
Vol.:(0123456789)1 3

Surg Radiol Anat (2017) 39:905–910 
DOI 10.1007/s00276-017-1822-2

ORIGINAL ARTICLE

Creating vascular models by postprocessing computed 
tomography angiography images: a guide for anatomical 
education

Figen Govsa1   · Mehmet Asim Ozer1 · Suzan Sirinturk1 · Cenk Eraslan2 · 
Ahmet Kemal Alagoz3 

Received: 29 April 2016 / Accepted: 16 January 2017 / Published online: 6 February 2017 
© Springer-Verlag France 2017

Keywords  Computed tomography angiography · Three-
dimentional printed model · Anatomical models · Medical 
education · Undergraduate education · Post-graduate 
education · Anatomic variation · Preoperative planning · 
Intraoperative guidance

Introduction

Medical education is not confined within the medical 
school, but it is rather a lifelong process [2, 5, 12, 24]. All 
kinds of theoretical and practical experience during under 
and post-graduate period contribute to medical education 
[2, 25, 37]. Three-dimensional (3D) information plays an 
important role in understanding the complex structure of 
human anatomy in medical education [22, 33–36]. Use 
of 3D image displays can potentially increase the learn-
ing curve of students and increase the understanding of 
spatial relationships as it provides a whole representation 
of the patient’s anatomy [18–20]. The use of 3D tools can 
potentially be helpful for students with lower innate spatial 
ability [3, 10, 22]. In recent years, new interface technolo-
gies and 3D printed models have become possible due to 
advanced computer technology and software [22, 27]. 
These printed anatomical models enable visualization and 
manipulation, as well as stereoscopic 3D presentation [1, 
6, 21, 31].

As for the analysis of the aortic arch system, normally, 
it gives rise to three branches: the brachiocephalic trunk, 
which branches to the right subclavian and to the right 
common carotid arteries, the left common carotid artery 
and the left subclavian artery (Fig.  1) [7, 8, 14, 16, 17, 
38]. Previously, the description of the six patterns of the 
supraaortic branches pattern and their prevalence have been 
gleaned from radiological and post-mortem studies (Fig. 2). 
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Descriptions of the supraaortic arch patterns in undergradu-
ate education were based on analyzing the structure; the 
clinical appliance of the essential medical knowledge is 
evaluated more extensively (Fig. 2a–f) [26, 39].

The production of models was obtained by high-resolu-
tion CTA and 3D printing technologies.

The aim of this study was, first, to present the anatomi-
cal variations of the aortic arch and the supraaortic arteries 
and to teach the formation of one-to-one direct modeling 
following CTA imaging and printing. Second, it targeted 

stressing the radiological and surgical significance of the 
variations based on the obtained anatomical and radiologi-
cal data. The study also aimed at an innovative teaching 
technique approach for the undergraduate and post-grad-
uate medical students by applying the use of imaging and 
printing technologies during the course of their teaching in 
anatomy.

Materials and methods

The printed models of the supraaortic arch were created 
using 64-slice CTA data provided by the Department of 
Radiology, University of Ege (Fig.  3a–c). The CTA scan 
was performed on a 64 detector 128 sliced CT scanner (Sie-
mens Somatom Definition AS, Siemens Medical Systems, 
Erlangen, Germany). The scanning was triggered by the CT 
technologist on the basis of contrast enhancement in the 
aortic arch following administration of 120 mL of iohexol 
with a concentration of 350 mg I/mL (Omnipaque 350; GE 
Healthcare, Princeton, NJ) at a rate of 4–5 mL/s. Imag-
ing parameters include 0.6-mm section thickness, 140 kV, 
250 mA, 1-s per rotation, 10–20 s to acquire images from 
the aortic arch to the vertex. The CTA source images were 
postprocessed to create contiguous coronal and sagittal 
reformatted images using a work station (Siemens Leon-
ardo Workstation, Erlangen, Germany) after image recon-
struction of a 2-mm section thickness, maximum intensity 
projection images, volume-rendered 3D images, and curved 

Fig. 1   a–c 3D Computed tomography angiography images provide a detailed normal pattern of supraaortic arch branches originating from the 
left aortic arch

Fig. 2   a–f Schematic presentation provides a detailed vascular map 
of the patterns of the branches arising from aortic arch arterial tree

Fig. 3   a–c Multislice 3D computed tomographic angiographic 
images of bovian type of aortic arch. The left common carotid artery 
(arrow) shares a origin site (star) with the brachiocephalic trunk. The 

left subclavian artery pointed by arrow head and right internal carotid 
artery indicated by tailed arrows
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planar reformatted images of the bilateral common and 
internal carotid arteries. The typical dose-length product 
for the head and neck CTA was 2200  mGy-cm. Medical 
image files were in a DICOM format and were exported 
in image format (TIFF) files with known pixel separations. 
Using free software (Google SketchUp), rapid prototype 
bovian type of the supraaortic arch model was created. 
One set of models of the vascular system of the supraaor-
tic arch were created using the volume rendering technique, 
based on tissue density, using CTA data (505 axial slices), 
and selecting density thresholds of arteries for volume seg-
mentation (Fig. 3). The 3D CTA used for the fabrication of 
3D vascular models was obtained with a slice thickness of 
2 mm, to ensure high accuracy and precision. The CT data 
were transferred into medical image processing software 
(e.g., Mimics; Materialise NV, Belgium) to construct a 3D 
computer-aided design model. The model was saved in ste-
reolithography file format (Fig. 4). A physical model of the 
processed 3D digital model was created using 3D printer 
Makerbot (Fig. 5). Material used was polylactic acid.

Results

Direct branches of the aortic arch are also known as 
the primary or the supraaortic arteries. Bovian type of 
the supraaortic arch pattern is the aortic arch with two 
branches. The first branch is the common trunk which is 
divided into right subclavian, right common carotid, left 
common carotid, and the second branch as left subclavian 
(Fig.  1). These structures included the aortic arch, bra-
chiocephalic trunk, subclavian arteries, common carotid 
arteries, internal carotid arteries, and external carotid 
arteries (Fig.  6a–c). The actual model can be rotated 
360° at any angle and magnified at any size for learners. 
Geometrical vascular anomalies can be more clearer. All 

reconstructed 3D printed models described here can be 
displayed in 3D presentation in a life-like specimen. It 
remains a true anatomical representation. The external 
shape of the aortic arch and its major branches and their 
dimensions are measurable. The angle formed by the aor-
tic arch and the coronal plane was an average of 62.2° 
(range 30–90) and the three major branches originated 
from the initial third of the anterior length of the aortic 
arch (Fig.  6). The 3D preoperative model demonstrated 
the exact anatomy to understand the variable configura-
tion in space. It also supplied us with information regard-
ing the size of the appropriate stent graft the localization 
of the sealing zones.

Fig. 4   Dimensions of X, Y, and 
Z for 3-D printed models

Fig. 5   3D printer Makerbot



908	 Surg Radiol Anat (2017) 39:905–910

1 3

Discussion

In the current research, the use of the CTA was explored 
to create 3D printed models of the supraaortic arteries for 
geometrical vascular anomalies teaching [1, 14, 17, 19, 21, 
23, 27, 35, 36]. For example, using these combined mod-
els, students are able to trace the path of supraaortic arter-
ies visually. The model created here is the ability to place 
3D vascular anatomy into the context of individual CTA 
slices (Fig. 6). Using this feature, students are able to visu-
alize the bovian type of the supraaortic aortic arch design 
(Fig.  6); this is a point that is often confused by students 
via the traditional learning.

A common arterial trunk, the truncus arteriosus, arises 
from the primitive heart and is divided into six paired 
arches. The six pairs of aortic arches are a series of ves-
sels that connect on each side the aortic sac with the cor-
responding dorsal aorta. At a later developmental stage, the 
aortic arches are both reduced in number and extensively 
transformed, and finally, an asymmetric blood supply sys-
tem is achieved. During the third week of pregnancy, these 
dorsal aortae fuse caudally into a single descending aorta 
at the fourth thoracic vertebral level [30, 34, 38]. The first, 
second, and the fifth arches then regress. The third arches 
form the carotid arteries. The fourth arch on the right forms 
the brachiocephalic and right subclavian artery, whilst on 
the left, this forms the left subclavian artery, and the aortic 
arch proper, which subsequently joins the descending aorta 
beyond (Fig. 7).

The previous researchers reported that the variations 
of the aortic sac and the branchial artery system, from an 
embryologic standpoint can be explained by the disap-
pearance of normally persisting vessels or from the per-
sistence of channels that normally disappear; however, 
reasons for subtle variations are not understood (Fig.  7) 
[7–14, 32]. In this case report, we present a case of the 
left common carotid artery arising from the brachioce-
phalic trunk and absence of the main branches of the right 
subclavian artery in her angiographic imaging findings. 
The findings show that the cases whose brachiocephalic 

trunk and left common carotid artery originated together 
are the most prevalent type of variation, and the remain-
ing cases of the variation showing either the left carotid 
artery originating from the aortic arch together with 
the brachiocephalic trunk, or that the left carotid artery 
originated directly from the brachiocephalic trunk. How-
ever, variations leading to the compression of the trachea 
and oesophagus may cause clinically significant symp-
toms. Every patient is unique and, therefore, should be 
embraced individually prior to surgical intervention [14, 
39]. The aortic arch changes shape with advancing age 
or longstanding hypertension and this group has also 
undertaken the morphometric measurements of the arch 
branches, including the angles of origin and distance of 
origins from each branch. Using such data has led to the 
description of types of aortic arch as the angles between 
branch vessels become more acute, and the origin of the 
brachiocephalic trunk moves anteriorly.

Fig. 6   a–c Frontal view, side view printed three-dimensional model 
of the nature aortic arch including bovin type can be allowed of 
inspection from all angles. The left common carotid artery (big 

arrow) originates from the brachiocephalic trunk (star), close to the 
left subclavian artery (head arrow), right common carotid artery, and 
right subclavian artery (slim arrow)

Fig. 7    During the 6th to 8th week, the primitive aortic arch pattern 
is transformed into adult arterial mapping. The first, second, and fifth 
pairs of the aortic arches disappear (grey colour), while the third, 
fourth, and sixth pairs of aortic arches have their branches (red col-
our). Internal carotid artery (A), external carotid artery (B), common 
carotid artery (C), arch of aorta (D), brachiocephalic trunk (E), right 
subclavian artery (F), and right dorsal aorta (G). (Color figure online)
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Undergraduate education

The students are also reminded of the variability of human 
anatomy and its surgical relevance, showing the importance 
of personalized procedures—namely that each patient has 
his individual anatomy [13, 15, 28, 29]. 3D printed ana-
tomical models can serve as accurate, tactile visualization 
tools, and surgical simulation devices [4, 32]. They can be 
utilized to reproduce complex, patient-unique anomalies, 
or pathologies that facilitate the surgical trainees to preop-
eratively predict the potential intraoperative challenges and 
postoperative outcomes and aid in their learning [35, 36].

Post‑graduate education

Using modeling in post-graduate education helps scientists 
to reach a higher level of knowledge on a variety of top-
ics, including normal structure, embryology, the underlying 
congenital or acquired cause of the variational structure dif-
ferences, the geometrical structure of the supraaortic arch 
pattern, and the distance among each pattern and the angle 
points [32]. The course and the variation of the brachio-
cephalic trunk originating from the aortic arch of life-like 
models can be examined (Fig.  5). Since these models are 
exactly the same as the human, the vascular diameter, the 
distance between the vessels, and similar geometrical cal-
culations can be studied easily.

Creating the 3D printing models can reduce both the 
operation time, exposure to general anesthetic, decrease in 
blood loss, and lessen wound exposure [13, 18, 21]. Tangi-
ble 3D models allow preoperative identification and help in 
the selection of the appropriate surgical management and 
improve surgical skills of the young surgeons [3, 4, 6, 9, 
12]. The models have been evaluated by the patients for 
their usefulness in helping to understand their illness. The 
patients reported that the models aid in understanding the 
anatomy, pathology, and the surgical risks [24, 25].

Individualized treatment approaches, customizability of 
3D printing, can transform the manufacturing of patient-
specific catheter to being widely accessible and affordable. 
3D printed custom prostheses lead to improved clinical out-
comes, such as a reduction in the length of surgery, reduced 
exposure to anesthetics, and a decreased risk of complica-
tions like infections. Besides their value for planning, ori-
entation, and simulation, we believe that the life-like mod-
els are helpful for demonstrating complex procedures to the 
patients, colleagues, and the students [7, 8, 14].

Conclusion

In conclusion, this study shows that the curricular innova-
tion proposed, by combining medical imaging, 3D print 

technologies, and classical anatomical knowledge, is fea-
sible with dedicated students. The anatomical vascular 
models obtained showed good qualitative and quantitative 
correlation with the authentic anatomy. Because of the cost 
and practicality issues, the aortic arch models can only be 
used for educational purposes. A collection of models and 
corresponding radiological images of interesting or com-
plex case studies can be assembled to help trainees gain 
valuable learning experience.
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