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Abstract The primary function of the glycoprotein hor-
mone erythropoietin (Epo) is to promote red cell
production by inhibiting apoptosis of erythrocytic pro-
genitors in hemopoietic tissues. However, functional Epo
receptors (Epo-R) have recently been demonstrated in
various nonhemopoietic tissues indicating that Epo is a
more pleiotropic viability and growth factor. Herein, in
vitro and in vivo effects of Epo in the brain and the
cardiovascular system are reviewed. In addition, the
therapeutic impact of Epo in oncology is considered,
including the question of whether Epo might promote
tumor growth. Convincing evidence is available that Epo
acts as a neurotrophic and neuroprotective factor in the
brain. Epo prevents neuronal cells from hypoxia-induced
and glutamate-induced cell death. Epo-R is expressed by
neurons and glia cells in specific regions of the brain. Epo
supports the survival of neurons in the ischemic brain. The
neuroprotective potential of Epo has already been
confirmed in a clinical trial on patients with acute stroke.
With respect to the vasculature, Epo acts on both
endothelial and smooth muscle cells. Epo promotes
angiogenesis and stimulates the production of endothelin
and other vasoactive mediators. In addition, Epo-R is
expressed by cardiomyocytes. The role of Epo as a
myocardial protectant is at the focus of present research.
Epo therapy in tumor patients is practiced primarily to
maintain the hemoglobin concentration above the transfu-
sion trigger and to reduce fatigue. In addition, increased
tumor oxygenation may improve the efficacy of chemo-

therapy and radiotherapy. However, tumor cells often
express Epo-R. Therefore, careful studies are required to
fully exclude that recombinant human Epo (rHuEpo)
promotes tumor growth.
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Introduction

Erythropoietin (Epo) has been well characterized as the
renal glycoprotein hormone which promotes the survival,
proliferation, and differentiation of erythrocytic progeni-
tors in hemopoietic tissues. Recombinant human Epo
(rHuEpo) and related compounds have proved most useful
for treatment of the anemia associated with chronic renal
failure and, more restrictedly, certain types of nonrenal
anemias (for references see [97, 134]). Epo maintains
erythropoiesis by binding to specific transmembrane
receptors (Epo-R) which are expressed primarily by
erythrocytic progenitors such as the burst-forming units–
erythroid (BFU-E) and the colony-forming units–erythroid
(CFU-E). The functional human Epo-R is a member of the
cytokine class I receptor superfamily and presents as a
homodimer of two identical glycoprotein chains of 484
amino acids [169]. Each of the chains is composed of an
extracellular domain with conserved cysteines and a
WSXWS motif, a hydrophobic transmembrane sequence,
and a cytoplasmic domain to which the protein tyrosine
kinase JAK2 (Janus kinase 2) is affiliated. The Epo
molecule binds to both Epo-R subunits [157], whereby the
dissociation constants for the two binding sites differ
greatly (1 μM vs 1 nM). With respect to novel recombi-
nant Epo analogues, it is important to note that the affinity
for the receptor decreases with Epo glycosylation [61].
The carbohydrate portion of Epo is thought to prevent
Epo-R binding through electrostatic forces [53]. Epo
binding induces a conformational change and a tighter
connection of the two Epo-R subunits [44, 160, 183].
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Consequently, the two JAK2 molecules of the cytoplasmic
regions of the Epo-R subunits undergo autophosphoryla-
tion [160, 207] and catalyze the phosphorylation of
tyrosine residues of Epo-R, thereby providing docking
sites for signaling proteins containing SRC homology 2
(SH2) domains [13, 185]. The complex network of Epo-R
signaling involves (1) the expression of the antiapoptotic
protein bcl-xL [81], (2) the activation of mitogen-activated
protein kinase (MAPK) and phosphatidyl-inositol 3-kinase
(PI-3K/Akt), and (3) homodimerization of the signal
transducer and activator of transcription 5 (STAT5). The
concerted action of these mediators increases the rates of
survival, proliferation, and differentiation of the erythro-
cytic progenitors [109, 151, 219]. In vitro studies have
shown that the Epo-induced signaling pathways return to
nearly basal levels after 30–60 min of stimulation [196].
The effect of Epo is terminated by the action of the
hemopoietic cell phosphatase (HCP) which catalyzes
JAK2 dephosphorylation [110, 216]. The Epo/Epo-R
complex is then internalized and degraded [181, 196].

Whereas most of the erythrocytic progenitors die
without Epo [54, 113], an increasing number of BFU-E
and CFU-E escape from apoptosis and proliferate in the
presence of Epo, thereby producing large progeny of
proerythroblasts and normoblasts. The time from the CFU-
E to the reticulocyte is about 7 days and involves several
cell divisions. Therefore, there is a lag of a few days
before reticulocytosis occurs following a rise in the plasma
Epo concentration due to an increase in endogenous Epo
gene expression in association with hypoxic stress or on
the administration of rHuEpo.

Originally, stimulation of erythropoiesis was thought to
be the sole physiological function of Epo [93]. However,
recent advances in analytical techniques have led to the
demonstration of Epo-R mRNA, Epo-R protein, Epo
binding to Epo-R, and intracellular signaling in a variety
of nonhemopoietic cells and organs, including the brain,
cardiovascular tissues (endothelium, vascular smooth
muscle, cardiomyocytes), the liver, gastrointestinal tissues,
pancreatic islands, the kidney, the testis, and the female
reproductive organs (for references see [101, 127, 138,
168]). Thus, Epo is a more pleiotropic survival and growth
factor than initially thought (Fig. 1). It is assumed that Epo
has neurotrophic and neuroprotective [43, 49, 98, 99, 126,
128], vascular [128, 177], and cardioprotective [155, 177]
functions. Herein, relevant experimental studies and
preliminary clinical observations are summarized with
respect to the value of rHuEpo therapy in cerebral and
cardiac disorders. On the other hand, given that Epo is a
pleiotropic growth factor, the worrying question has to be
raised as to whether tumor cells express Epo-R and
whether Epo can induce or promote tumor growth. This
aspect is highly relevant to the rationale of rHuEpo
treatment of renal and nonrenal anemias, particularly the
anemia associated with cancer.

Effects of Epo on neuronal cells

Expression of Epo-R by neurons and neurotrophic
effects

Masuda et al. [127] first detected low affinity binding sites
for Epo in rat PC12 pheochromocytoma and mouse basal
forebrain SN6 cell cultures. PC12 cells respond to
exogenously added Epo with a rapid increase in the
cytosolic Ca2+ concentration and the release of mono-
amines. More recent studies with PC12 cells have
confirmed that Epo modulates dopamine release and NO
production [107, 112] and affects the rate of the expression
of several genes as assessed by cDNA array screening
[161]. Another seminal finding was reported by Konishi et
al. [111] who showed that Epo increases choline acetyl-
transferase activity in primary cultures of mouse neurons
and the survival of septal cholinergic neurons in rats with
fimbria-fornix transections. Several groups of investiga-
tors have subsequently demonstrated Epo-R mRNA and
protein in distinct areas of rodent and mammalian brain
[57, 119, 124]. Epo binding sites are mainly located in the
hippocampus, capsula interna, cortex, and midbrain of
mice [57]. Hypoxia exposure leads to an increase in Epo
mRNA levels in human and mouse brain [18, 45, 119,
165, 176]. In human embryos, both Epo-R and Epo
become detectable in the brain 5 weeks post-conception

Fig. 1 Target tissues of erythropoietin (EPO). Circulating EPO acts
primarily on erythropoietic progenitors. In addition, the hormone
stimulates angiogenesis. Brain-derived EPO exerts its action in a
paracrine way. Neuroprotective and cardioprotective effects of the
pharmacological administration of rHu-EPO have been reported.
Whether EPO stimulates tumor growth is a matter of debate
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[52, 103, 105, 118]. Both neurons and astrocytes express
Epo-R [18, 19, 105, 176, 180]. In addition, brain capillary
endothelial cells express Epo-R, as shown in rat [213] and
human [26] biopsies. Interestingly, rat capillary endothe-
lial cells express two different forms of Epo-R mRNA
[213]. Epo-R and Epo have also been detected by
immunohistochemistry in peripheral rat nerves [35]. The
histological assignment has been confirmed in several cell
culture studies. Epo-R expression has been demonstrated
in primary cultures or cell lines of neuronal origin [18, 19,
45, 127, 137, 143, 210], astrocytes [18, 124, 143, 180],
microglia [143], and brain-derived capillary endothelial
cells [18, 213].

Trophic effects of Epo have been demonstrated in
cultures of cortical and cholinergic neurons [111, 137].
Epo also stimulates the proliferation and differentiation of
neuronal stem and progenitor cells [173, 179]. Clearly,
however, while the Epo/Epo-R system is required for
prenatal and postnatal erythropoiesis, this does not appear
to be the case with respect to the neuronal Epo/Epo-R
system. Suzuki et al. [182] have established a transgenic
mouse line which expresses Epo-R exclusively in hemo-
poietic tissues. The transgenic mice develop normally and
show no neurologic abnormalities despite the lack of Epo-
R in the brain and other nonhemopoietic tissues.

Neuroprotective effects of Epo in vitro

Glutamate is considered one of the major mediators of
neuronal cell death due to hypoxia [46]. Hypoxic neurons
release large amounts of glutamate, which can act both on
ionotropic receptors (NMDA-R, AMPA-R/kainate-R) and
metabotropic receptors [130]. Preconditioning of rat
hippocampal and cerebral cortical cells in primary culture
with Epo has been shown to reduce glutamate cytotoxicity
[137]. In fact, preconditioning with Epo protects neurons
from both NMDA-induced and NO-induced apoptosis [18,
56]. When acutely added, Epo fails to prevent rat
hippocampal and cerebral cortical neurons in primary
culture from NO-induced death although it inhibits the
NMDA-R-mediated increase in the cytosolic Ca2+ con-
centration [166]. Recent in vitro studies indicate that the
PI-3K/Akt pathway is of primary importance in the
neuroprotective action of Epo by maintaining mitochon-
drial membrane potential in anoxic primary hippocampal
neuronal cell cultures [48]. Destabilization of the mito-
chondrial membrane potential leads to the release of
cytochrome C, which activates the caspases 8, 1, and 3
that promote DNA fragmentation [50]. Other studies
regarding Epo/Epo-R signaling in neuronal cells are
described elsewhere [47, 49].

Neuroprotective effects of Epo in vivo

Evidence for a neuroprotective action of Epo in the brain
was first provided by the group of Sasaki in 1998 [165,
166]. Infusion of rHuEpo into the lateral ventricles of

Mongolian gerbils with experimental cerebral ischemia
prevents ischemia-induced learning disability and rescues
hippocampal CA1 neurons from death, whereas infusion
of soluble Epo-R augments neuronal degeneration and
impairs learning ability [166]. rHuEpo infused into the
cerebral ventricles of rats with permanent middle artery
occlusion reduces ischemia-induced place navigation
disability, cortical infarction, and thalamic degeneration
[165]. Further studies have shown that locally adminis-
tered rHuEpo upregulates the expression of bcl-xL in the
hippocampal CA1 field [203], inhibits NO production
[33], and maintains cognitive functions [40] in gerbils with
experimental cerebral ischemia. The role of NO is not
fully understood, however, since Genc et al.[70, 71] have
reported that Epo exerts neuroprotective effects in vivo by
increasing NO production. NO can be cytotoxic for
neuronal cells, but it may also improve O2 supply by
means of vasodilation. In addition, NO induces Epo-R
expression in neuronal cell cultures [148].

Preconditioning stressors such as hypoxia render tissues
more tolerant to subsequent stress events. Accordingly,
brief periods of sublethal cerebral ischemia protect rats
from subsequent stroke caused by permanent middle
cerebral artery occlusion [174]. Hypoxic preconditioning
also reduces hypoxia-induced ischemic brain injury in
neonatal rats [191] and kainate-induced neuronal damage
in adult rats [64]. The beneficial effect of hypoxia
preconditioning is partly mediated by Epo which is
increasingly produced in the hypoxic brain. Indeed, a
recent study has shown that the protective effect of
hypoxic preconditioning is significantly reduced in mice
when Epo signaling is locally blocked by infusion of
soluble Epo-R into the cerebral ventricle [158].

It was earlier assumed that systemically administered
Epo would not enter the brain because of the blood–brain
barrier [102, 104, 125]. However, when biotinylated
rHuEpo was administered intraperitoneally (i.p.) to rats,
peroxidase reaction product was observed in surrounding
capillaries and later localized to scattered neurons in the
brain [26]. Jumbe [99] has shown the cerebrospinal fluid
to serum concentration ratios to be about 1×10−3 following
the intravenous (i.v.) administration of rHuEpo (5000 U/
kg) or darbepoetin alfa (25 μg/kg) in rats. The calculated
mean area under the concentration–time curve (AUC0–8),
by noncompartmental analysis, was 340 mU h/ml for
rHuEpo and 3.6 ng h/ml for darbepoetin alfa in cerebro-
spinal fluid vs 370,000 mU h/ml and 4500 ng h/ml in
serum, respectively. The i.p. administration of rHuEpo
(25–100 U) has been reported to reduce postischemic
malonyl dialdehyde levels, NO formation, brain edema,
and hippocampal CA1 neuronal loss in gerbils with
bilateral carotid occlusion [33]. Other investigators have
reported that the systemic administration of high doses of
rHuEpo to experimental animals reduces the volume of
infarction 24 h after middle cerebral artery occlusion
[175], reduces mortality rate [29], prevents neuronal
damage [6], increases cerebral blood flow [20, 78], and
reduces neurologic deficits [79, 80]. Investigations in rats,
in whom crush injury was mimicked by the aneurysm
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clamp technique or in whom traumatic brain injury was
induced, have shown that rHuEpo prevents motor neuron
apoptosis and neurologic disability [42] and improves
recovery of motor function [77]. Possibly due to the
prevention of death of neuronal cells rHuEpo reduces the
inflammatory reaction in hypoxic brain [197]. A recent,
elegant gene therapy study in rats has shown that i.v.
injected naked plasmid DNA encoding Epo induces
neuroprotective effects similar to rHuEpo [202]. Based
on animal studies, investigators have also put forward the
concept that rHuEpo may be of value in retinal diseases
involving apoptosis of photoreceptors or of retinal
ganglionic cells [82, 100].

Furthermore, the Epo/Epo-R system has been proposed
to play a role in peripheral nerves. Epo-R immunoreac-
tivity has been detected in the somata and axons as well as
in Schwann cells of rat sciatic nerves [35]. rHuEpo
protects mechanically injured dorsal root ganglionic
neurons from undergoing apoptosis [170]. In an experi-
mental model of diabetes, rHuEpo has proved to partially
reverse the alterations in nociception and to restore Na+/
K+-ATPase activity in nerve fibers [22].

Clinical experience with rHuEpo in stroke patients

Knowing that brain ischemia is a leading cause of death
and disability in humans and that there is need for
additional stroke therapy strategies, Ehrenreich et al. [62]
performed a clinical trial with rHuEpo in patients with
acute stroke. Initially, a safety study was carried out in
which 13 patients received rHuEpo i.v. (3.3×104 U) once
daily for the first 3 days after stroke. The mean
concentration of Epo in the cerebral spinal fluid of the
patients increased to 17 U/l (compared to the normal value
of about 1 U/l [21, 125, 144]). Serum Epo levels in the
patients approximated 5000 U/l 3 h after rHuEpo infusion
[62] (compared to a normal serum level of about 15 U/l in
nonanemic humans [96]). Thereafter, a double-blind
randomized proof-of-concept study was carried out on
40 patients who received either rHuEpo or saline. Study
inclusion criteria were age <80 years, ischemic stroke
within the middle cerebral artery territory, symptom onset
<8 h before rHuEpo or saline administration, and deficits
on stroke scales. The results of the trial indicated a strong
trend for reduction in infarct size in the rHuEpo-treated
patients as indicated by magnetic resonance imaging. The
reduction in infarct size was associated with a marked
neurological recovery and clinical outcome 1 month after
stroke. Thus, rHuEpo therapy may add to the beneficial
effect of conventional clot-dissolving strategies in stroke
patients [62].

Résumé and future directions

Epo produced in the brain exerts a local function that is
distinct from that in erythropoiesis. Epo and Epo-R are
expressed both by neurons and astrocytes. Similar to renal

Epo, cerebral Epo production increases on hypoxic stress.
The response to hypoxia is accomplished by the stabili-
zation and activation of the hypoxia-inducible transcrip-
tion factors 1 and 2 (HIF-1 and HIF-2), which induce the
expression of several genes encoding proteins that protect
tissues from O2 and energy deprivation. There is
convincing evidence that Epo is an antiapoptotic and
mitogenic factor for neuronal cells. In experimental
animals, locally or systemically administered rHuEpo is
neuroprotective against a variety of insults, including
cerebral ischemia, subarachnoid hemorrhage, head injury,
and experimental autoimmune encephalomyelitis. With
respect to the therapeutic use of rHuEpo as a neuropro-
tective agent in humans, the blood–brain barrier is a
critical issue. The concept has been put forward that there
are specific transport mechanisms to ship Epo from the
systemic circulation into the central nervous system [26].
In addition, Epo may even get easier access to the brain
after hypoxic lesion of the blood–brain barrier. Along
these lines, hypoxia stimulates the production of vascular
endothelial growth factor, which is one of the main
mediators of the leakage of the blood–brain barrier in brain
ischemia and trauma [66, 140]. In view of the limited
penetration of intact Epo across the blood–brain barrier,
Erbayraktar et al. [65] have tested the efficacy of asialo-
rHuEpo, which has a plasma half-life of 1.4 min and exerts
no erythropoiesis-stimulating activity. This drug could be
administered at high doses without producing erythrocy-
tosis. Reportedly, asialo-rHuEpo crosses the blood–brain
barrier after i.v. administration, binds to neurons within the
hippocampus and cortex in a pattern corresponding to the
distribution of Epo-R, and is neuroprotective in cerebral
ischemia, spinal compression, and sciatic nerve crush [65].

Effects of Epo in the cardiovascular system

Effects of Epo on endothelial cells

Epo-R is expressed on human vascular endothelial cells
from coronary, pulmonary, and cerebral arteries, the
umbilical vein, and dermal vessels [9, 12]. Epo stimulates
in vitro the proliferation and migration of human, murine,
and bovine endothelial cells [8, 141, 162]. In addition, Epo
induces a proangiogenic phenotype of endothelial cells
and neovascularization [39, 92]. It also promotes blood
vessel formation in the uterus of ovariectomized mice
[214]. Very recent studies have shown that rHuEpo
administration in humans produces an increase in the
number of circulating endothelial progenitor cells, which
may be beneficial in augmenting the neovascularization of
ischemic tissues [11, 86]. In vitro, rHuEpo causes a rapid
tyrosine phosphorylation of cytosolic proteins and the
translocation of STAT5 in human umbilical vein endothe-
lial cell (HUVEC) cultures [84]. A recent differential
display analysis of HUVEC extracts has revealed four
groups of genes that are upregulated by rHuEpo, including
those encoding proteins in the control of vascular function
(e.g., thrombospondin-1), gene transcription (e.g., c-myc
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purine-binding transcription factor PuF), mitochondrial
function (e.g., cytochrome C oxidase subunit 1), and
regulators of signal transduction [68]. However, it must be
noted—and this holds true for most of the endothelial cell
culture studies cited below—that the concentration of
rHuEpo added to the cultures was much higher than that
generally reached in the vascular bed.

Epo can stimulate the production of several endothelial-
derived modulators of the vascular tone, including some
with vasoconstrictive and some with vasorelaxant proper-
ties. The highly potent vasoconstrictor endothelin is
released [37, 106] via a Ca2+-dependent mechanism [24,
38, 198]. This effect has been implicated clinically in the
arterial hypertension observed in rHuEpo-treated patients
with chronic renal failure [37]. Clearly, however, rHuEpo
therapy-induced increases in arterial blood pressure result
primarily from the elevated blood viscosity and the
abolishment of tissue hypoxia-associated vasodilation
[51]. Indeed, while tenfold overexpression of Epo in
transgenic mice activates the tissue endothelin system
[159], the plasma endothelin concentration is not con-
sistently elevated in rHuEpo-treated patients with chronic
renal failure [28]. Studies in partially nephrectomized
uremic rats have shown that immunoreactive endothelin-1
is increased in arterial walls on rHuEpo therapy, but not in
circulation [115]. In the same experimental model, selec-
tive endothelin-1 receptorA (ETA) blockade but not
nonselective ETA/B blockade prevents the aggravation of
hypertension [27]. Interestingly, the acute administration
of rHuEpo produces increases in plasma endothelin-1
levels and in blood pressure in spontaneously hypertensive
rats (SHR), but not in normotensive Wistar-Kyoto rats
(WKR; [188]). Thus, rHuEpo may aggravate a preexisting
state of hypertension.

Other mediators reported to be released in response to
rHuEpo treatment of cultured endothelial cells include the
vasoconstricting prostanoids prostaglandin F2α and throm-
boxane B2 [24], plasminogen activator inhibitor-1 [142],
and the vasodilating vascular endothelial growth factor
(VEGF) [147]. The vasodilatory action of VEGF is known
to be mediated by NO [90, 154]. The exact nature of the
interference of Epo with the endothelial NO system
remains to be clarified, since the induction of NO synthase
protein and activity [12, 190, 206, 212] as well as no
change [146] or depression [149, 201] have been reported.
In vivo, the Epo-induced rise of the red blood cell count
increases blood viscosity and endothelial shear stress,
which is the major regulating stimulus for the endothelial
NO system. Thus, in Epo transgenic mice (hematocrit
0.85), the intravascular NO bioavailability is increased due
to marked induction of the endothelial NO synthase [85,
199].

Effects of Epo on vascular smooth muscle

Vascular smooth muscle cells also have been shown to
express Epo-R [4, 7] and been investigated extensively in
relation to the rHuEpo therapy-associated arterial hyper-

tension. In reduced complexity experiments using isolated
vessels and cell cultures, Epo induced vasoconstriction
[87] and vascular smooth muscle contraction [136],
whereas in the isolated hemoglobin-perfused kidney
setting no increase in renal vascular resistance was
observed [153]. Epo signaling in vascular smooth muscle
cells is Ca2+ dependent [5, 114, 145] and includes the
activation of the phospholipase C cascade and the
activation of oncogenes (myc, jun, fos) [76] promoting
DNA replication and cellular growth. Thus, by endorsing
vascular smooth muscle cell growth, Epo could be a factor
in vascular hypertrophy and arterial hypertension. Other
intracellular signals activated by Epo include the MAPK
[5, 7] and PI-3K/Akt pathways [4], which are intimately
involved in the inhibition of apoptosis [60, 208].

Myocardial protection by Epo

To foster new therapeutic approaches for the treatment of
myocardial disease, it is critical to dissect the underlying
subcellular pathways used by potential cytoprotectants. In
this regard, rHuEpo has become especially attractive. The
prerequisite of Epo action, the expression of Epo-R, has
been proven for murine [211] as well as human embryonic
cardiomyocytes [103], and for human adult cardiomyo-
cytes [189] and cardiac tissue (own unpublished observa-
tion). Epo has been shown to act as a mitogen on neonatal
rat cardiomyocytes, a process which involves tyrosine
kinase and protein kinase C [200]. Of note, the murine
knockout of either the Epo gene or the Epo-R gene results
in a phenotype of severe cardiac malformations with
embryonic lethality at embryonic day 13.5 [211]. Howev-
er, more recent studies have shown that a tissue-specific
knockout of Epo-R selectively in nonhemopoietic tissues
does not result in a defect or abnormality in the
myocardium [182]. Thus, the impaired heart development
seen in earlier studies was likely caused by the decrease in
red cell numbers, and thereby, reduced O2 transport
capacity of the blood.

Recent experimental studies have provided strong
evidence that Epo protects the myocardium (Table 1). In
hypoxia-exposed mice, treatment with rHuEpo enhances
cardiac contractility, while treatment with anti-Epo-anti-
body has the opposite effect [178]. In addition, it has been
reported that Epo administration reduces myocardial
infarction volume, protects against ischemia reperfusion
injury, and promotes beneficial ventricular remodeling in
mice, rats, and rabbits [32, 34, 135, 155, 156]. Import-
antly, beneficial effects were not only seen with pre-
emptive Epo administration 24 h prior to the coronary
artery occlusion but also when Epo was given after
reperfusion was started. Thus, in a real-life setting with
delayed access of patients to reperfusion treatment, i.e.,
emergency coronary bypass grafting for acute coronary
occlusion, rHuEpo administration several hours later still
might have a beneficial effect on infarct size, extent of
reperfusion injury, and functional recovery of the myo-
cardium. Importantly, cardioprotective effects of Epo were
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seen without an increase in hematocrit, thus eliminating
O2 delivery as an etiologic factor in myocyte survival and
function.

The myocardial protection by Epo is based on the
antiapoptotic effect of Epo on cardiac myocytes and
possibly cardiac fibroblasts [156]. Epo-induced myocar-
dial survival involves a PI-3/Akt-dependent process
leading to a reduction of the number of apoptotic
myocytes [48, 156, 189]. Since apoptotic cell death of
myocytes is a key feature of myocardial damage from
infarction and ischemia/reperfusion [60, 133], the reduc-
tion of the number of apoptotic myocytes might result in
improved myocardial survival and function.

Impact of rHuEpo therapy in oncology

Rationale for the use of rHuEpo

Patients with malignant tumors often present with normo-
chromic and normocytic anemia. Although red cell
survival may also be shortened, the anemia is primarily
of the hypoproliferative type. Iron availability is reduced
despite normal iron stores. Proinflammatory cytokines
such as interleukin-1 (IL-1), tumor necrosis factor-α
(TNF-α), and interferons inhibit the proliferation of
erythrocytic progenitors [129] and suppress Epo gene
expression [94]. The concentration of serum Epo is
relatively low for the degree of anemia in many cancer
patients as first shown by Miller et al. [131]. Anemia
(hemoglobin <120 g/l) is a negative prognostic factor for
successful tumor therapy and disease-free survival [73,
187, 193]. A thoughtful review of the role of tumor
hypoxia on tumor progression has been provided very
recently [194]. rHuEpo or its analogue, darbepoetin alfa
[75], can substitute for the lacking endogenous Epo and
counteract the cytotoxic effects of chemotherapy and
radiotherapy on erythrocytic progenitors. In vitro studies
with Epo-producing human hepatic cells [209] and
isolated perfused canine kidneys [67] have shown that
cytotoxic drugs may inhibit Epo synthesis, apart from their

suppressing erythropoiesis directly. On the other hand,
however, clinical studies indicate that Epo production is
maintained on both platinum and nonplatinum chemo-
therapy [36].

The primary goals of rHuEpo therapy are to maintain
the patient’s hemoglobin concentration above the transfu-
sion trigger, to reduce asthenia or fatigue, and to increase
exercise tolerance [55, 74, 150]. The alleviation of tumor
and tumor therapy-associated anemia may also restore
brain functions [98, 117]. Although it is generally taken
for granted that rHuEpo treatment leads to anemia
improvement in cancer patients, a recent critical review
has emphasized the use of inappropriate quality of life
instruments in almost all clinical studies reported so far
and suggested more reliable research [25]. In general, 10–
30% of the tumor patients still have to be transfused
despite rHuEpo therapy [14]. An increase in hemoglobin
concentration ≥10 g/l or in reticulocyte count ≥40×109/l
after 4 weeks of rHuEpo treatment is considered a reliable
indicator of response [41]. According to evidence-based
clinical practice guidelines published by the American
Society of Clinical Oncology and the American Society of
Hematology [163], the use of rHuEpo is recommended as
a treatment option for patients with chemotherapy-
associated anemia with a hemoglobin concentration
below 100 g/l. The dosage of rHuEpo (or its analogue
darbepoetin alfa) should be titrated to maintain a hemo-
globin concentration of 120 g/l to avoid cardiovascular
disorders.

Two recent clinical trials have shown that hemoglobin
concentrations in cancer patients should not be raised into
the normal range. First, a multicenter trial that sought to
assess the effect of rHuEpo treatment to maintain normal
hemoglobin concentrations on survival in breast cancer
patients under chemotherapy was terminated early because
of an increase in mortality in the first 4 months of the
study [116]. However, there were difficulties in the
interpretation of that study which showed imbalances of
risk factors between the rHuEpo and the placebo groups,
and the lack of occurrence of anemia in the placebo group
[116]. Second, a randomized, double-blind, placebo-con-

Table 1 Investigative models for study of the effects of EPO on myocardiocytes

Disease Model Species, in vitro
model

Finding Reference

Myocardial infarction-reperfu-
sion

Rat Improved functional myocardial recovery, 50% reduction of apop-
tosis

Calvillo et al.
[34]

Myocardial hypoxia, ischemia-
reperfusion

Mouse/rat Improved myocardial recovery of function, reduction of apoptotic
myocytes by 50%

Cai et al. [32]

Hypoxia, myocardial infarc-
tion

Rat, myocyte
culture

Reduction of apoptosis Tramontano et al.
[189]

Myocardial infarction Rat Reduction of infarct size by 75%, attenuation of functional myocar-
dial decline, anti-apoptosis

Moon et al. [135]

Hypoxia, myocardial infarc-
tion

Rabbit, myoblast
culture

Improved myocardial function following infarction, mitigation of
myocyte apoptosis

Parsa et al. [155]

Ischemia-reperfusion Rabbit, fibroblast
culture

Enhanced cardiac function and recovery, reduced apoptosis Parsa et al. [156]
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trolled trial on 351 patients with head and neck cancers
receiving radiotherapy has shown an advantage in pro-
gression-free survival in the placebo-treated compared to
the rHuEpo-treated group [89]. However, apart from some
imbalances in prognostic factors (such as smoking) and in
patient numbers, a main problem of this study seems to
have been the overcorrection of anemia [192]. The mean
hemoglobin concentration was 154 g/l (±17 g/l) in patients
treated with rHuEpo for 9 weeks [89]. Evidence suggests
that the hemoglobin concentration leading to the highest
tumor oxygenation ranges from 130 g/l to 140 g/l, because
intratumoral blood flow is disturbed at higher hemoglobin
levels [192]. The association between O2 capacity of the
blood and tumor oxygenation, on the one side, and tumor
growth and efficiency of radiotherapy and chemotherapy,
on the other side, is plausible [59, 69, 72, 91, 186, 195].
As discussed elsewhere [95], however, neither the
experimental nor the clinical support for this association
is fully convincing. Even less well understood is the
mechanism underlying the recent observation that rHuEpo
treatment improves tumor oxygenation independently of
its effect on erythropoiesis [23]. In this study rHuEpo was
administered to rats before or after mammary adenocar-
cinoma transplantation. At similar blood hemoglobin
concentrations, O2 measurement histograms revealed
significantly less hypoxic tumor areas in animals during
rHuEpo therapy [23].

Direct influence of Epo on tumor cell growth

Since rHuEpo was introduced as a drug for treatment of
renal anemia almost 20 years ago, several groups of
investigators have carefully studied whether Epo can
induce or promote tumor growth. Clinically, no evidence
has been reported so far indicating that the erythrocytic
growth factor Epo directly stimulates tumor cell prolifer-
ation. In addition, an elegant study in transgenic mice
transfected with a construct that linked the human Epo
gene to an erythroid-specific regulatory element has
shown that the continuous stimulation of erythropoiesis
leads to erythrocytosis but not to erythroleukemia [122].
However, there is at least one case report of Epo-
dependent leukemic transformation of myelodysplastic
syndrome (MDS) to acute monoblastic leukemia (AML)
[31]. A careful examination has shown Epo-R expression
on leukemia cells in 60% of patients with all French–
American–British types of AML and in 29% of acute
lymphoblastic leukemia (ALL) cases [184]. In vitro a
proliferative response to Epo was observed in 16% of
patients. Patients with both Epo-R expression and in vitro
response to Epo had shorter remission duration than those
without Epo-R [184]. Thus, close observation for leuke-
mic transformation is necessary in patients with MDS on
rHuEpo therapy.

In light of the demonstration of Epo-R expression in
various nonerythroid tissues, it is important to regard
studies aimed at investigating direct effects of Epo on
tumor cells. Kayser and Gabius [108] first suggested that

human tumors may express Epo-R. In their study 81% of
human lung carcinoma tissues possessed Epo-binding sites
as detected by use of biotinylated rHuEpo. Epo-R
transcripts and Epo-R protein were subsequently demon-
strated in human renal carcinoma [204], tumors of the
cervix and other organs of the female reproductive tract [3,
215, 216], and in various specimens of common pediatric
tumors such as neuroblastomas, brain tumors, hepatoblas-
tomas, and Wilms’ tumors [15]. By immunohistochemis-
try, Epo-R has been shown to be expressed in breast
carcinoma [2, 10, 88] and in vestibular schwannoma [58].

Of major concern are studies indicating that local
inhibition of Epo-R signaling results in tumor regression.
Yasuda et al. [215] first showed that the application of
anti-Epo-antibody or of soluble Epo-R into transplants of
uterine or ovarian tumors in nude mice produces a
decrease in tumor size. Similarly, the administration of
anti-Epo-antibody, soluble Epo-R, or an inhibitor of JAK2
resulted in a delay in tumor growth with 45% reduction in
maximal tumor depth in a tumor-Z chamber model with rat
mammary adenocarcinoma cells [10]. Yasuda et al. [215]
have put forward the interesting hypothesis that Epo could
be essential for the development of tumor progression
through its antiapoptotic effect on the endothelium. In
addition, in the absence of an intact Epo/Epo-R system,
the increase in the number of cells undergoing apoptotic
death may promote local immune reactions by attracting
neutrophilic granulocytes and monocytes [215]. Mittelman
et al. [132], in studying murine myeloma models, have
shown that rHuEpo treatment induced complete tumor
regression in 30–60% of mice with a syngeneic progres-
sively growing tumor. This regression was related to a
tumor-specific immune response to the myeloma cells
which was mediated by T cells [132]. The effects of Epo
on antitumor immune responses are an important field for
future investigations.

Previous reports on the expression of Epo-R and the
effects of rHuEpo on cultured tumor cells are also
conflicting. Epo-R has been detected in cultures of various
malignant human cell lines [1, 3, 10, 58, 152, 171, 204,
205, 217]. Some of these studies suggested a link between
Epo-R expression and tumor cell proliferation [1, 2, 10,
204]. For example, rHuEpo (range: 0.5–100 U/ml)
stimulated the growth of human renal carcinoma cells in
culture [204]. The addition of rHuEpo (≥10 U/ml)
produced a significant increase in the release of angiogenic
growth factors from tumor cell cultures, namely VEGF
and placenta growth factor, from pediatric tumor cell lines
[15]. The authors have suggested that Epo antagonists
(with transfusion support) could be potentially used in
conjunction with antiangiogenic agents and chemotherapy
[15]. In other studies no relationship between Epo-R
expression and tumor growth was apparent [17, 58, 83,
164, 171, 205, 210]. In fact, no growth stimulation of
human primary tumor specimens [16] or of permanent
hemopoietic or nonhemopoietic malignant cell lines [17,
139, 164] was observed, even when tumor cells were
incubated with Epo at concentrations that were by several
orders of magnitude higher than those achieved physio-
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logically or by the administration of rHuEpo. Westphal et
al. [205] recently investigated Epo-R and granulocyte
colony-stimulating factor (G-CSF) receptor expression in
various human benign and malignant cell lines. Treatment
with rHuEpo (up to 1000 U/ml) had no effect on the rate
of proliferation and tyrosine phosphorylation when Epo-
R-positive tumor cell lines were tested. In studying various
tumor cell lines, Liu et al. [120] found that neither rHuEpo
nor granulocyte-monocyte colony-stimulating factor (GM-
CSF) influence basal viability. However, pretreatment with
these growth factors resulted in a reduction of the
cytotoxic effects of cisplatin in cell lines with high growth
factor receptor expression [120].

Conclusions

The primary function of Epo is to inhibit apoptosis of
erythrocytic progenitors and, thereby, to stimulate the
growth of young red blood cells. rHuEpo has proven to be
a most useful replacement therapy for the prevention of the
anemia associated with chronic kidney disease. The drug
raises hematocrit and blood hemoglobin concentration in a
dose-dependent and predictable way and abolishes the
need for red cell transfusion with its risks of incompat-
ibility reactions, infections, and iron overload. Present
pharmacological interest focuses on the use and develop-
ment of recombinant erythropoiesis-stimulating drugs with
prolonged survival in the circulation by producing
analogues with additional carbohydrate chains [61, 63]
or with attached polyethylene glycol polymers [121]. Next
to the renal anemias, possible indications for the
administration of rHuEpo may be the anemias associated
with autoimmune diseases, acquired immunodeficiency
syndrome (AIDS), malignancies, and surgical interven-
tions. The detection of functional Epo-R in nonhemopoie-
tic tissues has recently aroused experimental and clinical
interest in the use of rHuEpo as a survival factor for
nonhemopoietic cells and tissues.

Convincing evidence has accumulated that Epo acts as a
neurotrophic and neuroprotective factor in the central
nervous system. In vitro, Epo protects neuronal cells from
hypoxia-induced and glutamate-induced cell death. In
animal models, Epo promotes the survival of neurons and
synapses and reduces the size of infarct areas in the
ischemic brain. A first clinical trial has shown neuropro-
tective potential of rHuEpo in patients with acute stroke
[62]. It is hoped that the drug may prove useful for
treatment of other neuronal disorders such as brain trauma,
inflammatory diseases, and degenerative diseases [30, 98,
123, 167].

Epo exerts mitotic effects on vascular tissues and
induces the production and release of vasoactive mediators
from the endothelium. Of major clinical relevance are
recent observations showing that rHuEpo promotes the
mobilization of endothelial progenitor cells which may be
beneficial in the vascularization of ischemic tissues,
including the heart [11, 86]. Knowledge concerning the
ability of Epo to function as a specific myocardial

protectant has recently started to emerge and the present
experimental and clinical evidence mandate further,
thorough investigation of the therapeutic potential of
rHuEpo for myocardial protection. At present, it seems
clear that cardiomyocytes express Epo-R and respond to
Epo with activation of signaling pathways resembling
those known from erythropoietic cells.

The role of Epo in tumor therapy needs to be further
explored. Anemia-associated tissue hypoxia promotes
angiogenesis, growth, and metastasis of tumors
[172,194]. In addition, the efficacy of radiotherapy and
chemotherapy depends on the availability of O2. In most
cancer patients rHuEpo therapy increases the blood
hemoglobin concentration and tumor oxygenation, thereby
increasing the sensitivity of the tumor cells to radiotherapy
and chemotherapy [73, 187]. The rHuEpo doses should be
titrated to maintain a hemoglobin concentration of 120 g/l
in tumor patients [163] because a further increase bears the
risk of cardiovascular disorders. In vitro studies have
shown that tumor cells may express Epo-R. These findings
merit further exploration. However, based on almost 20
years of the use of rHuEpo in the clinical routine and on
the observation of anemic persons with high endogenous
Epo levels, there is at present no reason to give patients a
fear that Epo may induce or promote tumor growth.
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