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Bone marrow mesenchymal stromal cells affect the cell cycle
arrest effect of genotoxic agents on acute lymphocytic leukemia
cells via p21 down-regulation
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Abstract The effect of bone marrow microenvironment on
the cell cycle of acute lymphocytic leukemia (ALL) and the
underlying mechanism has not been elucidated. In this study,
we found that in normal condition, bone marrow mesenchy-
mal stromal cells (BM-MSCs) had no significant effect on the
cell cycle and apoptosis of ALL; in the condition when the cell
cycle of ALL was blocked by genotoxic agents, BM-MSCs
could increase the S-phase cell ratio and decrease the G2/M
phase ratio of ALL. Besides, BM-MSCs could protect ALL
cells from drug-induced apoptosis. Then, we proved that BM-
MSCs affect the cell cycle arrest effect of genotoxic agents on
ALL cells via p21 down-regulation. Moreover, our results
indicated that activation of Wnt/β-catenin and Erk pathways
might be involved in the BM-MSC-induced down-regulation
of p21 in ALL cells. Targeting microenvironment-related
signaling pathway may therefore be a potential novel ap-
proach for ALL therapy.
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Introduction

Acute lymphocytic leukemia (ALL) as a clonal malignant
disorder of lymphatic system is the most common cancer in
children and often occurs in adults as well [1]. In recent years,
the prognosis of ALL in children has much improved, thanks
to the emerging chemotherapeutic approaches. Furthermore,
although ALL patients in adults experience a complete remis-
sion of 78 to 93 %, recurrence is common with only 40 %

exhibiting long-term disease-free survival. Among the recur-
rent patients, the 5-year survival rate is as low as 7% [2]. Drug
resistance is one of the main reasons for the low survival rate
of recurrent ALL, and bone marrow microenvironment has
been reported to enhance the drug resistance of ALL cells. The
growth of leukemia cells disrupts the normal bone marrow
microenvironment and creates an abnormal microenviron-
ment, which reduces the number of normal CD34+ cells and
prevents them from entering into the peripheral blood [3].
Genes that regulate cell interactions in the bone marrow were
found highly expressed in pre-B ALL cells [4]. Bone marrow
microenvironment is constituted by bone marrow mesenchy-
mal stromal cells (BM-MSCs), and a number of molecular
mechanisms, such as CXCR4/CXCL12 [5–9], VE-cadherin
[10, 11], gap junction communication [12], Notch signaling
[13], Wnt signaling [14], interleukins [7, 9, 15–17], growth
factors [6, 18–20], asparagine [21, 22], and HIF-1a [23–25],
had been identified to mediate the interaction between BM-
MSCs and ALL cells. Currently, BM-MSCs are found to
significantly enhance the drug resistance of ALL cells to
various chemotherapy drugs, such as vincristine and
cytarabine [4, 14], and became the focus of study.

Genotoxic agents such as etoposide (VP16) and idarubicin
(IDA) cause DNA damage of ALL cells, inducing cell cycle
arrest and cell apoptosis of ALL cells [26]. BM-MSC-
mediated resistance of leukemia cells to those drugs can be
explained by several different mechanisms including inhibi-
tion of apoptosis, change of cell cycle distribution, and pro-
motion of proliferation. So far, many studies have proved that
BM-MSCs could promote the viability of leukemia cells by
inhibiting their apoptosis [4, 13, 14]. Growth and proliferation
of all cell types require cell division especially for malignant
cells. So cell cycle often becomes the target of some antitumor
drugs. However, it is still controversial whether BM-MSCs
promote or block the leukemia cell cycle, and the underlying
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mechanism is unclear. Gaundar et al. [6] and Yang et al. [14]
suggested that BM-MSCs could promote the proliferation and
cell cycle of ALL cells, while Zhu et al. [27] suggested that
BM-MSCs could inhibit the proliferation of chronic myelog-
enous leukemia cells. Moreover, it is also unclear whether
BM-MSCs affect the cell cycle arrest effect of genotoxic
agents on ALL cells.

One important cell cycle inhibitor is p21, which blocks the
interaction between cyclins and cyclin-dependent kinases
(CDKs), inhibiting the CDK activity and blocking the G1/S
and G2/M transitions [28]. Besides, a growing number of
evidence shows the relationship between p21 and cell apopto-
sis [29, 30]. The expression of p21 is controlled by several
different factors. At the transcription level, p53 as a transcrip-
tion factor can promote the transcription of p21 gene [31], and
c-myc inhibits the transcription of p21 gene via interacting
with various transcription factors [32]. At the posttranscription
level, p21 protein can be degraded through ubiquitin-
proteasome pathway mediated by SCF-skp2 complex [33].
On the other hand, the MST signaling pathway mediates the
phosphorylation of p21, and the p-p21 is unstable, which
cannot accumulate in the cell [34]. The expression of p21 in
ALL cells had been found down-regulated after cocultured
with BM-MSCs [14]. Thus, we hypothesized that BM-MSCs
regulate the cell cycle of ALL by down-regulating the p21
expression level in ALL cells.

In the present study, we determined the effect of BM-MSCs
on the cell cycle and apoptosis of ALL cells in the presence or
absence of genotoxic agents. Our results confirmed that BM-
MSCs affect the cell cycle arrest effect of genotoxic agents on
ALL cells by down-regulation of p21 protein.

Materials And methods

Cell cultures

The Reh cell line was established in 1974 from the peripheral
blood of a 15-year-old girl with acute lymphoblastic leukemia
at relapse [35]. In this study, Reh cell line was provided by the
Typical Cell Culture Collection Committee of the Chinese
Academy of Sciences and cultured in Iscove’s Modified
Dulbecco's Medium (IMDM) supplemented with 10 % fetal
bovine serum (FBS) and 1 % penicillin-streptomycin at 37 °C
and 5 % CO2 in a humidified incubator. Human BM-MSCs
were isolated and cultured as previously described [36]. Brief-
ly, bone marrow mononuclear cells were obtained from nor-
mal bone marrow donors by density gradient centrifugation
and were cultured in DMEM with 10 % FBS and 1 %
penicillin-streptomycin. The medium was replaced every
3 days, and the adherent cells were passaged when 80 %
confluence was reached. Passages 2 to 8 BM-MSCs were
used for the coculture experiments.

Characterization of BM-MSCs

BM-MSCs at passages 3–5 were analyzed for CD90-
FITC, CD105-PE, CD73-APC, and CD45-FITC
(eBioscience) expression using a FC 500 MCL Flow
Cytometer (Beckman Coulter). For differentiation as-
says, BM-MSCs at passages 3–5 were cultured in either
osteogenic or adipogenic differentiation medium
(Cyagen). The osteogenic differentiation was revealed
by the formation of calcium nodules stained with Aliz-
arin Red (Cyagen), and the adipogenic differentiation
was revealed by the formation of lipid droplets stained
with Oil Red O (Cyagen).

Coculture of Reh cells with BM-MSCs

The coculture experiment was conducted as previously
described [14]. Briefly, BM-MSCs were seeded onto the
culture plates at a concentration of 4×104/well (12-well
plate) or 105/well (6-well plate). After 1–2 days, Reh
cells were cultured at a starting concentration of 4×105/
well (12-well plate) or 106/well (6-well plate) with or
without BM-MSC layer, VP16 (Sigma), IDA (Pfizer), or
DMSO were added, with or without the SCF inhibitor
MLN4924 (MedChemexpress). After coculture, the Reh
cells were gently rinsed off and collected for next
experiments, while adherent BM-MSCs could not be
rinsed off.

Cell cycle analysis

Reh cells were cultured in serum-free IMDM for 24 h before
coculture experiments. After coculture, Reh cells were care-
fully collected and washed once with cold phosphate-buffered
saline (PBS), then fixed in 70 % ethanol overnight at −20 °C.
The next day, ethanol was removed, and the samples were
washed once with PBS and then stained with PI/RNase
(Multisciences) at room temperature for 0.5–1 h. The samples
were analyzed using a FC 500 MCL Flow Cytometer
(Beckman Coulter).

Apoptosis analysis

Reh cells were carefully collected and washed once with
cold phosphate-buffered saline (PBS), then stained with
Annexin V-FITC and Prodium Iodide (PI) (both from
Multisciences) at room temperature for 5 min. Flow
cytometric analysis was performed using a FC 500
MCL Flow Cytometer (Beckman Coulter). Cells that
were Annexin-V-positive and PI-negative were consid-
ered early apoptotic; Annexin-V-positive and PI-positive
were considered apoptotic.
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Western blot analysis

Reh cells were washed once with cold PBS and then
lysed in lysis buffer containing 12 mM Tris (pH 6.8),
5 % glycerol, 0.4 % sodium dodecyl sulfate (SDS), and
5 % β-mercaptoethanol. Protein extracts were loaded
onto a 10 % polyacrylamide gel containing SDS, elec-
trophoresed, and transferred to a polyvinylidene
difluoride membrane. The membrane was blocked in
5 % bovine serum albumin (BSA) at room temperature
for 1 h, incubated with primary antibodies overnight,
and then incubated with an IRDye secondary antibody
(Licor) at room temperature for 1 h. Immunoreactive
bands were visualized using an Odyssey infrared imag-
ing system (Licor). β-actin was used to ensure equiva-
lent loading of whole cell protein. Antibodies against
p21, skp2, and Bax were from Epitomics (Burlingame,
CA, USA), β-actin antibody was from MultiSciences
Biotechnology (Hangzhou, China), and antibodies
against Erk, phosphorylated-p44/42 MAPK (Erk1/2)

(Thr202/Tyr204) (p-Erk), and β-catenin were from Cell
Signaling Technology (Danvers, MA, USA).

Quantitative Reverse Transcription PCR (qRT-PCR)

Total cellular RNAwas extracted using Trizol reagent (Takara,
Liaoning, China). Reverse transcription was performed using
a PrimeScript RTMaster Mix (Takara). Quantitative PCR was
performed using an iTaq Universal SYBR Green Supermix
(Bio-rad) with a CFX96 Touch Real-Time PCR Detection
system (Bio-rad). Primer sets used for these analyses are listed
in Table 1.

Statistical analysis

The data were presented as mean±SEM and analyzed by SAS
9.1 software using Student’s t test. Differences were consid-
ered statistically significant at p<0.05.

Table 1 Primer sets used for
qRT-PCR p21 Forward primer 5′-AGACTCTCAGGGTCGAAAAC-3′

Reverse primer 5′-TGGAGTGGTAGAAATCTGTCATG-3′

GAPDH (reference gene) Forward primer 5′-AGAAGGCTGGGGCTCATTTG-3′

Reverse primer 5′-AGGGGCCATCCACAGTCTTC-3′

Fig. 1 Characterization of BM-MSCs. a BM-MSCs were grown in
culture at passage 1 without differentiation, magnification × 100. b
Adipogenic differentiation capacity of BM-MSCs. The differentiation
into adipocytes was revealed by the formation of lipid droplets stained
with Oil Red O,magnification × 100. cOsteogenic differentiation of BM-

MSCs. The osteogenic differentiation was revealed by the formation of
calcium nodules stained with Alizarin Red, magnification × 100. d Flow
cytometric analysis of expression of surface antigens in BM-MSCs (solid
lines). Solid histograms represent unstained controls. Data shown were
from one representative experiment of three

Ann Hematol (2014) 93:1499–1508 1501



Results

Characterization of BM-MSCs

BM-MSCs at passage 1 presented fibroblast-like, spindle-
shaped morphology (Fig. 1a). The adipogenic and osteogenic
differentiation potentials of BM-MSCs were verified by Oil
Red O and Alizarin Red staining, respectively (Fig. 1b, c).
Strong expression of CD90, CD105, and CD73 was also
detected in BM-MSCs by flow cytometry, while the expres-
sion of CD45 was negative, confirming that these BM-MSCs
were from a nonhematopoietic origin (Fig. 1d).

BM-MSCs protect ALL cells from drug-induced apoptosis

Reh cells were cultured with or without BM-MSCs in the
presence or absence of genotoxic agents for 72 h, and the
apoptosis and early apoptosis rate were measured using
Annexin V/PI method (Fig. 2). In the absence of drugs, there
was no significant difference of apoptosis rate or early

apoptosis rate between Reh cells cultured alone or with BM-
MSCs. In the presence of VP16, the early apoptosis rate of
Reh cultured with BM-MSCs was lower than that of Reh
cultured alone (11.81±2.52 and 21.04±0.74 %, respectively,
p<0.05), and there was no significant difference of apoptosis
rate between Reh cells cultured alone or with BM-MSCs. In
the presence of IDA, the early apoptosis rate of Reh cultured
with BM-MSCs was lower than that of Reh cultured alone
(5.49±0.90 and 37.00±5.32%, respectively, p<0.05), and the
apoptosis rate of Reh cultured with BM-MSCs was also lower
than that of Reh cultured alone (66.09±5.89 and 79.93±
3.15 %, respectively, p<0.05). These results suggest that
BM-MSCs can protect ALL cells from drug-induced
apoptosis.

BM-MSCs affect the cell-cycle arrest effect of genotoxic
agents on ALL cells

In this study, we cultured leukemia cell line Reh with or
without BM-MSCs in the presence of 250 nM VP16 or 25

Fig. 2 BM-MSCs protect ALL cells from drug-induced apoptosis. Reh cells
were cultured with or without BM-MSCs in the presence or absence of
genotoxic agents for 72 h, then the apoptosis rate (b) and early apoptosis rate

(c) were measured using Annexin V/PI method. a Representative result of
flow cytometric analysis. Experiments were repeated three times, Asterisks
denote significance at p<.05, N.S. not statistically significant
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nM IDA, or without drug treatment for 24, 48, and 72 h. VP16
induced G2/M phase arrest of the Reh cell cycle (Fig. 3a), and
IDA induced S-phase arrest of the Reh cell cycle (Fig. 3b). In
the absence of drugs, BM-MSCs had no significant effect on
the cell cycle of Reh cells. In the presence of VP16 or IDA,

BM-MSCs increased the S-phase ratio of Reh cells and de-
crease the G2/M phase ratio of Reh cells (Fig. 3a, b). Then, we
chose the time points that BM-MSCs had the most significant
effect on Reh cell cycle to perform three replicate experiments
(48 h for IDA treatment and 72 h for VP16 treatment). Under

Fig. 3 Effect of BM-MSCs on ALL cell cycle in the presence or absence
of genotoxic agents. a Cell cycle analysis of Reh cells cultured with or
without BM-MSCs in the presence or absence of 250 nM VP16 for 24,
48, and 72 h. b Cell cycle analysis of Reh cells cultured with or without
BM-MSCs in the presence or absence of 25 nM IDA for 24, 48, and 72 h.

c Cell cycle distribution of Reh cells cultured with or without BM-MSCs
in the presence or absence of 250 nM VP16 for 72 h. Asterisks denote
significance at p<.05. d Cell cycle distribution of Reh cells cultured with
or without BM-MSCs in the presence or absence of 25 nM IDA for 48 h.
Asterisks denote significance at p<.05
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the treatment of VP16 (Fig. 3c), the S-phase ratio of Reh
cultured with BM-MSCs was higher than that of Reh cultured
alone (10.893±1.077 and 6.842±0.652 %, respectively,
p<0.05); the G2/M phase ratio of Reh cultured with BM-
MSCs was lower than that of Reh cultured alone (25.812±
1.720 and 38.818±3.508 %, respectively, p<0.05). Under the
treatment of IDA (Fig. 3d), the S-phase ratio of Reh culturedwith
BM-MSCs was higher than that of Reh cultured alone (58.720±
5.765 and 45.519±7.886 %, respectively, p<0.05); the G2/M
phase ratio of Reh cultured with BM-MSCs was lower than that
of Reh cultured alone (1.888±0.809 and 6.449±0.325 %, re-
spectively, p<0.05). The results suggest that when genotoxic
agents inhibit the cell cycle of ALL passing the G1/S or G2/M
checkpoint, BM-MSCs can promote the cell cycle of ALL
passing these cell cycle checkpoints, thus affecting the cell cycle
arrest effect of genotoxic agents on ALL cells.

BM-MSCs down-regulate the p21 expression and activate
the Erk and Wnt signaling pathways in ALL cells

We cultured the Reh cells with or without BM-MSCs in the
presence or absence of genotoxic agents and analyzed the
protein expression of p21 and S-phase kinase protein 2
(skp2) in Reh cells. In the absence of genotoxic agents, the
expression of p21 was low in Reh cells. Treatment of VP16 or
IDA induced the expression of p21, while BM-MSCs down-
regulate the p21 expression in Reh cells. Besides, there was no
significant difference of skp2 expression between Reh cul-
tured alone and Reh cultured with BM-MSCs (Fig. 4a). The
results of qRT-PCR showed that, under the drug treatment, the
messenger RNA (mRNA) expression level of p21 was also
lower in Reh cells cultured with BM-MSCs than in Reh cells
cultured alone (Fig. 4b, c). We also detected the expression of
key proteins in the Erk and Wnt signaling pathways. In the

presence of VP16 or IDA, the expression of p-Erk and β-
catenin was higher in Reh cells cultured with BM-MSCs than
in Reh cells cultured alone (Fig. 4d). These results suggest that
BM-MSCs might down-regulate the p21 expression in ALL
cells via certain pathways such asWnt and Erk pathways, thus
promoting the G1/S and G2/M transitions of ALL cell cycle.

BM-MSC-induced p21 down-regulation promotes the G1/S
and G2/M transitions of ALL cell cycle

To confirm the role of p21 down-regulation in the BM-MSC-
mediated cell cycle promotion of ALL, we utilizedMLN4924, a
specific small molecular inhibitor of SCF complex, to induce
high expression of p21 in Reh cells, and to see whether this
would eliminate the cell cycle promotion effect of BM-MSCs on
Reh cells. Using different concentration of MLN4924 to treat
Reh cells, we found that MLN4924 treatment could significantly
up-regulate the p21 expression of Reh cells at every concentra-
tion and down-regulate the skp2 expression at high concentra-
tions (1000 and 3000 nM), besides, the expression of apoptosis-
associated protein Bax was not affected (Fig. 5a). Then, we used
MLN4924 to induce high expression of p21 in both Reh cultured
alone and cultured with BM-MSCs, thus eliminating the down-
regulation of p21 caused byBM-MSC coculture (Fig. 5b, c). Cell
cycle analysis showed that MLN4924 eliminated the cell cycle
promotion effect of BM-MSCs on Reh cells under the treatment
of genotoxic agents (Fig. 5d–g). In addition, apoptosis analysis
showed that MLN4924 did not affect the antiapoptosis effect of
BM-MSCs on Reh cells (Fig. 6a–d). Through these experiments,
we confirmed that BM-MSC-induced p21 down-regulation in
ALL cells promote the G1/S and G2/M transitions of ALL cell
cycle but does not contribute to the antiapoptosis effect of BM-
MSCs on ALL cells.

Fig. 4 BM-MSCs down-regulate
the p21 expression and activate
the Erk and Wnt signaling
pathways in ALL cells. aWestern
blot analysis of p21 and skp2
expressions in Reh cells cultured
with or without BM-MSCs in the
presence or absence of genotoxic
agents. b, c qRT-PCR analysis of
p21 mRNA expression in Reh
cells cultured with or without
BM-MSCs under treatment of
VP16 or IDA. Asterisks denote
significance at p<.05. d Western
blot analysis of p-Erk, Erk, andβ-
catenin expression in Reh cells
cultured with or without BM-
MSCs in the presence of 250 nM
VP16 or 25 nM IDA
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Discussion

It has been shown that BM-MSCs promote the viability of
leukemia cells by inhibiting their apoptosis, while the effect of
BM-MSCs on leukemia cell cycle is still unclear. In the present
study, we proved that in the absence of chemotherapeutic drugs,

BM-MSCs have no significant effect on the cell cycle and
apoptosis of ALL cells. Genotoxic agents like VP16 and IDA
can block the cell cycle of ALL in different phases and induce
apoptosis of ALL cells at the same time, while BM-MSCs affect
the cell cycle arrest effect of genotoxic agents on ALL cells and
also protect ALL cells from drug-induced apoptosis. The BM-

Fig. 5 MLN4924-induced p21 high expression eliminates the cell cycle
promotion effect of BM-MSCs on Reh cells. a Western blot analysis of
p21, skp2, and bax expression in Reh cells treated by different concen-
tration of MLN4924. b Under the treatment of 25 nM IDA, western blot
analysis of p21 and skp2 expressions in Reh cells culturedwith or without
BM-MSCs in the presence of different concentrations of MLN4924 (0,
300, 700 nM). c Under the treatment of 250 nM VP16, western blot
analysis of p21 and skp2 expressions in Reh cells culturedwith or without

BM-MSCs in the presence of different concentrations of MLN4924 (0,
100, 300 nM). d, e Under the treatment of 250 nM VP16 (d) or 25 nM
IDA (e), the S-phase cell ratio of Reh cells cultured with or without BM-
MSCs in the presence of different concentrations of MLN4924 (0, 100,
300 nM). f, gUnder the treatment of 250 nMVP16 (f) or 25 nM IDA (g),
the G2/M phase cell ratio of Reh cells culturedwith orwithout BM-MSCs
in the presence of different concentrations ofMLN4924 (0, 100, 300 nM).
Asterisks denote significance at p<.05, N.S. not statistically significant
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MSC-induced p21 down-regulation in ALL cells promotes the
G1/S and G2/M transitions of ALL cell cycle, which has not
been reported previously, but does not contribute to the
antiapoptosis effect of BM-MSCs on ALL cells.

Both VP16 and IDA can inhibit the function of topoisom-
erase II, inducing DNA double-strand breakage, thus activat-
ing DNA-damage-related signaling pathway and inducing the
cell cycle arrest [26]. Our results show that both VP16 and
IDA induce the expression of p21 in Reh cells. VP16 induces
G2/M phase arrest of the Reh cells, which is due to the VP16-
induced DNA damage inhibiting the cell cycle passing the
DNA damage checkpoint; IDA induces S-phase arrest of the
Reh cell-cycle, and the possible cause is the blockage of DNA
synthesis during the S-phase. The present study found that,
through down-regulating the p21 expression, BM-MSCs pro-
mote the G1/S and G2/M transitions of ALL cell cycle in the
presence of genotoxic agents, which increase the S-phase cell
ratio and decrease the G2/M phase cell ratio of ALL cells.
Since the BM-MSC-induced change of cell cycle distribution
will affect the killing effect of genotoxic agents, we propose
that eliminating the effect of BM-MSCs on ALL cell cycle
might enhance the chemotherapy efficacy on ALL cells.

Next, elimination of the cell cycle promotion effect of BM-
MSCs on Reh cells through MLN4924-induced high

expression of p21 in Reh cells confirms that BM-MSCs
promote the G1/S and G2/M transitions of ALL cell-cycle
via p21 down-regulation. Notably, MLN4924 specifically
inhibits the neddylation of Cullin1 via blocking Nedd8-
activating enzyme and subsequently inhibits the degradation
of p21 protein by suppressing the function of SCF-skp2
ubiquitin ligase complex, leading to the accumulation of p21
protein [37]. Up-regulating p21 expression can overcome
drug resistance in different types of tumor. For example, Chen
et al. [38] up-regulated the p21 expression in ovarian cancer
cells using epigallocatechin gallate and cruciferous vegeta-
bles, and enhanced the cisplatin-induced apoptosis and G2/
M phase arrest. Vijayaraghavalu et al. [39] activated the
expression of p21 in breast cancer cells using epigenetic
drugs, which caused G2/M phase arrest and overcame the
drug resistance. Our results showed for the first time that up-
regulation of p21 expression in ALL cells eliminates the effect
of BM-MSCs on ALL cell cycle, which suggests that the
combined approach of small molecular inhibitor modulating
p21 protein expression in leukemia cells with novel cell cycle
specific chemotherapeutic drugs may enhance the chemother-
apy efficacy.

The Wnt signaling pathway and Erk signaling pathway
have been proved to mediate the microenvironment protection

Fig. 6 Treatment of MLN4924 does not affect the antiapoptosis effect of
BM-MSCs on ALL cells. Under treatment of 300 nM MLN4924, BM-
MSCs still protected the Reh cells from drug-induced apoptosis (a, b) and

early apoptosis (c, d). Asterisks denote significance at p<.05, N.S. not
statistically significant
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of ALL [14, 40], and both these two pathways can up-regulate
the c-myc expression [41, 42], while c-myc is the transcription
inhibitor of p21 [32]. Our results show that BM-MSCs up-
regulate the expression of p-Erk and β-catenin in Reh
cells, thus, we predict that BM-MSCs might down-
regulate the p21 expression in ALL cells via activating
the Wnt and Erk signaling pathways. More work is
needed to determine the cross-talk between these path-
ways in leukemia microenvironment.

SCF-skp2 complex mediates the ubiquitin-proteasome
pathway, which plays the major role in the posttranscriptional
degradation of p21. SCF-skp2 complex contains skp1,
cullin1, Rbx1, and skp2. Skp2 can bind specifically to p21,
guiding the degradation of p21 [33]. Cullin1 is the scaffold
protein of SCF-skp2 complex, which also plays an important
role in the function of SCF-skp2 complex, and the activation
of SCF-skp2 complex requires neddylation of cullin1. More
work is needed to see whether BM-MSCs would regulate
protein level in ALL cells via activating the ubiquitin-
proteasome pathway.

Our results also show that BM-MSCs can reduce the apo-
ptosis rate of ALL cells induced by genotoxic agents, which is
consistent with the previous studies [4, 13, 14]. Since a
growing number of evidence shows that p21 is not only a cell
cycle inhibitor but also has a relationship with cell apoptosis
[29, 30], we examined whether the BM-MSC-induced p21
down-regulation in ALL cells also contributed to the
antiapoptosis effect of BM-MSCs on ALL cells. However,
the results indicate that the MLN4924-induced high expres-
sion of p21 in ALL cells does not affect the antiapoptosis
effect of BM-MSCs on ALL cells. Our explanation for these
results is that the effect of BM-MSCs on the cell cycle of ALL
cells promotes the proliferation rather than reduces the apo-
ptosis of ALL cells, and the antiapoptosis effect of BM-MSCs
on ALL cells might be through affecting apoptosis signaling
pathway rather than down-regulation of p21. The relation
between cell cycle and apoptosis is complicated depending
on different cell types, which requires further research.

A number of studies have shown the occurrence of
immunophenotypic changes in BM-MSCs from ALL patients
[43, 44], which suggested that microenvironmental conditions
might play a pivotal role in facilitating BM-MSC function.
More work is needed to determine the effect of leukemia
microenvironment on BM-MSC properties.

In conclusion, the present study shows for the first
time that BM-MSCs affecting the cell cycle arrest effect
of genotoxic agents on ALL cells are mediated by
down-regulation of p21 protein. Activation of Wnt/β-
catenin and Erk pathways might be involved in the BM-
MSC-induced down-regulation of p21 in ALL cells.
Targeting microenvironment-related signaling pathway
may therefore be a potential novel therapeutic strategy
for the treatment of ALL.
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