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Abstract Mesenchymal progenitor or stem cells (MPCs)
isolated from fetal blood, liver, and bone marrow are a
population of multipotential cells that can proliferate and
differentiate into multiple mesodermal tissues including
bone, cartilage, muscle, ligament, tendon, fat, and stroma.
The objective of this study was to isolate and characterize
MPCs in the human umbilical cord. The suspensions of
endothelial and subendothelial cells in cord vein were
collected and cultured in M199 supplemented with 10%
fetal bovine serum (FBS). Of 50 umbilical cord samples, 3
had numerous fibroblastoid cells morphologically distin-
guishable from endothelial cells. Fibroblastic cells dis-
played lack of expression of vWF, Flk-1, and PECAM-1,
indicating the endothelial cell-specific marker. To inves-
tigate the differentiation potentials, the cells were cultured
in adipogenic or osteogenic medium for 2 weeks. Fibro-
blast-like cells treated with adipogenic supplementation
showed Oil red O-positive staining and expressed adipsin,
FABP4, LPL, and PPARγ2 genes by reverse transcriptase
polymerase chain reaction (RT-PCR). In osteogenic
differentiation, alkaline phosphatase activity and calcium
accumulation were detected. RT-PCR studies determined
that Cx43, osteopontin, and Runx2 genes were expressed
in the osteogenic cultures. Among three cell lines cultured
continuously for passage 10, two had normal karyotypes;
however, one retained a karyotype of mos 46,XY[19]/47,

XY,+mar[3]. These observations suggest that MPCs are
present in human umbilical cord and possess several
typical traits of MPCs.
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Introduction

Stem cells showing self-renewal and multipotentiality are
divided into two major groups: embryonic and adult stem
cells [1]. Adult stem cells demonstrate differentiation
capacity limited to organs. However, recent studies
indicate that tissue-specific stem cells are capable of
differentiating into cells of other tissues. Interestingly,
mesenchymal stem or progenitor cells (MPCs) in blood
and tissue can be expanded to differentiate into several
types of cells, including adipocytes, chondrocytes, osteo-
cytes [2], myocytes [3], astrocytes, and neurons [4]. MPCs
contain homogeneous fibroblast-like cells, which have a
population doubling time of 33 h [5]. These cells do not
express typical hematopoietic lineage markers (CD14,
CD34, and CD45) by immunophenotype, but are con-
sistently positive for CD13, CD28, CD33, CD44, CD105,
CD166, and HLA class 1. MPCs generate the microen-
vironment essential for the maintenance, proliferation, and
differentiation of hematopoietic stem cells [6].

Current clinical application of MPCs for treatment of
osteogenesis imperfecta demonstrated impressive histo-
logical changes in trabecular bones, which indicate new
dense bone formation [7]. Several animal experiments
were conducted using MPCs for fracture healing, tendon
repair, and cartilage regeneration, as well as other clinical
applications in treating central nervous system diseases,
hepatic failures, and myocardial infarctions [8–10].
Pereboeva et al. reported that MPCs possess key properties
that ensure their employment as cellular vehicles and
could be used to deliver either therapeutic genes or viruses
to tumor sites [11]. These data support the potential utility
in tissue engineering and gene therapy applications.

J. W. Kim . S. Y. Kim . S. Y. Park . Y. M. Kim . J. M. Kim .
M. H. Lee . H. M. Ryu (*)
Laboratory of Medical Genetics, Samsung Cheil Hospital &
Women’s Healthcare Center, College of Medicine,
Sungkyunkwan University,
1-19, Mook Jung-Dong, Chung-ku,
Seoul, 100-380, South Korea
e-mail: hmryu@yahoo.com
Tel.: +82-2-20007681
Fax: +82-2-22784574

H. M. Ryu
Obstetrics and Gynecology, Samsung Cheil Hospital &
Women’s Healthcare Center, College of Medicine,
Sungkyunkwan University,
1-19, Mook Jung-Dong, Chung-ku,
Seoul, 100-380, South Korea



Cells with some features of MPCs were known to exist
in bone marrow [2] as well as synovium [12], fetal lung
[13], adipose tissue [14], peripheral blood [15, 16], cord
blood [17, 18], and fetal blood [19]. Romanov and
colleagues reported that MPC-like cells were present in the
subendothelial layer of the human umbilical cord vein
[20]. However, the presence of circulating MPCs has not
been confirmed in the peripheral [21, 22] and cord blood
[23]. In this study, we investigated whether fibroblastic
cells isolated from human umbilical cord were capable of
multilineage differentiation in vitro.

Materials and methods

Culture of human umbilical cord vein

The research protocol was approved by the Ethical and
Research Committees. The cell culture was prepared by
the modified method of Marin et al. [24]. Briefly,
umbilical cord was collected and processed within 4 h
after normal delivery. The cord vein was cannulated on
both sides and washed out with phosphate buffered saline
(PBS) (Gibco BRL, Gaithersburg, Md., USA). The vessel
was filled with 0.1% collagenase type I (Sigma, St. Louis,
Mo., USA) and incubated at 37°C for 10 min. After gently
massaging the cord, the suspension of endothelial and
subendothelial cells was collected. Cells were washed with
M199 (Gibco BRL, Gaithersburg, Md., USA) supplemen-
ted with 10% fetal bovine serum (FBS) (HyClone, Logan,
Utah, USA) and 100 units/ml penicillin—100 μg/ml
streptomycin (Gibco BRL, Gaithersburg, Md., USA).
Cells were centrifuged for 10 min at 2000 rpm and
seeded in a 0.5% gelatin-coated 25 cm2 culture flask at
37°C under 5% CO2 humid atmosphere. Nonadherent
cells were removed on day 3 and the medium was changed
every 3 days. Approximately 2 weeks later, cultured cells
were placed into a new flask for expansion.

Characterization of endothelial and fibroblastic cells

Endothelial and fibroblastic cells in human umbilical cord
vein were evaluated by immunocytochemical reaction.
Both cells were fixed with 4% paraformaldehyde for
15 min, washed with PBS, and incubated for 1 h with
primary antibody: vWF (von Willebrand’s factor; 1:100,
Novocastra Ltd., Newcastle upon Tyne, UK), PECAM-1
(platelet/endothelial cell adhesion molecule-1; 1:50, Santa
Cruz Biochemicals, Santa Cruz, Calif., USA), and Flk-1
rabbit polyclonal antibody (1:100, NeoMarkers, Fremont,
Calif., USA). After rinsing with PBS, cells were incubated
with biotinylated secondary antibody in Vecstatin Elite
ABC Kit (Vector Laboratories, Burlingame, Calif., USA).
DAB substrates for peroxidase (Vector Laboratories,
Burlingame, Calif., USA) were used to visualize the
antibody binding.

Adipogenic and osteogenic differentiation

To induce adipocyte differentiation, fibroblastic cells were
cultured in α-MEM (Gibco BRL, Gaithersburg, Md.,
USA) supplemented with 10% FBS, 1 μM dexametha-
sone, 0.5 mM 3-isobutyl-1-methylxanthine, 60 μM indo-
methacin, and 5 μg/ml insulin for 2 weeks. Osteogenic
differentiation was induced by incubation with α-MEM
supplemented with 10% FBS, 0.1 μM dexamethasone,
10 mM β-glycerolphosphate, and 100 μM ascorbic acid
for 2 weeks.

Accumulation of lipid, alkaline phosphatase, and
calcium

Adipogenic differentiated cells were fixed in 10% formalin
for 5 min and washed in PBS. After PBS was dried, cells
were rinsed in 60% isopropanol and stained for 15 min in
0.18% Oil red O and 0.4% dextrin with 60% isopropanol.
Cells were washed in 60% isopropanol and photographs of
the cells were taken.

Cells induced by osteogenic formula were treated with
alkaline phosphate staining and von Kossa staining. To
evaluate the expression of alkaline phosphatase, cells were
washed in alkaline leukocyte phosphatase (ALP) buffer
(100 mM NaCl, 5 mM MgCl2, and 100 mM Tris–Cl) and
stained with solution containing naphthol As-T phosphate
(1 mg/ml) and Fast red violet LB salt (0.1 mg/ml) for
30 min at 37°C. Cells were washed in PBS and
photographed. With von Kossa’s method, cells were
washed in water and plated in 1% silver nitrate solution
for 30 min. Cells were incubated in 2.5% sodium
thiosulphate, rinsed in water, and counterstained with
1% safranin O.

Reverse transcriptase polymerase chain reaction
analysis

Total RNA was extracted from differentiation-induced
fibroblastoid and endothelial cells using TRIzol reagent
(Gibco BRL, Gaithersburg, Md., USA). Reverse tran-
scriptase polymerase chain reaction (RT-PCR) was
performed at 37°C for 1 h in the presence of oligo(dT)
primer (BM, USA), RNase inhibitor (Promega, Madison,
Wis., USA), and M-MLV reverse transcriptase (Promega,
Madison, Wis., USA) and terminated at 90°C for 10 min.
PCR assays were performed in 20 μl reaction volume
using 2 μl cDNA, 1.5 mM MgCl2, 200 μM of each
dNTPs, 20 pmol of each primer, and 0.4 U of AmpliTaq
Gold DNA polymerase (PE Biosystems, Cambridge, UK).
GenBank access number, product size, and forward and
reverse sequence for each primer set were as follows:
adipsin (NM001928, 271 bp, 5′-ggT CAC CCA AgC
AAC AAA gT-3′, 5′-CCT CCT gCg TTC AAg TCA TC-
3′), fatty acid binding protein 4 (FABP4; NM001442,
357 bp, 5′-TgC AgC TTC CTT CTC ACC TT-3′, 5′-Tgg
TTg ATT TTC CAT CCC AT-3′), lipoprotein lipase (LPL;
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BT006726, 717 bp, 5′-gTC CgT ggC TAC CTg TCA TT-
3′, 5′-AgC CCT TTC TCA AAg gCT TC-3′), peroxisome
proliferative activated receptor, gamma 2 (PPARγ2;
NM015869, 351 bp, 5′-gCT gTT ATg ggT gAA ACT
CTg-3′, 5′-ATA Agg Tgg AgA TgC Agg CTC-3′),
connexin43 (Cx43; AF151980, 711 bp, 5′-ggA ggg AAg
gTg Tgg CTg TC-3′, 5′-ggC Agg gCT CAg CgC ACC
AC-3′), osteopontin (X13694, 373 bp, 5′-CTA ggC ATC
ACC TgT gCC ATA CC-3′, 5′-CAg TgA CCA gTT CAT
CAg ATT CAT C-3′), runt-related transcription factor 2
(Runx2; NM004348, 289 bp, 5′-CCC CAC gAC AAC
CgC ACC AT-3′, 5′-CAC TCC ggC CCA CAA ATC-3′),
and β-actin (NM001101, 512 bp, 5′-TCA TgT TTg AgA
CCT TCA A-3′, 5′-gTC TTT gCg gAT gTC CAC g-3′).
The reaction products were analyzed by electrophoresis
with 2% agarose or 8% polyacrylamide gel and visualized
with ethidium bromide.

Cytogenetic analysis

Standard karyotypic analysis was performed. Briefly,
cultured cells at passages 10 were incubated in growth
medium with 0.1 μg/ml of colcemid for 3 h, trypsinized,
resuspended in 0.075 M KCl, and incubated for 20 min at
37°C, then fixed in 3:1 methanol/acetic acid.

Results

Characterization of endothelial and fibroblastic cells

Human umbilical cord vein cells in M199 containing 10%
FBS grew as a confluent monolayer with cobblestone

morphology (Fig. 1a). Characterization studies revealed
that cultured cells were positive for vWF, PECAM-1, and
Flk-1 indicating that the cells were endothelial cells
(Fig. 1b–d). However, in 3 flasks of 50 umbilical cord
samples (6%), fibroblast-like cells, which were morpho-
logically distinguishable from adherent endothelial cells,
were shown after 1 week of culture (Fig. 1e). Fibroblastic
cells maintained uniform morphology and occupied the
whole flask surface after 3 weeks. Cytochemistry analysis
showed that they were negative for vWF, PECAM-1, and
Flk-1 (Fig. 1f–h).

Adipogenic differentiation of fibroblastic cells

To confirm whether fibroblast-like cells are capable of
differentiating to multiple cell type, passages 1 and 2 were
treated with adipogenic and osteogenic supplementation
and archived during 2 weeks. Treatment of the adipogenic
medium resulted in adipocyte formation, which was
identified by the Oil red O staining. Over 35% of induced
cells produced lipid droplets (Fig. 2a,b). As a positive
control, MPCs derived from bone marrow of rats indicated
the accumulation of neutral lipid vacuoles (Fig. 2c).
Nontreated endothelial cells, as negative controls, were not
stained (Fig. 2d). In RT-PCR analysis, the adipsin, FABP4,
LPL, and PPARγ2 genes were expressed in adipogenic
formula-treated cells, while they were not expressed in the
corresponding nontreated endothelial cells (Fig. 3a).

Fig. 1 Morphology and immunophenotyping of endothelial cells
and fibroblastic cells in human umbilical cord vein. Cells have
typical endothelial morphology (a), but fibroblast-like cells in 3 of

50 cultured cords were shown (e). Endothelial cells were positive for
vWF (b), Flk-1 (c), and PECAM-1 (d), but fibroblastoid cells were
negative for vWF (f), Flk-1 (g), and PECAM-1 (h).
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Osteogenic differentiation of fibroblastic cells

The results of alkaline phosphatase stain were evident by
the significant increase in alkaline phosphatase activity
after fibroblastic cells treated with osteogenic supplemen-

tation over 2 weeks (Fig. 2e,f). von Kossa staining for
calcium accumulation revealed a positive reaction in
fibroblastic cells (Fig. 2i,j). MPCs derived from bone
marrow of rats were indicated by the accumulation of
alkaline phosphatase (Fig. 2g) and calcium (Fig. 2k).
Nontreated endothelial cells were not stained with alkaline
phosphatase (Fig. 2h) and silver nitrate (Fig. 2l). RT-PCR
studies determined that Cx43, osteopontin, and Runx2
were expressed in the osteogenic cultures, whereas they
were not in the corresponding nontreated cells (Fig. 3b).

Cytogenetic analysis

Passage 10 fibroblastic cells maintained normal prolifer-
ation and an undifferentiated status. To investigate chro-
mosomal aberrations, karyotypic analyses of three cell
lines were performed. Two cell lines had normal karyo-
types (46,XY) on 20 cells, but one had a karyotype of mos
46,XY[19]/47,XY,+mar[3] (Fig. 4).

Fig. 2 Adipocyte and osteocyte differentiation of fibroblast-like
cells. After incubation for 2 weeks followed the addition of
differentiation medium, cells were stained by Oil red O (a–d),
alkaline phosphatase (e–h), and silver nitrate (i–l). Adipogenic

differentiated cells (a,b) and osteogenic differentiation cells (e,f,i,j)
were positively stained. Bone marrow cells in rat were used as a
positive control (c,g,k). Nontreated endothelial cells, negative
control, were not stained (d,h,l).

Fig. 3 RT-PCR of adipogenic- and osteogenic-specific genes. Total
RNA was extracted and analyzed with indicated primers. Lane 1
indicated endothelial cells as a negative control and lane 2 showed
fibroblast-like cells grown in adipocyte- (a) and in osteocyte-
induced medium (b). β-actin was used as an internal control.
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Discussion

MPCs characterized by the capacity for self-renewal and
differentiation into multiple lineages have been investi-
gated over the last few years. Recent data have shown that
synovium, fetal lung, adipose tissue, peripheral blood,
cord blood, and fetal blood in addition to bone marrow are
sources of MPCs. However, the presence of circulating
MPCs in peripheral and cord blood is controversial. The
purpose of this study was to isolate and characterize MPCs
resident in human umbilical cord vein.

We found fibroblastic cells with spindle-shaped mor-
phology in 6% of the umbilical cord cultures. In contrast
to cultured endothelial cells, fibroblastic cells did not
express typical endothelial lineage markers: vWF, Flk-1,
and PECAM-1. Morphology and characterization studies
indicated that fibroblast-like cells differed significantly
from endothelial cells. To serve as MPCs, fibroblastic cells
were differentiated into adipogenic and osteogenic
lineages. Cells in adipogenic medium accumulated lipid
droplets, as assessed by Oil red O staining. In RT-PCR, the
adipsin, FABP4, LPL, and PPARγ2 gene were signifi-
cantly expressed in the treated cells. Also, fibroblast-like
cells could differentiate into osteogenic lineage as assessed
by the increase of alkaline phosphatase activity, the
calcium accumulation used as an early marker of
osteocytic differentiation, and the upregulation of mRNA
for Cx43, osteopontin, and Runx2. Alkaline phosphatase
activity is present at baseline levels in undifferentiated
cells and at significantly increased levels in osteocyte-
induced cells prior to calcium deposit [2]. Based on this
capacity to differentiate, fibroblast-like cells can be
considered true MPCs. Our data agreed with the findings
of Romanov et al. who recently identified MPC-like cells
in the subendothelial layer of the human umbilical cord
vein [20].

In view of gene expression analysis, adipsin is
expressed later during the differentiation of adipocytes.
LPL and FABP4 are the essential genes in the metabolism
of fatty acid. LPL is a gene expressed early in the

adipocyte differentiation pathway [25]. The induction of
LPL may provide energy for marrow stromal cell differ-
entiation by enhancing the hydrolysis of extracellular
triglycerides for cells in the early adipocyte pathway [26].
PPARγ2 is an early response gene that is involved in the
commitment to the adipocyte pathway and appears to be
more adipose specific than PPARγ1 [27]. Cx43 in
osteoblasts mediates gap junction intercellular commu-
nication that is critically important in osteogenesis and
normal osteoblast function [28]. Osteopontin, a noncolla-
genous phosphoprotein, is originally isolated from bone
matrix. Expression of this protein is found in various cells
and tissues, including osteoblasts, osteoclasts, and macro-
phages [29]. Runx2 (CBFA1/AML3/PEBP2αA) is the
major regulator of osteoblast differentiation and has
therefore been regarded largely as a bone-specific tran-
scription factor [30].

MPCs have great therapeutic potentials because of their
ability to differentiate into multiple tissues and to self-
renew at a high proliferative rate. They enhance engraft-
ment of donor hematopoietic cells after cotransplantation
in animal models and migrate into areas of muscle
degeneration to undergo myogenic differentiation in
immunodeficient mice [31]. MPCs may be useful cells
for cartilage engineering aimed at surgical repair of severe
congenital tracheal anomalies [32]. MPCs can foster
expression of suicide genes or support replication of
adenoviruses as potential anticancer therapeutic payloads
[11].

For potential uses of stem cells as biologic research
tools and therapeutic agents, it is important to confirm
normal chromosomes with no structural aberrations. In
cytogenetic analysis, we observed that one cell line
presented mosaicism. A number of studies have specifi-
cally explored the development of chromosome abnor-
mality in cultured vascular endothelial cells [33, 34].
Genetic mutations may place a higher limit on the useful
long-term culture of stem cells.

Though the frequency of MPCs in umbilical cord is
very low, MPCs from endothelial cells are easily isolated

Fig. 4 Karyotypic analyses of fibroblastic cells in human umbilical cord. During culture expansion at passages 10, one cell line presented a
cytogenetic mosaicism of 46,XY[19] (a) and 47,XY+mar[3] (b).
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and have high prolific potential in cultures. Also, MPCs in
umbilical cord vein are capable of differentiating into a
wide variety of cell types in vitro. MPCs from the
umbilical cord may make it possible to apply stem cell
technology to a variety of valuable experimental and
clinical needs.
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