the poly(ADP-ri-
bose) polymerase (PARP) inhibitor olaparib [67]. In addition,
HUM-195/rGel is an immunotoxin created by conjugating
rGel with HUM-195 via an N-succinimidyl-3-(2-pyridyl-
dithio)-propionate linkage; in a phase I study, 4 of 22
evaluable patients with relapsed or refractory myeloid malig-
nancies received HUM-195/rGel which had > 50% reductions
of peripheral blood blasts, but no complete or partial remission
was achieved, which suggested that HUM-195/rGel may play
a potential role in anti-CD33 antibodies but needed further
researches [68].

Anti-CD123

CD123 is another important AML-associated antigen predom-
inantly expressed on myeloid cells and on a subpopulation of
B-lymphocytes [69]. Elevated expression of CD123 in AML
is involved in higher blast counts at diagnosis and a lower CR
rate with a poorer prognosis, which contributes to CD123
being a target for antibody-derived therapies [70]. The first
anti-CD123 antibody, CSL360, was a recombinant, chimeric
immunoglobulin G1 against CD123 that prevented IL-3 bind-
ing to its receptor in vitro; however, it did not exhibit efficacy
against relapsed, refractory, or high-risk AML in a clinical
study, with only one CR achieved among 26 patients [71].
Another anti-CD123 antibody, CSL362, was a fully human-
ized anti-CD123 monoclonal antibody engineered with great-
er antibody-dependent cell-mediated cytotoxicity due to its
high affinity for NK cell CD16. In a phase I study of
CSL362 involving 25 patients with CD123+ AML in CR but
at high risk for early relapse, the antibody showed potent

efficacy against AML and maintained CR: among 20 patients
evaluable for a response, 10 maintained CR with a median
duration of 34+ weeks from the start of CR, and CR was still
present at the last follow-up. Of six evaluable patients with
MRD positivity at baseline, three converted to negative [72].
Following encouraging results in a phase I trial of AML and
MDS patients and in the latest preclinical studies of AML cells
or an AML patient-derived xenograft model, the anti-CD123
antibody SL-401, a recombinant fusion protein consisting of
truncated diphtheria toxin and a human IL-3 ligand, is current-
ly in a phase II clinical study of consolidation therapy for
high-risk AML patients in first CR [73].

Radioimmunotherapy

Another method is radioimmunotherapy, in which MoAbs are
conjugated with radioisotopes, including beta-emitters (131io-
dine, 90yttrium) and alpha-emitters (213bismuth, 225actinium),
to deliver radiation directly to malignant cells. These radioiso-
topes can be used to enhance the anti-tumor effect of MoAbs,
such as the abovementioned bismuth-213-lintuzumab. In ad-
dition, β-particles, such as 131I [74] and 90Y [75], have been
conjugated with anti-CD33 MoAbs; 131I has also been com-
bined with anti-CD45 antibodies [76], both of which have
been studied in patients with AML. Early studies about 131I-
labeled anti-CD33 or anti-CD45 as a part of the preparative
regimen showed feasibility and tolerable toxicity for HSCT in
patients with refractory or high-risk AML, but efficacy needs
to be proven in phase II studies [77, 78]. To enhance efficacy
and reduce toxicity, some studies have evaluated the high
energy emitted by radionuclides or short-range alpha particles,
such as 213Bi and 225Ac. In a phase I trial, CR was not
achieved, but patients with relapsed or refractory AML who
received 213Bi-lintuzumab showed decreases in leukemic
blasts in circulation or in bone marrow [58, 79].
Furthermore, in a clinical study, 79% of 14 evaluated patients
displayed bone marrow reduction among older patients with
untreated AML-administered 225Ac-labeled anti-CD33 and
low-dose cytarabine, and 28% CR was observed among the
18 patients [80]. Given the myeloablative potential of 211At,
211At-anti-CD45may serve as a beneficial adjunct to HSCT in
the treatment of AML and may provide the possibility of new
treatments for these patients [81].

Bispecific antibodies

An emerging immunotherapy in AML involves monoclonal
antibodies designed to improve anti-tumor activity through T
cell engagement. The designed antibodies have been called
bispecific, with dual affinities for a tumor cell antigen and an
antigen on an immune effector cell, and consist of the minimal
binding domains of the two different antibodies on one (e.g.,
bispecific Tcell-engager (BiTE) antibodies) or two (e.g., dual-
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affinity retargeting (DART) antibodies) polypeptide chains.
The first-in-class BiTE antibody, anti-CD19/CD3
blinatumomab, showed exciting clinical efficacy in the treat-
ment of relapsed or refractory B cell acute lymphoblastic leu-
kemia (B-ALL) [82]. Based on antigen expression in AML,
attention has primarily been paid to CD3-directed agents
targeting CD33 or CD123. AMG 330 is a novel CD33/CD3
BiTE antibody designed to activate T cells against CD33-
expressing human AML cells [83]. In an in vitro study,
AMG 330 contributed to potent cytolysis depending on the
level of cell-surface CD33 expression against human AML
cells [84]. The DARTantibody is a class of bispecific antibod-
ies that consists of heavy- and light-chain variable domains of
two antigen-binding specificities linked to two independent
polypeptide chains [85]. CD3/CD123 DART(also referred to
as MGD006) can result in dose-dependent killing of AML
cells and primary AML blasts in vitro and in vivo, providing
a theoretical basis for further study [86]. As a consequence,
bispecific antibodies warrant further study for treatment of
AML patients in high medical need for effective therapies.
In addition, ongoing preclinical and clinical efforts are paying
increasing attention to improving existing immunotherapy
methods and exploring novel therapeutics.

Adoptive immunotherapy

Adoptive immunotherapy is a novel method in which autolo-
gous or allogeneic immune molecules or cells with anti-tumor
activity are directly infused into patients, which is anticipated to
be a promising approach for treating hematological malignan-
cies. There are several types of adoptive immunotherapies as
shown in Fig. 2a, including lymphokine-activated killer (LAK)
cells, tumor-infiltrating lymphocytes (TILs), CTLs, NK cells,
cytokine-induced killer (CIK) cells, CAPRI cells, and CARs.

LAK cells, TILs, and CTLs

The earliest adoptive immunotherapy was performed in the
1980s with LAK cells in the presence of high levels of IL-2
to kill tumor cells [87, 88]. LAK cells are leukocytes produced
by culturing autologous peripheral blood mononuclear cells
with IL-2. Additionally, LAK cell infiltrates completely dis-
appear in murine models after stopping IL-2 administration
[89]. However, high-dose IL-2 toxicity can cause side effects,
such as hypotension, weight gain, oliguria, elevation of bili-
rubin and creatinine levels, and even treatment-related death;
these effects and the intrinsic low anti-tumor effects of LAK
cells have limited the use of LAK cell therapy [88, 90]. Newer
LAK cell-based therapies require time and replicative experi-
ments before they can be used safely and substantially in the
treatment of patients with cancer. Furthermore, it is reported
that TILs composed of different lymphocyte subtypes have
more apparent lethality and specificity for tumor cells than

LAK cells. Regardless, the disadvantages of TILs, including
the complicated culture process, difficulty in obtaining these
cells, and their incomplete removal of tumor cells have limited
their application in the clinic [91]. However, there are almost
no reports on the use of TILs for hematological tumors due to
the difficulty in obtaining these cells. Interestingly, a recent
study reported the identification of marrow-infiltrating lym-
phocytes obtained from the marrowmicroenvironment in my-
eloma that likely play the same role as TILs [92]. These cells
have been applied with positive outcomes in the treatment of
multiple myeloma patients [93], suggesting that TIL adoptive
immunotherapy may be extended to hematological malignan-
cies if the correct TILs are found. To overcome the limitations
of LAK cells or TILs, researchers have focused on combining
lymphocytes and targeted antigens in vitro to generate power-
ful CTLs. As previously stated, myeloid leukemia cells ex-
press LAAs, such as WT1 antigen, PR3 peptide, PRAME,
and RHAMM. In view of this, CTLs can be produced and
utilized to treat patients with AML. In addition, many studies
have reported that CTL therapy can increase relapse-free sur-
vival for AML patients, especially following allogeneic SCT
[94, 95]. As myeloid leukemia cells express many types of
LAAs, a single LAA cannot achieve the desired results. Thus,
CTLs that are stimulated by multi-tumor antigens have caught
the attention of researchers as candidates for adoptive immu-
notherapy for AML transplant patients [96].

NK, CIK, and CAPRI cells

As previously described, one of the mechanisms of immune
escape in AML is the reduction in the cytotoxic potential of NK
cells due to stronger inhibitory KIR ligands expressed on AML
blasts. NK cells account for 10–15% of the peripheral blood
lymphocytes originating from CD34 hematopoietic progenitor
cells, which indicates their important role in the immune sys-
tem; these cells can target and kill leukemia cells without T cell
assistance or prior sensitization via recognizing Bloss of self^
HLAs invoked by malignant transformation [97]. NK cells
have an anti-leukemic effect, preventing relapse, reducing
graft-versus-host disease (GVHD), and eradicating leukemia
cells during haploidentical HSCT [98, 99]. The efficacy of
NK cells in anti-leukemia is determined by the balance of in-
hibitory and activating signals. The anti-tumor effect of NK
cells in AML is decreased due to overexpression of inhibitory
receptors, downregulation of activating receptors, and produc-
tion of immunosuppressive soluble ligands by leukemic blasts
[100, 101]. Therefore, many studies have focused on autoge-
nous or allogeneic NK cell adoptive immunotherapy using am-
plification in vitro to obtain many high-purity NK cells and
then transfuse them into patients. In 2004, Koehl et al. demon-
strated the safety and feasibility of IL-2-stimulated NK cell
immunotherapy in patients with persistent leukemia blasts
[102]. And a prospective phase II study primarily aimed at
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evaluating the effectiveness of immunotherapy with NK cells
was performed in 16 patients (8 with AML), but the results
were not as expected. The study demonstrated that NK cells
are safe and that their effects may depend on the optimal dose
and timing of this therapy, which will require additional work
[103]. Moreover, researchers have used NK cells with external
factors, such as a chimeric receptor with NKG2D, or co-culture
with K562-mb15-41BBL cells to increase responses [104,
105]. Recently, CARs have been demonstrated to induce more
powerful cytotoxicity and redirect NK cell specificity toward
tumor cells. Regardless, some questions remain that require
further study [106].

CIK cells are lymphocytes that are activated by the sequen-
tial addition of cytokines in vitro under well-defined culture
conditions; these cells are thought to be better candidates for
adoptive immunotherapy than LAK cells due to their higher
cytotoxicity and proliferative ability [91]. CIK cell cultures
mostly consist of three lymphocyte subsets at maturity:
CD3−CD56+, CD3+CD56−, and CD3+CD56+. Among these,
the CD3+CD56+ subset exhibits a more efficient ability to kill
AML targets [107]. Therefore, CIK cells are CD3+CD56+

double-positive T cells that exert cytotoxicity toward diverse
tumor cells, especially hematological malignancies, which is
attributable to both NK cell-like and T cell-like activities
[108]. The cytotoxicity of CIK cells is non-MHC-restricted
and mainly depends on interaction between NKG2D mole-
cules on CIK cells and MHC class I-related chain (MIC)
A/B and UL-16-binding protein 1–4 overexpression on tumor
cells [109]. Preclinical mouse model studies and clinical trials
have reported that CIK cells can target leukemic cells with low
odds of inducing GVHD and do not affect normal cells [110,
111]. In addition, a case reported that a female patient with
relapsedAML-M5a after allogeneic peripheral blood stem cell
transplantation was infused with CIK cells expanded from
recipient peripheral mononuclear cells with full donor chime-
rism and achieved complete cytogenetic remission [112]. This
approach may resolve the problem of donor unavailability, but
larger clinical studies are still needed to determine whether
this can be a reliable and alternative origin of CIK cells. In
addition, the expanded scope of many preclinical studies on
CIK cells is to improve the efficacy and specificity of treat-
ment through methods such as co-culture of CIK cells with
DC cells [113, 114], enhancing the cytotoxicity of CIK cells
by bispecific antibodies to tumor targets [115], co-expansion
of CIK cells and gamma delta (γδ) Tcells for adoptive cellular
immunotherapy applications, such as CAR-T cell therapy
[116], or blockade of inhibitory receptors on CIK cells by
immune checkpoint inhibitors [117]. Such research results
using CIK cells may be translated into clinical therapeutics
for the maximum benefit of AML patients.

To enhance immune responses and avoid side effects,
CAPRI cells use mature patient monocytes with stored ex-
pression of cancer information in vitro to activate T

lymphocytes into cytotoxic effectors to destroy cancer cells.
Unlike non-MHC-restricted CIK cells, CAPRI cells consist of
NK cells, NK-like Tcells (NKTcells), DC cells, CD4+ Tcells,
and CD8+ cytotoxic T lymphocytes; however, CD4+ T and
CD8+ T cells account for 80% of the cytotoxic activity of
CAPRI cells. CAPRI cells can induce upregulated expression
of MHC class I and class II on cancer cells, which can lead to
efficient MHC-restricted cancer cell destruction [118].
Although CAPRI cell therapy is to some extent superior to
other adoptive cell therapies and some results of clinical can-
cer case series in breast cancer and lung cancer have been
promising [119], no extensive clinical trials or studies on the
treatment of hematological tumors have been reported.

Chimeric antibody receptor-engineered T cells (CAR-T)
and TCR-engineered T cells (TCR-T)

Both CAR-Tand TCR-T technologies, as shown in Fig. 2d, use
genetic engineering to improve the ability of T cell receptors to
recognize and attack specific cancer cell antigens. TCR-
engineered T cells derive from patient lymphocytes transfected
with a viral vector that carries TCR genes and has the ability to
recognize antigens specifically derived from a tumor-reactive T
cell clone. Clinical trials have shown promising results of TCR-
T cell treatment in many forms of malignancy, including mel-
anoma, synovial cell sarcomas, and myeloma [120]. However,
application of TCR-T cells for AML may be limited by their
immunological characteristics [121]. For example, TCR-Tcells
recognize a specific antigen at the base of MHC but not the
antigen itself; downregulation of HLA molecules may be a
classic AML blast escape mechanism, resulting in relatively
low TCR-binding affinity to AML cells.

Compared with TCR-T cells, CAR-T cells can overcome
MHC restriction and thus result in unprecedented responses in
hematological malignancies. Third-generation CAR-T cells
primarily consist of an antigen-binding region (a single chain
antibody Fv), transmembrane region (co-stimulatory or co-
receptor signals), and signal transduction region (immune-re-
ceptor tyrosine-based activation motif). Due to continuous
reformation and improvement, these third-generation CAR-T
cells were created with the idea that T cell-mediated anti-tu-
mor immunity requires at least two signals from a T cell re-
ceptor and co-stimulatory molecules, which can enhance
CAR-Tcell survival, expansion, and activity. The first clinical
application of CAR-T cells was employed in B cell malignan-
cies, with promising results. Anti-CD19 CAR-T cells (CART-
19) have been reported to achieve CR in over 90% of patients
with B-ALL [122, 123]. However, for the establishment of
CAR-T cells for treating AML, the putative targets of anti-
AML CAR-T cells must be expressed only on leukemic he-
matopoietic cells to prevent normal myeloid cells from being
destroyed. Using an anti-CD33 single-chain variable frag-
ment, CD33 has been developed into CART-33 for treatment
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of patients with AML. Wang et al. reported one AML patient
treated with CART-33 cells who exhibited a transient marked
reduction in blasts in the bone marrow, but these cells gradu-
ally increased again, and the patient relapsed at 9 weeks after
cell infusion [124]. In addition, Kenderian et al. demonstrated
that CART-33 cells can eradicate leukemia and prolong sur-
vival in AML xenografts, but application is limited by its
unacceptable toxicity to myeloid progenitors. To avoid long-
termmyelosuppression, a transiently expressed anti-CART-33
messenger RNA (mRNA) was then designed [125].

Antigen expression is heterogeneous on leukemia blasts,
and TCR-T and CAR-T cells have been found to be an attrac-
tive option for the design of cell-mediated immunotherapy for
targeting LAAs, such as PRAME and WT-1. By using
immune-deficient NSG mice engrafted with U266 cells,
Tsvetalina et al. have demonstrated that PRAME TCR-T cells
are more capable of tumor control compared to non-
transduced control T cells (P = 0.01) and have shown that
rimiducid activation and expansion of inducible MyD88/
CD40 PRAME TCR-T cell can notably increase anti-tumor
capacity compared to T cells expressing the PRAME TCR
only (P = 0.005) [126]. Stauss et al. reported that T cells from
patients with leukemia engineered to express WT1-TCR can
eliminate autologous leukemia blasts in NOD/SCID mice
[127]. In addition, WT1-specific TCR-T cells have a potential
effect on AML and MDS, though antigen-specific TCR-gene
infusion may cause autoimmune disease because of TCR
mispairing between introduced and endogenous TCR chains.
To avoid this, Shiku et al. established a first-in-man trial of a
retroviral vector system, MS3-WT1-siTCR, which was de-
rived from DNA encodingWT1235-243/HLA*A24:02-specific
TCR chains and small interfering RNAs (siRNAs) for endog-
enous TCR genes to eliminate TCR mispairing in AML and
MDS patients, and they demonstrated that adoptive transfer of
WT1-siTCR/T cells is feasible and safe for anti-leukemia re-
activity [128, 129]. These authors also developed WT#213
CAR, whereby the CAR consists of the isolated scFv antibody
clone WT#213 able to recognize the WT1 p235-243 peptide;
the results suggested thatWT#213 CAR is a safe and effective
immunotherapy for AML [130]. Zwi et al. established another
strategy to combine WT1-TCR and Dicer-substrate small in-
terfering RNA (DsiRNA), showing that DsiRNA electropora-
tion can enhance WT1-TCR expression, which can increase
the killing activity of WT1-specific CD8+ T cells [131]. Other
preclinical trials of various types of CAR-T cell therapies in
AML have been published, such as CD123, CD44v6, and
LeY antigen-directed CAR-T [132–134]. While Shiku et al.
also have studied on human telomerase reverse transcriptase
(hTERT) for treatment of adult T cell leukemia, these hTERT-
specific TCR-T cells showed antitumor activity both in vitro
and in vivo, demonstrating that hTERT is a promising thera-
peutic target [135]. Another group found that new-generation
DCs transfected with mRNA from hTERT, survivin, and

autologous tumor can evoke specific immune responses and
prolong survival in different types of cancer, including AML
[136]. hTERT is considered to be a promising antigen for
AML in future applications. In addition, Hans J. Stauss report-
ed that TCR-T cell therapy may be an effective option for
patients who show no response to CAR-T cell treatment. T
cell engineering with TCR and CAR can also be complemen-
tary to some extent [137]. Although there have been no dra-
matic results to date, the results from these ongoing trials and
accumulating evidence will demonstrate the efficacy of CAR-
T and TCR-T cell-based therapy in AML.

Checkpoint inhibitors

For healthy humans, the regulatory signals of immune check-
points are essential to maintain immune homeostasis and self-
tolerance and to prevent autoimmunity. However, negative
immune regulatory factors have been implicated in immune
escape mechanisms of cancer cells. Two common immune
checkpoints are CTLA-4 and PD-1 as shown in Fig. 2e, and
clinical studies have focused on targeting these checkpoints or
ligand PD-L1/PD-L2 to block immune checkpoints; such
drugs are called checkpoint inhibitors [138].

CTLA-4

CTLA-4 is an inhibitory receptor expressed on T cells that
suppresses activation of effector T cells by competing with
CD28, a co-stimulatory molecule on T cells, for binding to
ligands CD80 and CD86 [138]. Anti-CTLA-4 antibodies were
the first immune checkpoints to be targeted for cancer immu-
notherapy; in clinical trials, patients with metastatic melanoma
were treated with ipilimumab, a CTLA-4 inhibitor, which led to
increased survival [139]. Due to the promising responses
achieved in other cancers, researchers have proposed that
CTLA-4 blockade can also be beneficial for patients with he-
matologic malignancies. Furthermore, studies have shown that
AML cells express CD80 and CD86 for engagement with
CTLA-4, suppressing activation of T cells [140]. Several pre-
clinical and clinical trials have reported that CTLA-4 blockade
can establish an anti-leukemic effect without GVHD after allo-
geneic HSCT [141] and restore anti-tumor reactivity for pa-
tients with relapse; durable responses were observed [142].
Although the efficacy of CTLA-4 inhibition appears obvious,
the response was too small to clearly affirm the effect in AML.
Nonetheless, many clinical trials on CTLA-4 inhibition in
AML patients to determine the efficacy are ongoing [143].

PD-1/PD-L1

PD-1 is an immune checkpoint that suppresses the activity of
T cells after antigen activation, acting as a brake of the im-
mune response [144]. Increased expression of its ligands (PD-
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L1/PD-L2) on human AML blasts has been linked to resis-
tance to treatment; thus, targeting of the PD-1/PD-L1 pathway
may be another alternative treatment for AML [145, 146]. In a
phase I study of PD-1 inhibition for patients with hematologic
malignancies using CT-011, including eight patients with
AML, a minimal response was observed in one AML patient,
with a decrease in blast percentage from 50 to 5% [147].
Another study reported that patients with MDS or AML high-
ly expressed PD-L1, PD-L2, PD-1, and CTLA-4, which has
been connected with the pathogenesis and resistance mecha-
nisms; thus, blockade of immune checkpoints is a potential
therapy in MDS and AML [13]. Overall, PD-1/PD-L1 block-
ade can produce possible clinical benefits in selected therapies
for AML. There are many ongoing clinical trials on PD-1/PD-
L1 inhibition in patients with AML aiming to identify efficacy
for extensive use in the clinic [143].

Additional immune checkpoints, such as LAG-3
(lymphocyte activation gene-3) and TIM-3 (T cell immuno-
globulin and mucin domain-containing protein 3), have been
evaluated in preclinical trials for AML. For example, LAG-3
inhibition has enhanced the effector function of immunother-
apy in murine models of leukemia [148]. TIM-3 is often co-
expressed with PD-1, and dual blockade of TIM-3 and PD-L1
reduced the tumor burden and prolonged the survival of mice
with advanced AML [149]. According to the achievement,
checkpoint inhibitor therapies can produce desirable clinical
outcomes, but require further preclinical studies and clinical
trials to identify the function for patients with AML.

Summary

Although chemotherapy can lead to remission in AML pa-
tients, this disease has a high probability of relapse. The cur-
rent methods to prevent relapse consist of consolidation che-
motherapy, immunotherapy, and autologous or allogeneic
SCT. In addition, the elderly, who account for a large propor-
tion of AML patients, cannot tolerate stem cell transplants or
large doses of chemotherapy. Therefore, immunotherapy is a
promising alternative.

AML is a complex and heterogeneous disease character-
ized by diverse genetic landscape. The Cancer Genome Atlas
Research Network compiles the genomes of 200 clinically
annotated adult cases of de novo AML by using whole-
genome sequencing (50 cases) or whole-exome sequencing
(150 cases), with the average number of coding mutations
per patient being 13 genes; 23 genes were considered to be a
significant mutation, and another 237 genes were mutated in
two or more samples [150]. In addition to mutation, gene
interaction can also affect leukemogenesis and prognosis
[151]; thus, it is difficult to identify a perfect and differential
antigen to target. Moreover, as antigen expression is hetero-
geneous on leukemia blasts and targets are also expressed on

healthy cells, CAR-T cells may not have promising outcomes
due to the limited antigen information and the need to balance
efficacy and safety [152]. To improve efficacy, third-
generation CAR-T cells were created with the idea that T
cell-mediated anti-tumor immunity requires the presence of
T cell receptor and co-stimulatory molecules, which can en-
hance CAR-T cell survival, expansion, and activity.
Researchers have studied dual-targeting CAR-T cells for two
LAAs, which were shown to prevent antigen escape mecha-
nisms without increasing cytotoxicity [153, 154]. Based on
results to date, such approaches may be promising for the
clinic, with beneficial outcomes after further preclinical and
clinical studies. PD-1 blockade also appears to be an ideal
partner for CAR-T therapy to enhance the efficacy of CAR-
T cells [155]. And due to the complex heterogeneity of AML,
every patient may have different associated molecular and
chromosomal aberrations, requiring individualized treatment
based on risk factors and biomarkers. Accordingly, the indi-
vidualized combination of different immune approaches along
with chemotherapy and autologous or allogeneic SCT to treat
AML to achieve the highest efficacy may be a promising
future trend, which will improve overall outcomes for pa-
tients. Although, the design and application of optimal thera-
peutic strategies during the course of AML also face many
challenges, achievements, and information regarding the
mechanisms involved in AML relapse and resistancemay lead
to novel treatments for AML.
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