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Abstract Apoptosis or programmed cell death is a process
with typical morphological characteristics including plas-
ma membrane blebbing, cell shrinkage, chromatin conden-
sation and fragmentation. A family of cystein-dependent
aspartate-directed proteases, called caspases, is responsible
for the proteolytic cleavage of cellular proteins leading to
the characteristic apoptotic features, e.g. cleavage of cas-
pase-activated DNase resulting in internucleosomal DNA
fragmentation. Currently, two pathways for activating cas-
pases have been studied in detail. One starts with ligation
of a death ligand to its transmembrane death receptor,
followed by recruitment and activation of caspases in the
death-inducing signalling complex. The second pathway
involves the participation of mitochondria, which release
caspase-activating proteins into the cytosol, thereby form-
ing the apoptosome where caspases will bind and become
activated. In addition, two other apoptotic pathways are
emerging: endoplasmic reticulum stress-induced apoptosis
and caspase-independent apoptosis. Naturally occurring
cell death plays a critical role in many normal processes
like foetal development and tissue homeostasis. Dysregu-
lation of apoptosis contributes to many diseases, including
cancer. On the other hand, apoptosis-regulating proteins
also provide targets for drug discovery and new approaches
to the treatment of cancer.

Cell death by apoptosis

Different forms of cell death

Cell death is an essential strategy for the control of the
dynamic balance in living systems, and two fundamentally

different forms of cell death, apoptosis and necrosis, have
been defined. Necrosis is an accidental passive process re-
sulting in an early disruption of the cell membrane and
in the progressive breakdown of ordered cell structures in
response to violent environmental perturbations such as se-
vere hypoxia/ischaemia, extremes of temperature and me-
chanical trauma. This type of cell death, associated with
organelle swelling, will not be discussed further, but readers
are referred to [1–4]. In contrast, apoptosis or programmed
cell death involves the activation of an energy-requiring
intracellular machinery, which is tightly regulated and con-
served throughout evolution [5]. Apoptosis affects single
cells asynchronously, typically in the absence of inflam-
matory changes [1]. It is involved in morphogenesis of
embryonic tissues as well as in homeostasis of adult organs
and tissues. For example, apoptosis contributes to normal
structural maturation of the lung during foetal and postnatal
development [6, 7]. Apoptosis will also eliminate cells
exposing the organism to danger. For example, virally in-
fected cells or cells with damaged DNAwill be removed by
apoptosis [8–10].

Apoptotic cells were first identified by a series of typical
morphological changes, and morphology is still an impor-
tant experimental proof of the underlying process [4].
Initially, cell membrane integrity is maintained while subtle
changes, e.g. exposure of phosphatidylserine, occur. Other
characteristics of apoptotic cells include cellular shrinkage,
membrane blebbing, nuclear chromatin condensation and
fragmentation. Eventually, the cell breaks into membrane-
surrounded fragments (apoptotic bodies) which are en-
gulfed in vivo by professional phagocytes (macrophages
and dendritic cells). In cell cultures, apoptotic bodies will
lose the integrity of the plasma membrane during the late
stages of apoptosis, followed by complete cell disintegra-
tion, also called secondary necrosis [1].

Caspase activation: general features

All the typical signs of apoptosis are the final results of a
complex biochemical cascade of events. Apoptotic signal-
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ling mainly converges in the activation of intracellular
caspases, a family of cystein-dependent aspartate-directed
proteases which propagate death signalling by cleaving key
cellular proteins [11].

Caspases are synthesized in normal cells as inactive
proenzymes; they can rapidly be activated by autoproteo-
lytic cleavage or cleavage by other caspases at specific
aspartic acid (Asp) residues [12]. Currently, 14 members of
the caspase family have been identified, of which 7 mediate
apoptosis (Table 1). During apoptosis, caspases with a long
pro-domain function as upstream signal transducers (‘ini-
tiator’ caspases) and proteolytically activate downstream
caspases (‘effector’ caspases) which contain a short pro-
domain [13]. The initiator caspases-8 and -10 contain in
their pro-domain a death effector domain (DED), which is
involved in interactions with adaptor proteins. A caspase
recruitment domain (CARD) is found in caspase-2 and
caspase-9 and is also important for binding of adaptor mol-
ecules and activation of effector caspases (Table 1; Fig. 1)
[14]. Caspases specifically recognize and cleave a tetra-
peptide sequence on their substrate with an absolute re-
quirement for an Asp residue (Table 1). Effector caspases
act on a variety of substrates resulting in proteolysis of
cellular proteins and death by apoptosis. The best char-
acterized caspase substrate is poly-(ADP-ribose) polymer-
ase (PARP), a nuclear protein implicated in DNA repair.
PARP is one of the earliest proteins targeted for specific
caspase cleavage [15]. Caspase cleavage and inactivation
of ICAD (inhibitor of caspase-activated DNAse) allow
CAD [also known as DNA fragmentation factor (DFF)] to

translocate to the nucleus where it is responsible for inter-
nucleosomal DNA cleavage, generating oligonucleosomal
DNA fragments [16, 17]. Caspase cleavage of lamins
results in nuclear shrinkage; cleavage of cytoskeletal pro-
teins like fodrin and actin leads to cytosolic reorganiza-
tion [18–20]. Furthermore, caspase-dependent cleavage of
DNA-protein kinase (DNA-PK), cell cycle regulators [e.g.
retinoblastoma protein (pRb)], transcription factors (e.g.
NF-κB) and cell signalling proteins [e.g. Raf, protein ki-
nase B (PKB)] has been reported [21–25]. The cell sur-
vival factors Bcl-2 and Bcl-Xl are also cleaved during
apoptosis, as are the pro-apoptotic proteins Bid and Bax
[26–28]. Probably not all the key substrates are known yet,
although caspase cleavage of different proteins is a critical
event for apoptotic execution.

Not all caspases are directly involved in cell death; some
carry out other physiological functions (Table 1). These
caspases are involved in processing pro-inflammatory cy-
tokines and in mediating inflammatory responses. Indeed,
the first mammalian caspase, caspase-1, was originally iden-
tified as interleukin-1β converting enzyme (ICE) [29].

Intensive studies on how caspases are activated during
apoptosis have revealed two important pathways of caspase
activation: cross-linking of death receptors following ex-
ternal (extracellular) triggering and release of apoptogenic
factors from mitochondria following internal (intracellular)
signals (Fig. 1). In addition, two other apoptotic pathways
are emerging: endoplasmic reticulum stress-induced apo-
ptosis and caspase-independent apoptosis.

Table 1 Properties of the mem-
bers of the caspase family

m, Murine
Amino acids used in the column
“Tetrapeptide preference”: A
alanine, D aspartic acid, E
glutamic acid, H histidine, I
isoleucine, L leucine, M me-
thionine, Q glutamine, T threo-
nine, V valine, W tryptophan, Y
tyrosine

Name of caspase Other
names

Tetrapeptide
preference

Function Size of
pro-domain

Pro-domain
molecule

Adaptor
protein

Caspases important for execution and signalling events of apoptosis
Caspase-2 ICH-1/mNedd2 DEHD/

VDVAD
Initiator Long CARD RAIDD

Caspase-8 MACH/FLICE/
Mch5

LETD/IETD Initiator Long DED FADD

Caspase-9 ICE-LAP6/
Mch6

LEHD Initiator Long CARD Apaf-1

Caspase-10 Mch4, FLICE2 IEAD Initiator Long DED FADD
Caspase-3 CPP32/

Apopain/Yama
DMQD/
DEVD

Effector Short None

Caspase-6 Mch2 VEID/VEHD Effector Short None
Caspase-7 Mch3/ICE-

LAP3/CMH-1
DEVD Effector Short None

Caspases involved in control of inflammation
Caspase-1 ICE WEHD/

YEVD
Long CARD

Caspase-4 TX/ICH-2/
ICEREL-II

LEVD/(W/L)
EHD

Long CARD

Caspase-5 TY/ICEREL-III (W/L)EHD Long
mCaspase-11 ICH-3 Long
mCaspase-12 Long
Caspase-13 ERICE Long
mCaspase-14 MICE Short None
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Death receptor-dependent pathway

Plasma membrane receptors triggering external apoptosis
signalling belong to the tumour necrosis factor (TNF)-
receptor superfamily. This family includes Fas (Apo-1
or CD95), TNF-receptor-1 (TNF-R1), death receptor-3
[DR3 or TNF-receptor-related apoptosis-mediating pro-
tein (TRAMP) or Apo-3], TNF-related apoptosis induc-
ing ligand receptor-1 (TRAIL-R1 or DR4), TRAIL-R2
(DR5 or Apo-2) and DR6. The best studied death recep-
tor is Fas; binding of Fas ligand (FasL) leads to receptor
trimerisation and recruitment of specific adaptor proteins
(Fig. 1) [30–32]. The Fas receptor contains a death do-
main (DD) in its cytoplasmic region which interacts with
the adaptor protein, Fas-associated death domain protein
(FADD), forming a death receptor-induced signalling com-
plex (DISC) (Table 1, Fig. 1) [33–35]. Besides a DD,
FADD contains a death effector domain (DED) and this
recruits the DED-containing procaspase-8 into the DISC
[36]. Procaspase-8 will be proteolytically activated to the
enzymatically active caspase-8, which in turn will activate
downstream effector caspases (Fig. 1) [12].

Other death receptors activate caspases in a similar man-
ner. The binding of TNF-α to TNF-R1 leads to trimerisa-
tion of TNF-R1 and to binding of the TNF-R-associated

death domain protein (TRADD). The death domain of
TRADD interacts with the death domain of FADD, re-
cruiting pro-caspase-8. Active caspase-8 in turn activates
downstream effector caspases by cleaving pro-caspase-3
[37]. However, TNF-α binding to TNF-R alone rarely
induces apoptosis; the binding of the adaptor molecule TNF
receptor-associated factor-2 (TRAF2) to TRADD recruits
cellular inhibitor of apoptosis (c-IAP)-1 and c-IAP-2, two
anti-apoptotic proteins. The binding of the receptor inter-
action protein (RIP), the third protein able to interact with
TRADD, leads to activation of the transcription factor
NF-κB, resulting in transcription of anti-apoptotic genes
and promoting cell survival (Fig. 1) [32, 35, 38, 39]. Al-
ternatively, the RIP–TRADD interaction can also inititate
apoptosis by recruiting caspase-2 through the adaptor mol-
ecule RIP-associated ICH-1/CED3 homologous protein
with DD (RAIDD; Table 1) [40, 41]. Other death receptor
(DR)-activating ligands include lymphotoxin, Apo3-ligand
and Apo2-ligand; they bind with their respective receptors
(TNF-R1, DR3, DR4 and DR5) and adaptor molecules.

In addition to death receptors, decoy receptors (DcR1,
DcR2, DcR3, osteoprotegerin) have been identified. These
receptors compete with the death receptors for ligand bind-
ing, but they do not transduce apoptotic signals [42].
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Mitochondrial-dependent pathway

Participation of mitochondria to apoptosis induction main-
ly involves the release of caspase-activating proteins into
the cytosol. The release of cytochrome c from the mito-
chondria results in the activation of the apoptotic protease
activating factor-1 (Apaf-1). In the presence of cytochrome
c and ATP, the CARD domain of Apaf-1 binds with the
CARD domain of procaspase-9 (Table 1), and this forms
the mitochondrial DISC, also designated as ‘apoptosome’
[43]. Following activation, the apoptosome-associated cas-
pase-9 will in turn activate downstream caspases like cas-
pase-3, caspase-6 and caspase-7 (Fig. 1) [44].

The mechanism of cytochrome c release has not yet been
completely unraveled. It has been suggested that a decisive
role is played by the mitochondrial permeability transition
pore (PTP) formed at the contact sites between the inner
and the outer mitochondrial membranes. The main com-
ponents of the PTP include the adenine translocator (ANT)
at the inner membrane and the voltage-dependent anion
channel (VDAC), also called porin, at the outer membrane.
The PTP also includes several other proteins: hexokinase
II (HKII), mitochondrial creatine kinase (mtCK), cyclo-
philin D (Cyp-D) and peripheral benzodiazepine receptor
(PBR), which all have a role in modulating the activity of
the PTP [45, 46]. The pore opening is influenced by nu-
merous endogenous effectors, e.g. ions (mainly Ca2+ and
Mg2+), protons, local ADP/ATP concentrations, mitochon-
drial membrane potential and changes in composition or
function of the Bcl-2 complex [47]. There is emerging ev-
idence that the pro-apoptotic members of the Bcl-2 pro-
tein family are important regulators of PTP opening. The
Bcl-2 family of proteins is located or translocated to the
outer mitochondrial membrane and includes anti-apoptotic
members (e.g. Bcl-2, Bcl-Xl) and pro-apoptotic members
(e.g. Bax, Bak). Both groups of proteins share homology
in one to four Bcl-2-homology (BH) domains (BH1, BH2,
BH3, BH4). A subset of the pro-apoptotic proteins only
has the central short BH3 domain (e.g. Bid, Bak) (Table 2)
[48–59]. The different family members can homo- or het-
ero-dimerize, and the relative ratios of anti- and pro-apo-
ptotic proteins will determine the susceptibility of cells to
apoptotic stimuli [60–62]. Bcl-2 family proteins modulate
permeabilization of the inner and/or outer mitochondrial
membranes and regulate in this way the release of cyto-
chrome c [63]. However, a single mechanism by which the
Bcl-2 family members regulate apoptosis has not been
completely determined. Phosphorylation and dephosphor-
ylation of Bcl-2 family proteins may be a crucial event in
the regulation of its function [64, 65]. Besides cytochrome
c release, the Bcl-2 family proteins have also been reported
to control the release of other proteins from mitochondria
including certain caspases (caspase-2, caspase-3 and cas-
pase-9), apoptosis inducing factor (AIF), second mito-
chondria-derived activator of caspase/direct IAP-binding
protein with low PI (Smac/Diablo), Omi/HtrA2 and en-
donuclease G [66–69]. Smac/Diablo can interact with in-
hibitors of inhibitors of apoptosis (IAPs) like X-linked
inhibitor of apoptosis (XIAP) and prevent their activity

[70, 71]. Omi/HtrA2 is a serine protease that contributes
to caspase-dependent and caspase-independent cell death
and that interacts with IAPs [70, 72]. Endonuclease G trans-
locates to the nucleus during apoptosis and induces cas-
pase-independent DNA fragmentation [73].

A molecular link between the death receptor and the
mitochondrial apoptosis pathways can be found at the level
of caspase-8 cleavage of cytosolic Bid, a member of the
BH3 domain-only subgroup of Bcl-2 family [28, 74].
Cleaved Bid [truncated Bid (tBid)] translocates from the
cytosol to mitochondria and activates the mitochondrial-
dependent apoptotic pathway (Fig. 1) [75, 76]. Caspase-3
can also cleave Bid, thereby inducing cytochrome c release
and apoptosis [74].

Endoplasmic reticulum and apoptosis

In the endoplasmic reticulum (ER), proteins obtain their
mature conformation after proper post-translational mod-
ification, folding and oligomerization. Accumulation of
misfolded proteins in the ER activates the unfolded protein
response (UPR), a conserved signalling pathway leading to
repair of ER folding or, in case of severe damage, to ini-
tiation of apoptosis. In the lumen of the ER, Ca2+ is stored,
and disturbance of the Ca2+ homeostasis initiates apoptosis
[77, 78]. Mitochondrial involvement in ER stress-induced
cell death has been shown by the release of cytochrome c
from mitochondria after induction of ER stress. In addition,
Bcl-2 has been shown to inhibit ER stress-induced apo-
ptosis [79, 80]. Members of all Bcl-2 classes are also lo-
calized on the intracellular membrane of ER and regulate
ER Ca2+ homeostasis, probably by influencing membrane
permeability. Ca2+ release may induce apoptosis by in-
fluencing the mitochondrial PTP or by direct activation of
caspase-12 [79]. This caspase is localized on the ER mem-
brane and is specifically activated during ER stress-induced
apoptosis [81, 82]. Themechanism of caspase-12 activation
is not completely clear; it probably involves both a calpain-
dependent removal of the pro-domain and self-cleav-
age [79]. Calpains are Ca2+-dependent cytosolic cysteine
proteases which can also mediate caspase-independent apo-
ptosis [83]. Besides caspase-12, other ER-associated pro-
apoptotic molecules have been reported, e.g. Bap31, which

Table 2 Bcl-2 family members

Anti-apoptotic members
Bcl-2 Bcl-W Boo/Diva Mcl-1 Bfl-1/A1
Bcl-Xl Bcl-B
Pro-apoptotic members
Pro-apoptotic members with two or three distinct BH domains
Bax Bcl-Xs Bfk Bcl-Xs Bok/Mtd
Bak Bcl-GL

Pro-apoptotic members with a BH3 domain only
Bid PUMA Spike Hrk/DP5 Bik/Nbk/Blk
Bak Bad Nix Bim/Bod BNIP3/nix
Bmf Nip3 Noxa Harakiri
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is both a regulator of procaspase-8 and a substrate of cas-
pase-8 itself [84].

Inhibition of apoptosis

Since most cells can undergo apoptosis, it is clear that there
is a need for apoptosis inhibitory mechanisms. One group
of endogenous inhibitors of DR-induced apoptosis belongs
to the FADD-like ICE inhibitory proteins (FLIP)-family.
Their DED regions compete for binding to DED-contain-
ing initiator caspases-8 and -10 or adaptor proteins, there-
by inhibiting the recruitment to the DISC and inhibiting
apoptosis [85–88]. Both the mitochondrial pathway and
the death receptor pathway are under suppression of a fam-
ily of inhibitors of apoptosis (IAP), originally discovered
in baculoviruses and containing one to three baculoviral
IAP repeats (BIR) [89]. Several IAPs have been discovered
in humans, including c-IAP-1, c-IAP-2, XIAP, BIR repeat
containing ubiquitin-conjugating enzyme (BRUCE), neu-
ronal apoptosis inhibitory protein (NAIP), survivin and
livin [90–93]. IAPs inhibit directly or indirectly the mem-
bers of the caspase family, e.g. XIAP, c-IAP-1 and c-IAP-2
directly bind to and inhibit caspase-3, caspase-7 and cas-
pase-9 [94–96]. c-IAP-1 and c-IAP-2 have also been shown
to be induced and activated by the transcription factor
NF-κB (nuclear factor-κB), providing a positive feedback
loop [96]. Survivin, an IAP family member, also inhibits
caspases directly; recently, a role for survivin in mitotic
spindle formation was shown [92]. IAPs themselves are
negatively regulated by IAP-binding proteins such as Smac/
Diablo, a mitochondrial protein that can be released in the
cytosol during apoptosis induction [69]. Omi/HtrA2 has
also been described as an IAP-antagonist [70]. The recently
identified tumour-up-regulated CARD-containing antago-
nist of caspase-9 (TUCAN) suppresses caspase activation
induced by the Apaf-1 activator cytochrome c [97].

The highly conserved heat shock proteins (Hsp), syn-
thesized in response to stress, facilitate cell survival by
inhibiting apoptosis. Different Hsp families can rescue
cells at different phases of the apoptosis signalling cascade.
Hsp27 can protect mitochondria during apoptosis by in-
hibiting the activity of pro-apoptotic Bcl-2 family proteins,
or they can, more downstream, disrupt the apoptosome
function [98]. Hsp10, Hsp60 and Hsp90 also have pro-
apoptotic capacities and can chaperone the cell to death.
The role of Hsp proteins in regulation of apoptosis is ex-
tremely complex and beyond the scope of this review.
Their role in apoptosis is discussed in different interesting
reviews [99, 100].

Caspase-independent apoptosis

Some forms of cell death cannot be easily classified as
apoptosis or necrosis, e.g. when cell death occurs in the
presence of the caspase inhibitor Z-VAD.fmk without

DNA fragmentation, DNA condensation or caspase acti-
vation [101, 102]. Z-VAD.fmk binds irreversibly to the
catalytic site of all caspases through an aspartic acid residue
mimicking the cleavage site and a fluoromethyl ketone
(fmk) group forming a covalent inhibitor–enzyme complex
[103]. If caspases alone are responsible for the execution
of apoptosis, cells should survive apoptotic treatment in
the presence of Z-VAD.fmk. The opposite observation led
to the idea of caspase-independent apoptosis. Because not
all caspases are inhibited to the same extent by Z-VAD.
fmk, experiments using this artificial inhibitor do not pro-
vide indisputable evidence for caspase-independent apo-
ptosis. Bax-triggered cell death and different mitochondrial
changes (loss of mitochondrial membrane potential and
release of cytochrome c and AIF) were reported not to be
inhibited by Z-VAD.fmk [102, 104, 105]. There are also
reports of programmed cell death with originally necrotic
or non-apoptotic morphology. For example, TNF induces,
depending on the cell type, apoptotic cell death with cas-
pase activation or cell death with necrotic morphology and
without caspase activation [106–108]. It should also be
envisaged that, if cells escape from caspase activation, it
would be very dangerous for the organism to depend on a
single family of proteases for removing unwanted cells
[109]. Observation of non-caspase proteases including ca-
thepsins, calpains and serine proteases like granzyme A/B
and Omi/HtrA2 suggests that the role of caspases in ap-
optosis is substitutable [72, 110, 111]. These proteases can
cooperate with caspases, but they can also trigger caspase-
independent apoptosis [112].

Apoptosis and disease

Considering that apoptosis is an integral part of life, it is
obvious that it could play a role in the pathogenesis of
many diseases. Normally, apoptosis will remove unwanted,
injured and virus-infected cells, but disease can occur when
this process is disturbed. There are diseases linked with
suppression of apoptosis like cancer, atherosclerosis and
autoimmune disorders. Other diseases are linked with
increased apoptosis such as viral infections (e.g. AIDS),
bacterial infections (e.g. Neisseria meningitidis), neurode-
generative disorders (e.g. Alzheimer’s disease), autoim-
mune disorders (e.g. multiple sclerosis), haematological
disorders (e.g. myelodysplastic syndromes), ischaemic in-
jury (e.g. myocardial infarction) and toxin-induced dis-
eases (e.g. alcohol-induced hepatitis) [113]. The process of
aging seems to be associated with dysregulated apoptosis.
Different studies showed age-related changes in apoptosis-
regulating proteins, compatible with the higher prevalence
of malignancies, autoimmune diseases and neurodegener-
ative disorders in older people [114]. Below, some issues
on the role of apoptosis in cancer development and the
possibilities of apoptosis-based therapy will be highlight-
ed. For more information on the apoptosis-linked diseases
mentioned above, readers are referred to [113–116].
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Apoptosis and cancer

The accumulation of too many cells in cancer is a result of
excessive cell proliferation and/or insufficient apoptosis.
Both inactivating mutations in pro-apoptotic genes and
increased expression or activity of anti-apoptotic proteins
result in insufficient apoptosis and growth advantage of
malignant cells [117]. In this regard, mutations in the pro-
apoptotic p53 tumour suppressor gene and alterations in the
expression of proteins of the Bcl-2 family have received the
most attention.

Alterations in the amount of Bcl-2 protein family
members have been associated with a variety of patholog-
ical conditions. The anti-apoptotic Bcl-2 gene, identified in
the t(14;18) chromosomal translocation in follicle centre
cell B-cell lymphomas, is overexpressed in lymphomas,
acute leukaemias and in many solid tumours; its overex-
pression has been correlated with poor prognosis [118–
120]. Overexpression of other Bcl-2 family proteins has
also been identified; increased Mcl-1 expression has been
reported in acute leukaemias after relapse from chemo-
therapy, and elevation in Bcl-Xl level has been found in
chronic myeloid leukaemia (CML) and multiple myelo-
ma [121–124]. Insufficient expression of the pro-apoptotic
members Bax and Bak has been reported in several human
cancers, e.g. colon cancer and hematological malignancies
[125, 126]. A high ratio of Bcl-2 to Bax protein is correlated
with poor prognosis and decreased rates of complete re-
mission [127]. In addition, the genome of several patho-
genic viruses such as Epstein–Barr virus (EBV) encodes
Bcl-2 homologues [128].

The tumour suppressor gene p53 can be activated by a
variety of conditions including DNA damage, hypoxia and
heat shock. p53 regulates the transcription of several genes
involved in cell cycle arrest (p21, Gadd45) or induction of
apoptosis (eg. Bax, Apaf-1, caspase-9, Fas, DR5, the p53-
inducible gene (PIG) and Noxa) [52, 129–132]. Recently,
p53 has been shown to directly activate the pro-apoptotic
protein Bax, contributing to apoptosis [133]. Mutated or
deleted p53 is the most frequent genetic abnormality in
cancer; more than 50% of human tumours contain mu-
tations in p53 that inactivate its function [134–136]. Al-
teration of p53 abrogates its tumour suppressor activity
and contributes to tumourigenesis. Cells expressing mu-
tant p53 are also sensitive to drug-induced apoptosis [137,
138]. Individuals with Li-Fraumeni syndrome have germ-
line mutations in p53 and are predisposed to an increased
risk of malignancy, in particular, breast cancer and sar-
coma [139]. In addition, the presence of wild type p53
does not necessarily indicate that the p53 pathway is in-
tact: mutations or altered expression of upstream p53 reg-
ulators (ATM, Chk2, Mdm2 and p19 (ARF)) and human
papillomavirus (HPV)-E6 oncoprotein-triggered p53 pro-
teolysis have also been described in human tumours [138,
140, 141].

Alterations of other apoptotic regulators have also been
implicated in the pathogenesis of various malignancies.
Germline mutations in the human Fas gene are associated
with autoimmune lymphoproliferative syndrome (ALPS)

[142]. Somatic mutations in the Fas gene have been
described in myeloma, T-cell lymphoblastic leukaemia and
human T-cell leukaemia/lymphoma virus type I (HTLV-I)-
related adult T-cell leukaemia [143–147].

Mutations in caspase-encoding genes are less described.
Germline mutations in the pro-caspase-10 gene have been
identified in some patients with ALPS [148]. Mutations in
the genes encoding pro-caspase-8 or caspase-9 have been
described in neuroblastoma, and caspase-8 mutants inac-
tivate cell death in gastric carcinomas [149, 150].

The IAPs normally protect cells from apoptosis, but they
are also correlated with malignancies. The IAP survivin is
commonly overexpressed in cancer and counteracts apo-
ptosis at the G2/M checkpoint, contributing to aberrant
mitosis in many cancers [92, 151, 152]. A longer median
survival was seen in acute myeloid leukaemia (AML)
patients with low levels of another IAP, XIAP. Chromo-
somal translocations involving the c-IAP-2 gene have been
observed in mucosa-associated lymphomas of extranodal
tissues (MALT lymphomas) [153–156].

Besides tumourigenesis, defects in apoptosis can also
underlie drug resistance [157]. Tumour cells can resist
death receptor-mediated apoptosis following reduction or
loss of Fas from the cell surface (eg. in leukaemia) [144,
145, 158]. Overexpression of Bcl-2 and Bcl-Xl renders
cells resistant to chemotherapy; increased Bcl-2 levels have
been shown to inhibit apoptosis in response to dexameth-
asone and to chemotherapeutic agents like etoposide,
camptothecin, doxorubicine, vincristine and actinomycine
D [159–162].

Apoptosis and cancer therapy

Most drugs currently used in anti-cancer therapy kill target
cells by induction of apoptosis, both by receptor-mediated
and mitochondrial-mediated pathways. Disruption of the
mitochondrial membrane potential, cytochrome c release
and activation of different caspases have been described
following treatment of cells with diverse chemotherapeutic
agents [102, 163]. For example, chemotherapy-induced
increase in the transcription of the p53 response gene Bax
leads to cytochrome c release and caspase activity. Ac-
tivation of the Fas system has been observed in different
systems, e.g. induction of FasL and upregulation of Fas
following treatment of different tumour cell lines with
doxorubicin, cisplatin, methotrexate, cytarabine and eto-
poside [137, 164–167]. In addition, treatment of CML with
the death receptor ligand interferon α brings about the
upregulation of Fas on CML progenitors [168]. Patients
with Fas-positive AML were shown to have a better ther-
apeutic response in comparison with Fas-negative AML
patients [169].

The improved understanding of the mechanisms of
apoptosis and resistance to apoptosis have provided new
insights for the development of new anti-cancer agents.
TRAIL, a member of the TNF family of ligands, binds to
the cell surface death receptors DR4 and DR5 and is ex-
pressed by most cells; most normal cells appear to be re-
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sistant to TRAIL-induced apoptosis due to expression of
decoy receptors (DcR1 and DcR2), while transformed cells
are sensitive [32, 145, 170]. Indeed, TRAIL induced apo-
ptosis in leukaemic and solid tumour cell lines, while nor-
mal prostate cells, fibroblasts and smooth muscle cells
were unaffected. Furthermore, no observable TRAIL-in-
duced toxicity was observed in nude mice and non-human
primates [171]. Phase II clinical trials are currently ongo-
ing to evaluate the potential of HGS-ETR1, an agonistic
monoclonal antibody to TRAIL-R1, in the treatment of
non-small-cell lung cancer, colorectal cancer and non-
Hodgkin’s lymphoma (Human Genome Science, Rockville,
MD, USA; http://www.hgsi.com) [172].

The dysregulation of different members of the Bcl-2
family in many cancer types led to the search for small
inhibitors of this protein family. Small molecules with high
affinity for the BH3-domain on the surface of Bcl-2 induce
apoptosis [173–176]. Gossypol, a natural product found
in cottonseeds, interacts with the BH3-binding pocket of
four anti-apoptotic proteins [177, 178]. Several other
Bcl-2 family inhibitors are in pre-clinical investigation;
HA14-1, BH3I-1, antimycine analogues, certain theafla-
vins and epigallechatechins [179–181]. Recently, seliciclib
(CYC202 or R-roscovitine), a cyclin dependent kinase in-
hibitor, has shown activity in multiple myeloma via down-
regulation of Mcl-1 [182]. In addition, peptides mimicking
BH3 and antisense oligonucleotides targeting Bcl-2 can
enhance apoptosis in tumour cells. The Bcl-2 antisense drug
Genasense (Genta, Inc., Berkeley Heights, NJ, USA) is
currently in phase III clinical trials for malignant mela-
noma, multiple myeloma, chronic lymphocytic leukaemia
and non-small-cell lung cancer (http://www.genta.com)
[183–185]. Bcl-2 antisense oligonucleotide therapy trials
are ongoing in patients with non-Hodgkin’s lymphoma,
acute leukaemia and small-cell lung cancer [186–190].
Tumour-selective expression of pro-apoptotic Bax by ad-
enoviral gene transfer resulted in selective toxicity on tu-
mour cells [191].

Some compounds (e.g. PK11195, a peripheral bezodia-
zepine receptor ligand; methoxyoestradiol, an oestrogen
derivative; lonidamine, derived from indazole-3-carboxylic
acid and arsenite) have been shown to directly impact on
mitochondrial function [192, 193]. Lonidamine has been
shown in combination chemotherapy phase II and phase III
trials to improve the overall response rate of breast cancer
and non-small-cell lung cancer [194–196].

Different strategies for targeting tumours with p53 mu-
tation or dysregulation are also being exploited, including
development of small molecule inhibitors and inhibition of
expression and/or function of p53 regulators (e.g. Mdm-2)
[197].

The suppression of NF-κB is another strategy for de-
veloping new cancer therapies. This transcription factor
induces expression of several anti-apoptotic genes (Bcl-2,
Bcl-Xl, c-IAP-2), and NF-κB-overexpression has been
found in different cancers [198, 199]. Small molecule in-
hibitors of the IκB protein, the regulator of NF-κB, have
been identified [200]. Furthermore, chemical inhibitors of
IKK, the protein responsible for the phosphorylation of

IκB, with pro-apoptotic properties have been described
including BMS-345541, Bay 11-7082, SC-514 and beta
carbolines [201–204]. In addition, the proteasome inhibitor
bortezomib (PS-341) (Velcade) inhibits the degradation of
ubiquitinated IκB and is in clinical development for cancer
treatment (Millenium Pharmaceuticals Inc., Cambridge,
MA, USA) [205]. It has demonstrable clinical activity in
relapsed, refractory multiple myeloma [206]. Bortezomib
sensitizes its effects on NF-κB suppression-induced apo-
ptosis by downregulating Bcl-2 [207, 208]. On the other
hand, the level of the BH3-only proteins Bik and Bim is
increased in several cell lines by bortezomib, indicating
that these proteins are important mediators of the anti-
tumour activity [209].

Recently, the Smac/Diablo protein was discovered. This
protein binds to and inhibits the IAP-family proteins and
promotes apoptosis [68]. Peptides from the N terminus of
Smac can reverse the caspase inhibition by IAP. This has
opened up a new field for drug development; more small
molecules and oligonucleotides with effect on IAP are
being developed [210, 211]. The recent finding that the
caspase inhibitor survivin is abundantly expressed in trans-
formed cell lines but not in normal adult tissue generated
interest for selective targeting of cancer cells [92]. Indeed,
an antisense oligonucleotide targeting survivin sensitizes
cancer cells to etoposide treatment [212] (ISIS Pharma-
ceuticals/Lilly Inc.). Furthermore, downregulation of XIAP
induced apoptosis in ovarian cancer [213]. Heat shock
proteins are also pharmacological targets. Geldanamycin,
the first Hsp90 inhibitor, showed clear anti-tumour effects,
but high toxicity in clinical trials led to the synthesis of
geldanamycin hybrids with improved selectivity and effi-
ciency [100, 214].

For all these therapeutic options, the basic idea of se-
lective activation of apoptosis in transformed cells remains
the key issue and may result in the development of new
therapeutic agents, more active and/or less toxic than the
ones used currently. In the future, patient-specific profiles
of apoptosis-related genetic alterations and genetic com-
parisons between chemotherapy-sensitive and chemother-
apy-resistant cells will open the way for patient-specific
apoptosis-based therapy with hopefully fewer adverse ef-
fects [146, 215].

References

1. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the
significance of apoptosis. Int Rev Cytol 68:251–306

2. Farber JL, El Mofty SK (1975) The biochemical pathology of
liver cell necrosis. Am J Pathol 81:237–250

3. Uchiyama Y (1995) Apoptosis: the history and trends of its
studies. Arch Histol Cytol 58:127–137

4. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic
biological phenomenon with wide-ranging implications in tis-
sue kinetics. Br J Cancer 26:239–257

5. Yuan J (1996) Evolutionary conservation of a genetic pathway
of programmed cell death. J Cell Biochem 60:4–11

6. Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed
cell death contributes to postnatal lung development. Am J
Respir Cell Mol Biol 18:786–793

633

http://www.hgsi.com
http://www.genta.com


7. Scavo LM, Ertsey R, Chapin CJ, Allen L, Kitterman JA (1998)
Apoptosis in the development of rat and human fetal lungs. Am
J Respir Cell Mol Biol 18:21–31

8. Green DR, Martin SJ (1995) The killer and the executioner:
how apoptosis controls malignancy. Curr Opin Immunol 7:
694–703

9. Liebermann DA, Hoffman B, Steinman RA (1995) Molecular
controls of growth arrest and apoptosis: p53-dependent and
independent pathways. Oncogene 11:199–210

10. Shibata S, Kyuwa S, Lee SK, Toyoda Y, Goto N (1994)
Apoptosis induced in mouse hepatitis virus-infected cells by a
virus-specific CD8+ cytotoxic T-lymphocyte clone. J Virol 68:
7540–7545

11. Nicholson DW, Thornberry NA (1997) Caspases: killer pro-
teases. Trends Biochem Sci 22:299–306

12. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within.
Science 281:1312–1316

13. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T,
Garcia CM, Houtzager VM, Nordstrom PA, Roy S, Vaillancourt
JP, Chapman KT, Nicholson DW (1997) A combinatorial ap-
proach defines specificities of members of the caspase family
and granzyme B. Functional relationships established for key
mediators of apoptosis. J Biol Chem 272:17907–17911

14. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian
caspases: structure, activation, substrates, and functions during
apoptosis. Annu Rev Biochem 68:383–424

15. Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose)
polymerase: a sensitive parameter to study cell death. Biochem
Cell Biol 75:337–349

16. Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD
inhibitor in CAD activation and DNA degradation during ap-
optosis. Nature 391:96–99

17. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a
heterodimeric protein that functions downstream of caspase-3
to trigger DNA fragmentation during apoptosis. Cell 89:175–
184

18. Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM
(1996) The CED-3/ICE-like protease Mch2 is activated during
apoptosis and cleaves the death substrate lamin A. J Biol Chem
271:16443–16446

19. Mashima T, Naito M, Fujita N, Noguchi K, Tsuruo T (1995)
Identification of actin as a substrate of ICE and an ICE-like
protease and involvement of an ICE-like protease but not ICE
in VP-16–induced U937 apoptosis. Biochem Biophys Res
Commun 217:1185–1192

20. Martin SJ, O’Brien GA, Nishioka WK, McGahon AJ,
Mahboubi A, Saido TC, Green DR (1995) Proteolysis of
fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem
270:6425–6428

21. Song Q, Lees-Miller SP, Kumar S, Zhang Z, Chan DW, Smith
GC, Jackson SP, Alnemri ES, Litwack G, Khanna KK, Lavin
MF (1996) DNA-dependent protein kinase catalytic subunit: a
target for an ICE-like protease in apoptosis. EMBO J 15:3238–
3246

22. Widmann C, Gibson S, Johnson GL (1998) Caspase-dependent
cleavage of signaling proteins during apoptosis. A turn-off
mechanism for anti-apoptotic signals. J Biol Chem 273:7141–
7147

23. Hengartner MO (2000) The biochemistry of apoptosis. Nature
407:770–776

24. Barkett M, Xue D, Horvitz HR, Gilmore TD (1997) Phos-
phorylation of IkappaB-alpha inhibits its cleavage by caspase
CPP32 in vitro. J Biol Chem 272:29419–29422

25. Tan X, Martin SJ, Green DR, Wang JYJ (1997) Degradation of
retinoblastoma protein in tumor necrosis factor- and CD95-
induced cell death. J Biol Chem 272:9613–9616

26. Grandgirard D, Studer E, Monney L, Belser T, Fellay I, Borner
C, Michel MR (1998) Alphaviruses induce apoptosis in Bcl-2-
overexpressing cells: evidence for a caspase-mediated, proteo-
lytic inactivation of Bcl-2. EMBO J 17:1268–1278

27. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi
A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA,
Hardwick JM (1998) Modulation of cell death by Bcl-XL
through caspase interaction. Proc Natl Acad Sci U S A 95:554–
559

28. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by
caspase 8 mediates the mitochondrial damage in the Fas path-
way of apoptosis. Cell 94:491–501

29. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard
AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR,
Aunins J et al (1992) A novel heterodimeric cysteine protease is
required for interleukin-1 beta processing in monocytes. Nature
356:768–774

30. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A,
Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand,
a new member of the tumor necrosis factor cytokine family.
J Biol Chem 271:12687–12690

31. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor
superfamily of cellular and viral proteins: activation, costimula-
tion, and death. Cell 76:959–962

32. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and
modulation. Science 281:1305–1308

33. Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer
AY, Camonis JH, Wallach D (1995) Self-association of the
“death domains” of the p55 tumor necrosis factor (TNF) recep-
tor and Fas/APO1 prompts signaling for TNF and Fas/APO1
effects. J Biol Chem 270:387–391

34. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995)
FADD, a novel death domain-containing protein, interacts with
the death domain of Fas and initiates apoptosis. Cell 81:505–
512

35. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365
36. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M,

Krammer PH, Peter ME (1997) FLICE is activated by as-
sociation with the CD95 death-inducing signaling complex
(DISC). EMBO J 16:2794–2804

37. Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf
BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D,
Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-
caspase-3 is a major physiologic target of caspase-8. J Biol
Chem 273:27084–27090

38. Hsu H, Shu HB, Pan MG, Goeddel DV (1996) TRADD-
TRAF2 and TRADD-FADD interactions define two distinct
TNF receptor 1 signal transduction pathways. Cell 84:299–308

39. Whiteside ST, Israel A (1997) I kappa B proteins: structure,
function and regulation. Semin Cancer Biol 8:75–82

40. Duan H, Dixit VM (1997) RAIDD is a new ‘death’ adaptor
molecule. Nature 385:86–89

41. Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G,
Fernandes AT, Alnemri ES (1997) CRADD, a novel human
apoptotic adaptor molecule for caspase-2, and FasL/tumor ne-
crosis factor receptor-interacting protein RIP. Cancer Res 57:
615–619

42. Sheikh MS, Fornace AJ Jr (2000) Death and decoy receptors
and p53-mediated apoptosis. Leukemia 14:1509–1513

43. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1,
a human protein homologous to C. elegans CED-4, participates
in cytochrome c-dependent activation of caspase-3. Cell 90:
405–413

44. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M,
Alnemri ES, Wang X (1997) Cytochrome c and dATP-de-
pendent formation of Apaf-1/caspase-9 complex initiates an ap-
optotic protease cascade. Cell 91:479–489

634



45. Festjens N, van Gurp M, Van Loo G, Saelens X, Vandenabeele
P (2004) Bcl-2 family members as sentinels of cellular integrity
and role of mitochondrial intermembrane space proteins in
apoptotic cell death. Acta Haematol 111:7–27

46. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H,
Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn
GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D
reveals a critical role for mitochondrial permeability transition
in cell death. Nature 434:658–662

47. Szewczyk A, Wojtczak L (2002) Mitochondria as a pharma-
cological target. Pharmacol Rev 54:101–127

48. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of
cell survival. Science 281:1322–1326

49. Gross A, McDonnell JM, Korsmeyer SJ (1999) Bcl-2 family
members and the mitochondria in apoptosis. Genes Dev 13:
1899–1911

50. Minn AJ, Swain RE, Ma A, Thompson CB (1998) Recent
progress on the regulation of apoptosis by Bcl-2 family mem-
bers. Adv Immunol 70:245–279

51. Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the
role of the BH3 domain in apoptosis. Trends Cell Biol 8:324–
330

52. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita
T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only
member of the Bcl-2 family and candidate mediator of p53-
induced apoptosis. Science 288:1053–1058

53. Guo B, Godzik A, Reed JC (2001) Bcl-G, a novel pro-apoptotic
member of Bcl-2 family. J Biol Chem 276:2780–2785

54. Ke N, Godzik A, Reed JC (2001) Bcl-B, a novel Bcl-2 family
member that differentially binds and regulates Bax and Bak.
J Biol Chem 276:12481–12484

55. Shinoe T, Wanaka A, Nikaido T, Kanazawa K, Shimizu J,
Imaizumi K, Kanazawa I (2001) Upregulation of the pro-apo-
ptotic BH3-only peptide harakiri in spinal neurons of amyo-
trophic lateral sclerosis patients. Neurosci Lett 313:153–157

56. Wu X, Deng Y (2002) Bax and BH3-domain-only proteins in
p53-mediated apoptosis. Front Biosci 7:151–156

57. Farooq M, Kim Y, Im S, Chung E, Hwang S, Sohn M, Kim M,
Kim J (2001) Cloning of BNIP3h, a member of proapoptotic
BNIP3 family genes. Exp Mol Med 33:169–173

58. Inohara N, Ekhterae D, Garcia I, Carrio R, Merino J, Merry A,
Chen S, Nunez G (1998) Mtd, a novel Bcl-2 family member
activates apoptosis in the absence of heterodimerization with
Bcl-2 and Bcl-XL. J Biol Chem 273:8705–8710

59. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and
the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:
691–699

60. Reed JC (1996) Mechanisms of Bcl-2 family protein function
and dysfunction in health and disease. Behring Inst Mitt 97:72–
100

61. Burlacu A (2003) Regulation of apoptosis by Bcl-2 family
proteins. J Cell Mol Med 7:249–257

62. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG,
Colman PM, Day CL, Adams JM, Huang DC (2005) Differ-
ential targeting of prosurvival Bcl-2 proteins by their BH3-only
ligands allows complementary apoptotic function. Mol Cell
17:393–403

63. Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis.
Eur J Biochem 252:1–15

64. Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation
required for anti-apoptosis function. J Biol Chem 272:11671–
11673

65. Blagosklonny MV (2001) Unwinding the loop of Bcl-2
phosphorylation. Leukemia 15:869–874

66. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C,
Larochette N, Prevost MC, Alzari PM, Kroemer G (1999)
Mitochondrial release of caspase-2 and -9 during the apoptotic
process. J Exp Med 189:381–394

67. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson
EP, Casciola-Rosen LA, Rosen A (1998) The caspase-3 pre-
cursor has a cytosolic and mitochondrial distribution: impli-
cations for apoptotic signaling. J Cell Biol 140:1485–1495

68. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a
mitochondrial protein that promotes cytochrome c-dependent
caspase activation by eliminating IAP inhibition. Cell 102:33–
42

69. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM,
Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identifi-
cation of DIABLO, a mammalian protein that promotes apo-
ptosis by binding to and antagonizing IAP proteins. Cell 102:
43–53

70. Van Loo G, van Gurp M, Depuydt B, Srinivasula SM,
Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J,
Declercq W, Vandenabeele P (2002) The serine protease Omi/
HtrA2 is released from mitochondria during apoptosis. Omi
interacts with caspase-inhibitor XIAP and induces enhanced
caspase activity. Cell Death Differ 9:20–26

71. Van Loo G, Demol H, van Gurp M, Hoorelbeke B, Schotte P,
Beyaert R, Zhivotovsky B, Gevaert K, Declercq W,
Vandekerckhove J, Vandenabeele P (2002) A matrix-assisted
laser desorption ionization post-source decay (MALDI-PSD)
analysis of proteins released from isolated liver mitochondria
treated with recombinant truncated Bid. Cell Death Differ 9:
301–308

72. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R,
Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes-
Alnemri T, Alnemri ES (2002) Identification of Omi/HtrA2 as a
mitochondrial apoptotic serine protease that disrupts inhibitor
of apoptosis protein-caspase interaction. J Biol Chem 277:432–
438

73. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic
DNase when released from mitochondria. Nature 412:95–99

74. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid,
a Bcl2 interacting protein, mediates cytochrome c release from
mitochondria in response to activation of cell surface death
receptors. Cell 94:481–490

75. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S,
Laupher S, Maundrell K, Antonsson B, Martinou J (1999) Bid-
induced conformational change of Bax is reponsible for mito-
chondrial cytochrome c release during apoptosis. J Cell Biol
144:891–901

76. Zamzami N, El Hamel C, Maisse C, Brenner C, Munoz-Pinedo
C, Belzacq AS, Costantini P, Vieira H, Loeffler M, Molle G,
Kroemer G (2000) Bid acts on the permeability transition pore
complex to induce apoptosis. Oncogene 19:6342–6350

77. Jaattela M (2004) Multiple cell death pathways as regulators of
tumour initiation and progression. Oncogene 23:2746–2756

78. Herr I, Debatin KM (2001) Cellular stress response and
apoptosis in cancer therapy. Blood 98:2603–2614

79. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore
GC (2003) Regulation of apoptosis by endoplasmic reticulum
pathways. Oncogene 22:8608–8618

80. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell
death pathways. Nat Cell Biol 3:E255–E263

81. Momoi T (2004) Caspases involved in ER stress-mediated cell
death. J Chem Neuroanat 28:101–105

82. Kadowaki H, Nishitoh H, Ichijo H (2004) Survival and apo-
ptosis signals in ER stress: the role of protein kinases. J Chem
Neuroanat 28:93–100

83. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The
calpain system. Physiol Rev 83:731–801

84. Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW,
Cromlish JA, Shore GC (1997) p28 Bap31, a Bcl-2/Bcl-XL-
and procaspase-8-associated protein in the endoplasmic retic-
ulum. J Cell Biol 139:327–338

85. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E,
Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M,
Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral
FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced
by death receptors. Nature 386:517–521

86. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM (1997) I-FLICE, a
novel inhibitor of tumor necrosis factor receptor-1 and CD-95-
induced apoptosis. J Biol Chem 272:17255–17257

635



87. Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S,
Wang Y, Fernandes AT, Croce CM, Litwack G, Tomaselli KJ,
Armstrong RC, Alnemri ES (1997) FLAME-1, a novel FADD-
like anti-apoptotic molecule that regulates Fas/TNFR1-induced
apoptosis. J Biol Chem 272:18542–18545

88. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K,
Steiner V, Bodmer JL, Schroter M, Burns K, Mattmann C,
Rimoldi D, French LE, Tschopp J (1997) Inhibition of death
receptor signals by cellular FLIP [see comments]. Nature 388:
190–195

89. Uren AG, Coulson EJ, Vaux DL (1998) Conservation of
baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in
viruses, nematodes, vertebrates and yeast. Trends Biochem Sci
23:159–162

90. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton HG,
Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG
(1996) Suppression of apoptosis in mammalian cells by NAIP
and a related family of IAP genes. Nature 379:349–353

91. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL,
Gilfillan MC, Shiels H, Hardwick JM, Thompson CB (1996) A
conserved family of cellular genes related to the baculovirus iap
gene and encoding apoptosis inhibitors. EMBO J 15:2685–
2694

92. Ambrosini G, Adida C, Altieri DC (1997) A novel anti-
apoptosis gene, survivin, expressed in cancer and lymphoma.
Nat Med 3:917–921

93. Kasof GM, Gomes BC (2001) Livin, a novel inhibitor of
apoptosis protein family member. J Biol Chem 276:3238–3246

94. Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) X-
linked IAP is a direct inhibitor of cell-death proteases. Nature
388:300–304

95. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC
(1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors
of specific caspases. EMBO J 16:6914–6925

96. LaCasse E, Baird S, Korneluk R, MacKenzie A (1998) The
inhibitors of apoptosis (IAPs) and their emerging role in cancer.
Oncogene 17:3247–3259

97. Pathan N, Marusawa H, Krajewska M, Matsuzawa S, Kim H,
Okada K, Torii S, Kitada S, Krajewski S, Welsh K, Pio F,
Godzik A, Reed JC (2001) TUCAN, an antiapoptotic caspase-
associated recruitment domain family protein overexpressed in
cancer. J Biol Chem 276:32220–32229

98. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A,
Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR
(2000) Heat-shock protein 70 inhibits apoptosis by preventing
recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat
Cell Biol 2:469–475

99. Beere HM (2004) “The stress of dying”: the role of heat shock
proteins in the regulation of apoptosis. J Cell Sci 117:2641–
2651

100. Sreedhar AS, Csermely P (2004) Heat shock proteins in the
regulation of apoptosis: new strategies in tumor therapy: a
comprehensive review. Pharmacol Ther 101:227–257

101. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI (1997)
Inhibition of Ced-3/ICE-related proteases does not prevent cell
death induced by oncogenes, DNA damage, or the Bcl-2
homologue Bak. J Cell Biol 136:215–227

102. Vermeulen K, Strnad M, Havlicek L, Van Onckelen H, Lenjou
M, Nijs G, Van Bockstaele D, Berneman ZN (2002) Plant
cytokinin analogues with inhibitory activity on cyclin depen-
dent kinases (CDK) exert their antiproliferative effect through
induction of apoptosis initiated by the mitochondrial pathway:
determination by a multiparametric flow cytometric analysis.
Exp Hematol 30:1107–1114

103. Thornberry NA, Peterson EP, Zhao JJ, Howard AD, Griffin
PR, Chapman KT (1994) Inactivation of interleukin-1 beta
converting enzyme by peptide (acyloxy)methyl ketones. Bio-
chemistry 33:3934–3940

104. Green DR, Reed JC (1998) Mitochondria and apoptosis.
Science 281:1309–1312

105. Xiang J, Chao DT, Korsmeyer SJ (1996) Bax-induced cell
death may not require interleukin 1 beta-converting enzyme-
like proteases. Proc Natl Acad Sci U S A 93:14559–14563

106. Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo
G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998)
Inhibition of caspases increases the sensitivity of L929 cells to
necrosis mediated by tumor necrosis factor. J Exp Med 187:
1477–1485

107. Schulze OK, Krammer PH, Droge W (1994) Divergent
signalling via APO-1/Fas and the TNF receptor, two homol-
ogous molecules involved in physiological cell death. EMBO
J 13:4587–4596

108. Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P
(2003) Caspase inhibition causes hyperacute tumor necrosis
factor-induced shock via oxidative stress and phospholipase
A2. Nat Immunol 4:387–393

109. Mathiasen IS, Jaattela M (2002) Triggering caspase-indepen-
dent cell death to combat cancer. Trends Mol Med 8:212–220

110. Johnson DE (2000) Noncaspase proteases in apoptosis. Leu-
kemia 14:1695–1703

111. Green DR, Kroemer G (2004) The pathophysiology of mito-
chondrial cell death. Science 305:626–629

112. Leist M, Jaattela M (2001) Four deaths and a funeral: from
caspases to alternative mechanisms. Nat Rev Mol Cell Biol
2:589–598

113. Fadeel B, Orrenius S, Zhivotovsky B (1999) Apoptosis in
human disease: a new skin for the old ceremony? Biochem
Biophys Res Commun 266:699–717

114. Joaquin AM, Gollapudi S (2001) Functional decline in aging
and disease: a role for apoptosis. J Am Geriatr Soc 49:1234–
1240

115. Granville DJ, Carthy CM, Hunt DW, McManus BM (1998)
Apoptosis: molecular aspects of cell death and disease. Lab
Invest 78:893–913

116. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM,
Venkatachalam MA (1999) Apoptosis: definition, mecha-
nisms, and relevance to disease. Am J Med 107:489–506

117. Evan GI, Vousden KH (2001) Proliferation, cell cycle and
apoptosis in cancer. Nature 411:342–348

118. Reed JC, Miyashita T, Takayama S, Wang HG, Sato T,
Krajewski S, Aime SC, Bodrug S, Kitada S, Hanada M (1996)
BCL-2 family proteins: regulators of cell death involved in the
pathogenesis of cancer and resistance to therapy. J Cell Bio-
chem 60:23–32

119. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW,
Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal
breakpoint of t(14;18) human lymphomas: clustering around
JH on chromosome 14 and near a transcriptional unit on 18.
Cell 41:899–906

120. Tsujimoto Y, Yunis J, Onorato SL, Erikson J, Nowell PC,
Croce CM (1984) Molecular cloning of the chromosomal
breakpoint of B-cell lymphomas and leukemias with the
t(11;14) chromosome translocation. Science 224:1403–1406

121. Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ,
Gore SD, Reed JC (1998) Elevated expression of the apoptotic
regulator Mcl-1 at the time of leukemic relapse. Blood 91:991–
1000

122. Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL,
Bataille R, Amiot M (1999) Mcl-1 and Bcl-XL are co-reg-
ulated by IL-6 in human myeloma cells. J Cell Biol 97: 1235–
1239

123. Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE,
Witte ON, Green DR (1998) Bcl-2-independent Bcr-Abl-
mediated resistance to apoptosis: protection is correlated with
up regulation of Bcl-xL. Oncogene 16:1383–1390

636



124. Michels J, Johnson PW, Packham G (2005) Mcl-1. Int J Bio-
chem Cell Biol 37:267–271

125. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC,
Perucho M (1997) Somatic frameshift mutations in the BAX
gene in colon cancers of the microsatellite mutator phenotype.
Science 275:967–969

126. Brimmell M, Mendiola R, Mangion J, Packham G (1998)
BAX frameshift mutations in cell lines derived from human
haemopoietic malignancies are associated with resistance to
apoptosis and microsatellite instability. Oncogene 16:1803–
1812

127. Ong Y, McMullin M, Bailie K, Lappin T, Jones F, Irvine A
(2000) High bax expression is a good prognostic indicator in
acute myeloid leukaemia. Br J Haematol 111:182–189

128. Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G (1998)
Subcellular and submitochondrial mode of action of Bcl-2-like
oncoproteins. Oncogene 16:2265–2282

129. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct
transcriptional activator of the human bax gene. Cell 80:293–
299

130. Soengas MS, Alarcon RM, Yoshida H, Giaccia AJ, Hakem R,
Mak TW, Lowe SW (1999) Apaf-1 and caspase-9 in p53-
dependent apoptosis and tumor inhibition. Science 284:156–
159

131. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee
SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel
E et al (1995) Wild-type human p53 and a temperature-
sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol
15:3032–3040

132. Sheikh MS, Burns TF, Huang Y, Wu GS, Amundson S, Brooks
KS, Fornace AJ Jr, el Deiry WS (1998) p53-dependent and
-independent regulation of the death receptor KILLER/DR5
gene expression in response to genotoxic stress and tumor ne-
crosis factor alpha. Cancer Res 58:1593–1598

133. Chipuk JE, Green DR (2004) Cytoplasmic p53: bax and
forward. Cell Cycle 3:429–431

134. Amundson SA, Myers TG, Fornace AJ Jr (1998) Roles for p53
in growth arrest and apoptosis: putting on the brakes after
genotoxic stress. Oncogene 17:3287–3299

135. Levine AJ (1997) p53, the cellular gatekeeper for growth and
division. Cell 88:323–331

136. Schwartz D, Rotter V (1998) p53-dependent cell cycle control:
response to genotoxic stress. Semin Cancer Biol 8:325–336

137. Muller M, Strand S, Hug H, Heinemann EM, Walczak H,
Hofmann WJ, Stremmel W, Krammer PH, Galle PR (1997)
Drug-induced apoptosis in hepatoma cells is mediated by the
CD95 (APO-1/Fas) receptor/ligand system and involves acti-
vation of wild-type p53. J Clin Invest 99:403–413

138. Oren M (1999) Regulation of the p53 tumor suppressor
protein. J Biol Chem 274:36031–36034

139. Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH (1990)
Germ-line transmission of a mutated p53 gene in a cancer-
prone family with Li-Fraumeni syndrome [see comments].
Nature 348:747–749

140. Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin
Genet Dev 10:94–99

141. Khanna KK, Jackson SP (2001) DNA double-strand breaks:
signaling, repair and the cancer connection. Nat Genet 27:247–
254

142. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA,
Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant
interfering Fas gene mutations impair apoptosis in a human
autoimmune lymphoproliferative syndrome. Cell 81:935–946

143. Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M
(1998) Mutation of CD95 (Fas/Apo-1) gene in adult T-cell
leukemia cells. Blood 91:3935–3942

144. Beltinger C, Kurz E, Bohler T, Schrappe M, Ludwig WD,
Debatin KM (1998) CD95 (APO-1/Fas) mutations in child-
hood T-lineage acute lymphoblastic leukemia. Blood 91:3943–
3951

145. Landowski TH, Qu N, Buyuksal I, Painter JS, Dalton WS
(1997) Mutations in the Fas antigen in patients with multiple
myeloma. Blood 90:4266–4270

146. Siegel RM, Chan FK, Chun HJ, Lenardo MJ (2000) The
multifaceted role of Fas signaling in immune cell homeostasis
and autoimmunity. Nat Immunol 1:469–474

147. Krammer PH (2000) CD95’s deadly mission in the immune
system. Nature 407:789–795

148. Wang J, Zheng L, Lobito A, Chan FK, Dale J, Sneller M, Yao
X, Puck JM, Straus SE, Lenardo MJ (1999) Inherited human
Caspase 10 mutations underlie defective lymphocyte and
dendritic cell apoptosis in autoimmune lymphoproliferative
syndrome type II. Cell 98:47–58

149. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine
VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8
is deleted or silenced preferentially in childhood neuroblasto-
mas with amplification of MYCN. Nat Med 6:529–535

150. Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, Nam
SW, Lee JY, Yoo NJ, Lee SH (2005) CASPASE-8 gene is
inactivated by somatic mutations in gastric carcinomas. Cancer
Res 65:815–821

151. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio
PC, Altieri DC (1998) Control of apoptosis and mitotic spindle
checkpoint by survivin. Nature 396:580–584

152. Li F (2005) Role of survivin and its splice variants in tu-
morigenesis. Br J Cancer 92:212–216

153. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K,
Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff
M, Reed JC (2000) Expression and prognostic significance of
IAP-family genes in human cancers and myeloid leukemias.
Clin Cancer Res 6:1796–1803

154. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri
S, Koonin EV, Dixit VM (2000) Identification of paracaspases
and metacaspases: two ancient families of caspase-like pro-
teins, one of which plays a key role in MALT lymphoma. Mol
Cell 6:961–967

155. Morgan JA, Yin Y, Borowsky AD, Kuo F, Nourmand N,
Koontz JI, Reynolds C, Soreng L, Griffin CA, Graeme-Cook
F, Harris NL, Weisenburger D, Pinkus GS, Fletcher JA, Sklar
J (1999) Breakpoints of the t(11;18)(q21;q21) in mucosa-
associated lymphoid tissue (MALT) lymphoma lie within or
near the previously undescribed gene MALT1 in chromosome
18. Cancer Res 59:6205–6213

156. Motegi M, Yonezumi M, Suzuki H, Suzuki R, Hosokawa Y,
Hosaka S, Kodera Y, Morishima Y, Nakamura S, Seto M
(2000) API2-MALT1 chimeric transcripts involved in mucosa-
associated lymphoid tissue type lymphoma predict heteroge-
neous products. Am J Pathol 156:807–812

157. Schmitt CA, Lowe SW (1999) Apoptosis and therapy. J Pathol
187:127–137

158. Martinez-Lorenzo MJ, Gamen S, Etxeberria J, Lasierra P,
Larrad L, Pineiro A, Anel A, Naval J, Alava MA (1998)
Resistance to apoptosis correlates with a highly proliferative
phenotype and loss of Fas and CPP32 (caspase-3) expression
in human leukemia cells. Int J Cancer 75:473–481

159. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon
C, Archimbaud E, Magaud JP, Guyotat D (1993) High
expression of bcl-2 protein in acute myeloid leukemia cells
is associated with poor response to chemotherapy. Blood 81:
3091–3096

160. Simonian PL, Grillot DA, Nunez G (1997) Bcl-2 and Bcl-XL
can differentially block chemotherapy-induced cell death.
Blood 90:1208–1216

161. Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Ex-
pression of bcl-xL can confer a multidrug resistance pheno-
type. Blood 86:1903–1910

162. Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks che-
motherapy-induced apoptosis in a human leukemia cell line.
Blood 81:151–157

637



163. Kroemer G, Reed JC (2000) Mitochondrial control of cell
death. Nat Med 6:513–519

164. Friesen C, Herr I, Krammer PH, Debatin KM (1996)
Involvement of the CD95 (APO-1/FAS) receptor/ligand sys-
tem in drug-induced apoptosis in leukemia cells. Nat Med 2:
574–577

165. Friesen C, Fulda S, Debatin KM (1997) Deficient activation of
the CD95 (APO-1/Fas) system in drug-resistant cells. Leuke-
mia 11:1833–1841

166. Fulda S, Sieverts H, Friesen C, Herr I, Debatin KM (1997) The
CD95 (APO-1/Fas) system mediates drug-induced apoptosis in
neuroblastoma cells. Cancer Res 57:3823–3829

167. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M,
Nunez G, Krammer PH, Peter ME, Debatin KM (1997)
Betulinic acid triggers CD95 (APO-1/Fas)- and p53-indepen-
dent apoptosis via activation of caspases in neuroectodermal
tumors. Cancer Res 57:4956–4964

168. Selleri C, Sato T, Del Vecchio L, Luciano L, Barrett AJ, Rotoli
B, Young NS, Maciejewski JP (1997) Involvement of Fas-
mediated apoptosis in the inhibitory effects of interferon-alpha
in chronic myelogenous leukemia. Blood 89:957–964

169. Min YH, Lee S, Lee JW et al (1996) Expression of FAS
antigen in acute myeloid leukemia is associated with thera-
peutic response to chemotherapy. Br J Haematol 93:928–930

170. Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter
A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ,
Offringa R (2001) Blockade of the granzyme B/perforin
pathway through overexpression of the serine protease inhib-
itor PI-9/SPI-6 constitutes a mechanism for immune escape by
tumors. Proc Natl Acad Sci U S A 98:11515–11520

171. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA,
Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A,
DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J,
Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and
antitumor activity of recombinant soluble Apo2 ligand. J Clin
Invest 104:155–162

172. Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M,
Sung C, Riccobene T, Johnson R, Fiscella M, Mahoney A,
Carrell J, Boyd E, Yao XT, Zhang L, Zhong L, von Kerczek A,
Shepard L, Vaughan T, Edwards B, Dobson C, Salcedo T,
Albert V (2005) HGS-ETR1, a fully human TRAIL-receptor 1
monoclonal antibody, induces cell death in multiple tumour
types in vitro and in vivo. Br J Cancer 92:1430–1441

173. Wang JL, Zhang ZJ, Choksi S, Shan S, Lu Z, Croce CM,
Alnemri ES, Korngold R, Huang Z (2000) Cell permeable Bcl-
2 binding peptides: a chemical approach to apoptosis induction
in tumor cells. Cancer Res 60:1498–1502

174. Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD,
Yuan J, Wagner G (2002) A novel approach for characterizing
protein ligand complexes: molecular basis for specificity of
small-molecule Bcl-2 inhibitors. J Am Chem Soc 124:1234–
1240

175. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM,
Croce CM, Alnemri ES, Huang Z (2000) Structure-based
discovery of an organic compound that binds Bcl-2 protein and
induces apoptosis of tumor cells. Proc Natl Acad Sci U S A
97:7124–7129

176. Degterev A (2001) Identification of small-molecule inhibitors
of interaction between BH3 domain and Bcl-Xl. Nat Cell Biol
3:173–182

177. Pellecchia M, Reed JC (2004) Inhibition of anti-apoptotic Bcl-
2 family proteins by natural polyphenols: new avenues for
cancer chemoprevention and chemotherapy. Curr Pharm Des
10:1387–1398

178. Qiu J, Levin LR, Buck J, Reidenberg MM (2002) Different
pathways of cell killing by gossypol enantiomers. Exp Biol
Med (Maywood) 227:398–401

179. Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M
(2003) Cancer prevention by tea polyphenols is linked to their
direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer
Res 63:8118–8121

180. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G,
Mitchison T, Yuan J (2001) Identification of small-molecule
inhibitors of interaction between the BH3 domain and Bcl-xL.
Nat Cell Biol 3:173–182

181. Tzung SP, Kim KM, Basanez G, Giedt CD, Simon J,
Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin
A mimics a cell-death-inducing Bcl-2 homology domain 3.
Nat Cell Biol 3:183–191

182. Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui
H, Shiraishi N, Chauhan D, Munshi NC, Green SR, Anderson
KC (2005) Seliciclib (CYC202 or R-Roscovitine), a small
molecule cyclin dependent kinase inhibitor, mediates activity
via downregulation of Mcl-1 in multiple myeloma. Blood
prepublished online Apr 12

183. Koty PP, Zhang H, Levitt ML (1999) Antisense bcl-2
treatment increases programmed cell death in non-small cell
lung cancer cell lines. Lung Cancer 23:115–127

184. Keith FJ, Bradbury DA, Zhu YM, Russell NH (1995)
Inhibition of bcl-2 with antisense oligonucleotides induces
apoptosis and increases the sensitivity of AML blasts to Ara-C.
Leukemia 9:131–138

185. Banerjee D (2001) Genasense (Genta Inc). Curr Opin Investig
Drugs 2:574–580

186. Kitada S, Takayama S, De Riel K, Tanaka S, Reed JC (1994)
Reversal of chemoresistance of lymphoma cells by antisense-
mediated reduction of bcl-2 gene expression. Antisense Res
Dev 4:71–79

187. Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F,
Ross P, Corbo M, Dziewanowska Z (1997) BCL-2 antisense
therapy in patients with non-Hodgkin lymphoma. Lancet 349:
1137–1141

188. Flaherty KT, Stevenson JP, O’Dwyer PJ (2001) Antisense
therapeutics: lessons from early clinical trials. Curr Opin
Oncol 13:499–505

189. Marcucci G, Byrd JC, Dai G, Klisovic MI, Kourlas PJ, Young
DC, Cataland SR, Fisher DB, Lucas D, Chan KK, Porcu P, Lin
ZP, Farag SF, Frankel SR, Zwiebel JA, Kraut EH, Balcerzak
SP, Bloomfield CD, Grever MR, Caligiuri MA (2003) Phase 1
and pharmacodynamic studies of G3139, a Bcl-2 antisense
oligonucleotide, in combination with chemotherapy in refrac-
tory or relapsed acute leukemia. Blood 101:425–432

190. Rudin CM, Kozloff M, Hoffman PC, Edelman MJ, Karnauskas
R, Tomek R, Szeto L, Vokes EE (2004) Phase I study of G3139,
a bcl-2 antisense oligonucleotide, combined with carboplatin
and etoposide in patients with small-cell lung cancer. J Clin
Oncol 22:1110–1117

191. Tai YT, Strobel T, Kufe D, Cannistra SA (1999) In vivo
cytotoxicity of ovarian cancer cells through tumor-selective
expression of the Bax gene. Cancer Res 59:2121–2126

192. Grad JM, Cepero E, Boise LH (2001) Mitochondria as targets
for established and novel anti-cancer agents. Drug Resist
Updat 4:85–91

193. Costantini P, Jacotot E, Decaudin D, Kroemer G (2000)
Mitochondrion as a novel target of anticancer chemotherapy.
J Natl Cancer Inst 92:1042–1053

194. Amadori D, Frassineti GL, De Matteis A, Mustacchi G,
Santoro A, Cariello S, Ferrari M, Nascimben O, Nanni O,
Lombardi A, Scarpi E, Zoli W (1998) Modulating effect of
lonidamine on response to doxorubicin in metastatic breast
cancer patients: results from a multicenter prospective
randomized trial. Breast Cancer Res Treat 49:209–217

195. Dogliotti L, Danese S, Berruti A, Zola P, Buniva T, Bottini A,
Richiardi G, Moro G, Farris A, Bau MG, Porcile G (1998)
Cisplatin, epirubicin, and lonidamine combination regimen as
first-line chemotherapy for metastatic breast cancer: a pilot
study. Cancer Chemother Pharmacol 41:333–338

638



196. Ianniello GP, De Cataldis G, Comella P, Scarpati MD,
Maiorino A, Brancaccio L, Cioffi R, Lombardi A, Carnicelli
P, Tinessa V (1996) Cisplatin, epirubicin, and vindesine with
or without lonidamine in the treatment of inoperable nonsmall
cell lung carcinoma: a multicenter randomized clinical trial.
Cancer 78:63–69

197. Lane PD, Lain S (2002) Therapeutic exploitation of the p53
pathway. Trends Mol Med 8:38–42

198. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in
cancer: from innocent bystander to major culprit. Nat Rev
Cancer 2:301–310

199. Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity
in human cancer. Oncogene 18:6938–6947

200. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M,
Santoro MG (2000) Anti-inflammatory cyclopentenone pros-
taglandins are direct inhibitors of IkappaB kinase. Nature
403:103–108

201. Castro AC, Dang LC, Soucy F, Grenier L, Mazdiyasni H,
Hottelet M, Parent L, Pien C, Palombella V, Adams J (2003)
Novel IKK inhibitors: beta-carbolines. Bioorg Med Chem Lett
13:2419–2422

202. Kishore N, Sommers C, Mathialagan S, Guzova J, Yao M,
Hauser S, Huynh K, Bonar S, Mielke C, Albee L, Weier R,
Graneto M, Hanau C, Perry T, Tripp CS (2003) A selective
IKK-2 inhibitor blocks NF-kappa B-dependent gene expres-
sion in interleukin-1 beta-stimulated synovial fibroblasts. J
Biol Chem 278:32861–32871

203. Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S
(2004) Interruption of the NF-kappaB pathway by Bay 11-
7082 promotes UCN-01-mediated mitochondrial dysfunction
and apoptosis in human multiple myeloma cells. Blood
103:2761–2770

204. Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF,
McIntyre KW, Yang X, Iotzova VS, Clarke W, Strnad J, Qiu Y,
Zusi FC (2003) BMS-345541 is a highly selective inhibitor of
I kappa B kinase that binds at an allosteric site of the enzyme
and blocks NF-kappa B-dependent transcription in mice. J Biol
Chem 278:1450–1456

205. Paramore A, Frantz S (2003) Bortezomib. Nat Rev Drug
Discov 2:611–612

206. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath
S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian
R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S,
Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein
DP, Anderson KC (2003) A phase 2 study of bortezomib in
relapsed, refractory myeloma. N Engl J Med 348:2609–2617

207. Bold RJ, Virudachalam S, McConkey DJ (2001) Chemosensi-
tization of pancreatic cancer by inhibition of the 26S pro-
teasome. J Surg Res 100:11–17

208. Fahy BN, Schlieman MG, Mortenson MM, Virudachalam S,
Bold RJ (2005) Targeting BCL-2 overexpression in various
human malignancies through NF-kappaB inhibition by the
proteasome inhibitor bortezomib. Cancer Chemother Pharma-
col 56:46–54

209. Nikrad M, Johnson T, Puthalalath H, Coultas L, Adams J,
Kraft AS (2005) The proteasome inhibitor bortezomib
sensitizes cells to killing by death receptor ligand TRAIL via
BH3-only proteins Bik and Bim. Mol Cancer Ther 4:443–449

210. Reed JC (2001) Apoptosis-regulating proteins as targets for
drug discovery. Trends Mol Med 7:314–319

211. Li L, Thomas RM, Suzuki H, De Brabander JK, Wang X,
Harran PG (2004) A small molecule Smac mimic potentiates
TRAIL- and TNFalpha-mediated cell death. Science 305:
1471–1474

212. Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D,
Stahel RA, Zangemeister-Wittke U (2000) A novel antisense
oligonucleotide targeting survivin expression induces apopto-
sis and sensitizes lung cancer cells to chemotherapy. Cancer
Res 60:2805–2809

213. Sasaki H, Sheng Y, Kotsuji F, Tsang BK (2000) Down-
regulation of X-linked inhibitor of apoptosis protein induces
apoptosis in chemoresistant human ovarian cancer cells. Can-
cer Res 60:5659–5666

214. Blagosklonny MV (2002) Hsp-90-associated oncoproteins:
multiple targets of geldanamycin and its analogs. Leukemia
16:455–462

215. Schmitt CA, Lowe SW (2001) Apoptosis is critical for drug
response in vivo. Drug Resist Updat 4:132–134

639


	Apoptosis: mechanisms and relevance in cancer
	Abstract
	Cell death by apoptosis
	Different forms of cell death
	Caspase activation: general features
	Death receptor-dependent pathway
	Mitochondrial-dependent pathway
	Endoplasmic reticulum and apoptosis
	Inhibition of apoptosis
	Caspase-independent apoptosis

	Apoptosis and disease
	Apoptosis and cancer
	Apoptosis and cancer therapy

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


