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Abstract

Purpose Muscles have been proved to be a major com-

ponent in postural regulation during pathological evolution

or aging. Particularly, spinopelvic muscles are recruited for

compensatory mechanisms such as pelvic retroversion, or

knee flexion. Change in muscles’ volume could, therefore,

be a marker of greater postural degradation. Yet, it is dif-

ficult to interpret spinopelvic muscular degradation as there

are few reported values for young asymptomatic adults to

compare to. The objective was to provide such reference

values on spinopelvic muscles. A model predicting the

muscular volume from reduced set of MRI segmented

images was investigated.

Methods A total of 23 asymptomatic subjects younger than

24 years old underwent an MRI acquisition from T12 to

the knee. Spinopelvic muscles were segmented to obtain an

accurate 3D reconstruction, allowing precise computation

of muscle’s volume. A model computing the volume of

muscular groups from less than six MRI segmented slices

was investigated.

Results Baseline values have been reported in tables. For

all muscles, invariance was found for the shape factor

[ratio of volume over (area times length): SD\ 0.04] and

volume ratio over total volume (SD\ 1.2 %). A model

computing the muscular volume from a combination of two

to five slices has been evaluated. The five-slices model

prediction error (in % of the real volume from 3D

reconstruction) ranged from 6 % (knee flexors and exten-

sors and spine flexors) to 11 % (spine extensors).

Conclusion Spinopelvic muscles’ values for a reference

population have been reported. A new model predicting the

muscles’ volumes from a reduced set of MRI slices is

proposed. While this model still needs to be validated on

other populations, the current study appears promising for

clinical use to determine, quantitatively, the muscular

degradation.
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Introduction

While skeletal postural alignment has been widely investi-

gated based on X-ray analysis [3], quantification of the

muscles’ degradation is not yet fully documented. As

muscular degradation (mainly in terms of decrease of cross-

sectional area) has been correlated to back pain [12, 18, 29,

31] and to aging [1, 10, 36, 37], there is a need for quan-

titative analysis of muscular system in relation to skeleton

aging (bone quality degradation and postural alignment

modifications). As a first step, to differentiate pathological

changes in the muscular system from the one associated

with aging; it is of primary importance to review reference

values for young asymptomatic adults. However, the liter-

ature lacks descriptive values (especially on volumes) of the

muscular system, specifically on the L1 to knee area, par-

ticularly involved in compensatory mechanisms.

Muscles’ geometry has been explored using computed

tomography (CT) [6, 31]. However, CT involves a signif-

icant ionizing dose: covering a specific part of the body

extensively (significant number of slices) involves a mod-

erate- to high radiation dose for the patient [1.5 mSv for a

lumbar spine CT vs 0.02 mSv for a chest X-ray (Food and

Drug Administration, 2015)]. Most frequently, for CT, to

avoid repeated acquisitions, only a reduced set of slices is

acquired, only at specific locations of interest [6, 31].

Another method used to investigate muscles is the ultra-

sound (non-invasive). However, deep muscles can be more

difficult to explore as it is a surface technique, and studies

mainly focused on dynamic (muscles’ contraction) [28, 34].

Finally, the most common imaging modality for the

analysis of themuscular system is theMRI [5, 8, 9, 12, 17, 18,

27, 29, 30, 33, 36]. For example, different studies conducted

by Fortin et al. reported CSA values and fat infiltration

quantification [7–9] on various populations. Particularly,

these studies provided valuable insights on the relation

between muscular asymmetry, fat infiltration and low back

pain [7]. Most of the studies focusing on muscular investi-

gation from MRI images, reported only 2D parameters such

as cross-sectional area [9, 12, 19, 27, 29, 30, 33, 36], and/or

information on fat infiltration of muscles considered [5, 7, 9,

17, 19, 29, 30, 38]. Muscular volume has been, however,

reported for the quadriceps femoris components [2], pelvic

and/or lower limb muscles [4, 13, 22]. The three last studies

either included only a limited number of subjects (3 females

and 3 males [22], or a wide range of age in the population

considered (from 12 to 51 years old [13]), or lastly, focused

on the effect of bed-resting [4] (thus, not considering daily

representative condition). While fat infiltration gives an

insight on the muscle quality [7, 9], calibration may be an

issue and this study focuses on the volume computation and

3D geometrical parameters of the muscles only.

Computing muscular volume can be done by interpola-

tion or by 3D reconstruction of the muscle. In particular,

MRI-based 3D reconstruction and volume computation

method has been reported as accurate [15] and repeat-

able [25]. Still, quantitative analysis of MRI images can be

time-consuming. The deformation of a parametric specific

object (DPSO) method [15, 16] allows for an accurate and

precise 3D reconstruction of individual muscles, from

segmentation on a selected set of MRI images, leading to an

accurate volume computation in a fairly reduced amount of

time. This method had been used on adults with spinal

deformities for the spinopelvic area [25] and on volunteers

younger than 40 years old, for the cervical spine [20] and

for lower limbs [14, 35]. While DPSO method provides

time reduction by reducing the number of slices to consider

per muscle, this method involves different slices for each

muscle which may still be long when numerous muscles are

considered. In addition to characterizing spinopelvic mus-

cles’ 3D geometry (cross-sectional area as well as volume),

on young asymptomatic volunteers, our aim is to propose a

model quantifying rapidly muscular groups’ volume from

less than six MRI segmented images for all muscles.

Methods

Study design

This is a prospective, single-center study, recruiting sub-

jects from September 2014 to March 2015. All participants

signed an informed consent prior enrollment. This study

has been reviewed and approved by Comité de Protection

des Personnes (CPP 14.013), and included asymptomatic

adults younger than 24 years old. Exclusion criteria

included: previous surgery on lower limbs or spine, preg-

nancy, postural disorder, MRI contraindication (mainly

linked to magnetic field).

Data collection

Information collected included: age, body mass index

(BMI), and sex. History of musculoskeletal injury was also

documented. Each subject undertook an MRI exam (General

Electric 1.5T, Fairfield, USA), collecting axial images from

vertebra T12 to the patella distal insertion. The protocol used

was the same as the one described in a previous study [24].

The MRI machine was set with the following parameters:

TR/TE = 427/11.3 ms, acquisition matrix = 416 9 416
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pixels, phase oversampling = 100 %, in-plane resolu-

tion = 0.82 9 0.82 mm2, 8 stages, 40 slices by stage,

slice thickness = 5 mm, slice gap = 0 mm, flip

angle = 160�, parallel imaging acceleration factor

(iPat) = 2, bandwidth = 391 Hz/pixel, echo spac-

ing = 11.3 ms, acquisition time per stage = 7 min, and

total acquisition time = 50 min.

3D reconstruction of the muscles (with information from

all MRI slices) was carried out with software developed in

our institution, using the DPSO method [15, 25]. Muscles

of interest are represented in Fig. 1; analysis was per-

formed for the left and right muscles.

Because the border between specific muscles can be chal-

lenging to identify, some muscles were segmented together:

– the ‘‘adductor’’ includes the adductor brevis, the

adductor longus, the adductor magnus as well as the

obturatorius internus and the pectineus,

– the ‘‘erector spinae’’ includes the tractus medialis

(multifidus and interspinales) and lateralis (longissimus

and iliocostalis),

– the ‘‘iliopsoas’’ includes the iliacus and the psoas,

– the ‘‘vastus lateralis inter’’ includes the vastus lateralis

and vastus intermedius.

For each muscle, the following geometric parameters

were computed: length of the muscle (L), maximal

anatomical cross-sectional area (Amax) and volume of the

muscle normalized (divided) by the height of the subject

(VnormH).

Statistical analysis

Normality of each parameter studied (VnormH; L; Sp;Amax),

for individual muscle, was tested with a Lilliefors test

[21]. For each muscle, differences were investigated

between right and left sides and between females and

males, for the geometric parameters (VnormH; L;Amax):

using a T test if it was found to be drawn from a normal

distribution; using a Mann–Whitney test otherwise. For

each side (right and left), the ratio (RVtot) of each mus-

cle’s volume over the total muscle of the side was com-

puted as well. For RVtot, mean, standard deviation (SD)

and coefficient of variation (CV) [SD 9 100/Mean] have

been calculated.

In the following, muscles were grouped in functional

groups per joint, respectively, as flexors and extensors of

the spine, hip and knee as detailed in Fig. 1. For each

group, the total muscular volume (Vgp) was computed.

Also, for each joint studied (knee, spine, hip), the ratio of

flexors over extensors, Rflex=ext, was computed as the vol-

ume ratio of flexors over extensors muscles of the joint.

Normality of Vgp and Rflex=ext was tested with a Lilliefors

test. Level of significance, for all statistical tests, was set to

0.05.

Alternative estimations of the muscular volume

Two methods were studied to estimate, more rapidly, the

muscular volume in a clinical environment: maximal sec-

tion method and reduced MRI set method.

Maximal section method

As described in Mersmann’s study on the lower leg mus-

cles [23], the volume of each muscle was computed from

the length and maximal cross-sectional area of the muscle,

using a factor of shape Sp. This factor was computed as the

ratio of the volume (VÞ over the product [muscle length by

muscle’s maximal sectional area]: Sp ¼ V= L� Amaxð Þ.
Validation of this factor of shape was done with a leave-

one-out method.

Reduced MRI set method

Estimation of the volume from a reduced set of MRI seg-

mented slices was investigated to reduce segmentation time

and offer a tool applicable in a clinical setting. To quantify

muscular volume more rapidly, a model using the DPSO

method [16, 25], with less than six segmented slices was

investigated.

The volumes of all functional groups were predicted

from a multilinear regression using information of a limited

number of slices (from two to five slices). The following

predictors were used in the model: age, BMI, femoral

length and the sum of the areas of the muscles contained in

the group considered, on the slice considered. A principal

component analysis (PCA) was performed to retain only

relevant predictors (linear combination of the initially

considered predictors). Each computed PCA predictor was

replaced by the initial predictor most correlated with it, to

obtain a clear and understandable prediction equation.

Even if the sum of the areas of the muscles was not

retained by this procedure as a predictor, it was added as

such for its relevance as a global indicator.

The model was built on data from right side of the

subjects. The slices were numbered upward from 0 to 150:

slice 0 as the first slice with the posterior part of the

femoral condyles visible, and slice 100 as the last slice with

the femoral head visible.

The spine flexors’ (Spineflex) and spine extensors’

(Spineext) muscles were segmented on slices from T12 to

the greater trochanter (‘‘proximal slices’’), while the knee

and hip flexors and extensors (Hipflex, Hipext, Kneeflex,

Kneeext) were segmented on slices from S1 to the femoral
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condyles (‘‘distal slices’’). Therefore, at least one slice

from the ‘‘proximal slices’’ was included in the slices’

combinations. A slice was considered only if it contained

the muscles segmentation for at least 90 % of the subjects.

For each slices’ combination, each muscles’ functional

group, the root mean square (RMS) was computed as the

root mean square of the difference (in % of the real vol-

ume) between predicted volume (from the leave-one-out

method) and real volume.

Combinatory analysis was performed to find the best

combination of ‘‘proximal slices’’ (respectively, ‘‘distal

slices’’), as the one presenting the smallest average RMS

over Spineext and Spineflex (respectively, over Hipflex,

Hipext, Kneeflex and Kneeext). Finally, the prediction of this

model has been evaluated by computing the RMS for each

functional group.

Results

Demographics

The sample studied included 12 females and 11 males. Age

(respectively, BMI) ranged from 18 to 21 years (resp.

17.4–24.8 kg/m2). Mean age was 19.3 years (SD: 0.8).

Mean BMI was 20.9 kg/m2 (SD: 2.0). Females’ height

ranged from 155 to 169 vs 171 to 185 cm for men.

Statistical analysis

Tables 1 and 2 present means and SD of L;Amax;

Sp;VnormH;V;RVtot and CV of RVtot. No significant dif-

ference was found between right/left side parameters

(VnormH;V; L; Amax), except for the following: V , VnormH

and RVtot of the quadratus lumborum, rectus femoris and

semitendinosus; L of the gluteus maximus, and Amax of

quadratus lumborum, adductor and semitendinosus. Dif-

ference between right and left sides for these muscles/pa-

rameters was, in average, less than 11 % of the mean value

right/left (Tables 1, 2). Values were averaged right/left

when no significant difference was found (Tables 1, 2).

The major part of the geometrical parameters consid-

ered followed a normal distribution except for the fol-

lowing muscles and parameters: for example, the VnormH

of right iliopsoas, the V of right adductor, the L of left

erectus spinae, the Amax of right gluteus minimus, the

RVtot of left sartorius or the Sp of both sides of quadratus

lumborum.

Fig. 1 Muscles considered in the study (mesh obtained with DPSO

method [15]), represented on a 3D reconstruction of a left leg.

a Anterior view. b Posterior view. c Lateral view. d Medial view. The

table on the right describes the different functional groups considered

for the analysis: spine flexors (Spine F), spine extensors (Spine E), hip

flexors (Hip F), hip extensors (Hip E), knee flexors (Knee F) and knee

extensors (Knee E)
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Statistical differences between right/left Sp were found

for specific muscles, for which the difference was less than

3 % of the mean value right/left (Table 2).

Statistical differences between sexes were found for all

muscles and femur, for Amax;V;VnormH (overall greater

values for males). Even when considering normalized

volume by the subject’s height (VnormH), males present

greater volumes than females: average 1.9 vs 1.4 cm2;

range 0.3–6.6 cm2 vs 0.2–5.0 cm2. For L (respectively,

RVtot), significant differences were found between sexes

for both sides for: gluteus maximus/medius, vastus lateralis

inter, gracilis, sartorius, biceps femoris breve, semimem-

branosus, femur; for the right gluteus minimus and rectus

femoris; and for the left vastus medialis, biceps femoris

longum, and erectus spinae, (respectively, for both sides of

the iliopsoas; for the right gluteus maximus and biceps

femoris breve and for the left quadratus lumborum). No

statistical differences between sexes were found for Sp.

Ratio of a given muscle’ volume over the total volume

(RVtot) was found as quasi-invariant for all muscles

(SD\ 1.2 %).

Table 3 presents means, SD and CV of muscular

groups’ volumes Vgp and ratio of flexors vs extensors

Rflex=ext. For each muscular functional group studied, for

males and females separately, no statistical difference

between right and left sides, was found for the volumes Vgp

(p[ 0.05 for Student’s T test or Mann–Whitney test

depending on normality of data).

Table 1 Means, standard deviations (1 9 SD) and coefficient of variation (CV = SD 9 100/mean) of volume (V), volume normalized by height

(VH), and volumic ratio (RVtot) for females and males

V (cm3) VnormH (cm2) RVtot (%)

Females Males Females Males Females Males

Mean SD Mean SD Mean SD Mean SD Mean SD CV Mean SD CV

Iliopsoasab 290.9 36.2 514.8 43.6 1.8 0.2 2.9 0.3 6.9 0.6 8.6 8.2 0.5 5.8

Quadratus lumborumb

R 33.7 9.2 62.0 7.8 0.2 0.1 0.3 0.0 0.8 0.2 22.2 1.0 0.1 12.7

L 35.9 7.8 67.8 9.8 0.2 0.0 0.4 0.1 0.8 0.1 15.4 1.1 0.2 15.7

Erectus spinae 294.5 42.9 419.2 55.7 1.8 0.3 2.3 0.3 7.0 0.8 11.8 6.7 0.8 12.3

Gluteus maximusa 606.1 80.4 829.2 97.0 3.7 0.5 4.6 0.5 14.4 1.1 7.9 13.2 1.0 7.5

Gluteus medius 236.5 28.9 341.1 36.3 1.4 0.2 1.9 0.2 5.6 0.4 7.1 5.5 0.6 11.4

Gluteus minimus 76.2 7.8 107.8 20.2 0.5 0.1 0.6 0.1 1.8 0.3 15.2 1.7 0.3 14.9

Adductor 663.0 85.5 1028.5 81.6 4.1 0.5 5.8 0.5 15.7 1.2 7.4 16.4 0.7 4.3

Vastus lateralis inter 824.9 93.2 1178.6 85.9 5.0 0.6 6.6 0.5 19.6 1.1 5.5 18.8 0.6 3.4

Vastus medialis 314.9 37.4 465.1 49.3 1.9 0.2 2.6 0.3 7.5 0.6 7.9 7.4 0.7 9.4

Tensor fasciae lata 45.8 10.6 69.8 21.8 0.3 0.1 0.4 0.1 1.1 0.2 21.5 1.1 0.3 28.8

Rectus femoris

R 190.4 26.0 280.0 24.8 1.2 0.2 1.6 0.1 4.5 0.4 9.0 4.5 0.4 9.0

L 187.4 28.2 267.5 24.2 1.1 0.2 1.5 0.1 4.4 0.4 9.7 4.3 0.3 7.9

Gracilis 66.5 9.8 104.8 18.3 0.4 0.1 0.6 0.1 1.6 0.2 12.5 1.7 0.2 13.4

Sartorius 100.3 17.5 161.8 24.1 0.6 0.1 0.9 0.1 2.4 0.3 12.5 2.6 0.3 10.7

Biceps femoris brevea

R 60.5 11.5 112.8 25.0 0.4 0.1 0.6 0.1 1.5 0.2 15.2 1.8 0.3 19.7

L 63.2 14.1 107.9 20.6 0.4 0.1 0.6 0.1

Biceps femoris longum 128.1 17.9 184.1 23.8 0.8 0.1 1.0 0.1 3.0 0.3 9.6 2.9 0.3 10.1

Semimembranosus 154.2 22.6 223.4 31.7 0.9 0.1 1.2 0.2 3.7 0.4 12.1 3.6 0.4 12.2

Semitendinosus

R 129.4 24.6 196.0 24.3 0.8 0.1 1.1 0.1 3.1 0.5 16.5 3.1 0.3 9.9

L 124.2 26.3 183.5 20.2 0.8 0.2 1.0 0.1 2.9 0.4 15.1 2.9 0.2 6.8

Values were averaged over right and left sides when no significant difference was found. Males’ and females’ values were separated as

significant differences were found for all muscles for (V) and VH

a (respectively b) means that statistical differences between males and females were found for RVtot, for the right side of the muscle

(respectively, for the left side of the muscle)
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Alternative estimations of the muscular volume

Maximal section method

Table 2 presents mean and SD of Sp for each muscle and

the prediction error (RMS). For most muscles, the RMS

was less than 10 %, except for gluteus minimus (11.9 %)

and quadratus lumborum (17.7 %).

Reduced MRI set method

Figure 2 presents the best combination of slices. Single

couple of slices, well chosen, at femoral and pelvic level,

led to volume estimation with less than 15 % of error. The

five-slices model prediction error (in % of the real volume

computed from 3D reconstruction) ranged from 6 %

(Kneeflex, Kneeext and Spineflex) to 11 % (Spineext), this

error being around 9–10 % for Hipflex and Hipext. Equa-

tions predicting the volume are presented in Tables 4 and

5.

Discussion

This study reports reference values of muscular volume,

length and cross-sectional areas for young asymptomatic

subjects, providing baseline values for future studies and

more additional findings. Ratio of a given muscle volume

Table 2 Means and standard deviations (1 9 SD) of length (L), maximal axial cross-sectional area (Amax) and shape factor (Sp), for females and

males

L (cm) Amax (cm
2) Sp

F M F M Mean SD Root mean square error (%)

Mean SD Mean SD Mean SD Mean SD

Quadratus lumborum

R 13.1 2.3 13.6 2.1 5.8 1.2 8.8 1.4 0.49 0.04 17.7

L 6.0 1.2 9.7 1.8

Erectus spinaeb 22.1 2.0 23.6 2.1 22.5 2.5 29.8 2.8 0.59 0.00 5.2

Gluteus maximusab

R 27.9 2.0 30.3 1.9 40.1 4.9 49.2 4.2 0.55 0.00 5.9

L 26.9 1.6 30.3 1.5

Gluteus mediusab 18.1 0.8 20.6 1.0 25.6 3.8 33.7 2.4 0.5 0.01 6.6

Gluteus minimusa 13.1 1.4 14.7 1.2 12.3 1.5 15.8 2.7 0.48 0.01 11.9

Adductor

R 36.0 2.8 38.3 3.1 39.6 4.5 58.3 4.1 0.47 0.00 7.1

L 39.2 5.0 55.8 3.9

Vastus lateralis interab 34.6 1.2 37.8 1.5 40.4 4.9 52.8 4.5 0.59 0.00 4.8

Vastus medialisb 31.2 1.7 33.5 2.1 17.4 2.2 24.1 2.7 0.58 0.00 5.2

Tensor fasciae lata 15.7 1.6 16.1 2.4 4.9 1.1 7.2 2.2 0.60 0.01 9.0

Rectus femorisa 31.1 2.1 33.3 1.7 10.6 1.6 14.2 1.6 0.58 0.00 4.6

Gracilisab 31.0 2.7 33.8 2.5 3.4 0.6 4.7 0.8 0.65 0.01 5.0

Sartoriusab 46.5 1.4 50.8 2.1 2.8 0.5 4.1 0.6 0.77 0.00 4.7

Biceps femoris breveab 21.5 1.9 24.5 2.0 5.0 0.8 8.2 1.5 0.57 0.01 8.8

Biceps femoris longumb 26.0 2.6 27.1 2.2 9.3 1.4 12.8 1.7 0.53 0.00 7.1

Semimembranosusab 26.1 1.6 28.4 1.1 10.1 1.6 13.0 2.0 0.60 0.01 6.7

Semitendinosus

R 30.7 2.9 31.6 3.4 7.1 1.3 11.0 1.8 0.58 0.01 7.4

L 7.0 1.8 10.1 1.2

Femurab 44.5 1.5 49.1 1.7 33.8 3.5 42.6 3.5 – – –

Values were averaged over right and left sides when no significant difference was found for L and Amax. Males’ and females’ values were

separated as significant differences were found for all muscles for Amax.
a (respectively b) means that statistical differences between males and

females were found for L, for the right side of the muscle (respectively, for the left side of the muscle). For Sp, values were averaged over sexes as

no significant differences were found between males and females. Values were averaged and over right/left sides as when the difference was

found statistically significant, the difference did not exceed 3 % of the mean value. Root mean square error (RMS), between estimated volume

(from average shape factor) and real volume in % of the real volume, was averaged over right and left RMS
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vs total volume was found quasi-invariant for asymp-

tomatic young adults.

A reduced set of two (respectively, five) segmented

slices, well chosen, can be used to compute muscular

volume with less than 14 % of error (respectively, 11 %)

(Fig. 2).

This work comes with limitations. First, only 23 sub-

jects were included in the study; however, as they were all

aged between 18 and 24 years old, and as they all come

from the same environment (medical students), the vari-

ability in their muscular system should be low. The small

age range was an objective to better characterize the young

asymptomatic population; however, further studies should

quantify age-related changes by recruiting volunteers from

different age groups. A second limitation is the focus made

on the characterization of the muscles’ geometry, not

considering the muscle quality, measured by the fat infil-

tration, for example, that remains an important parameter

to describe the muscular system. Fat infiltration can be

evaluated from MRI images acquired with the Dixon

method [24]; this was the case in our study and associated

data are currently under analysis. A third limitation is the

consideration of the anatomical cross-sectional area and

not the physiological one: pennation angles of muscles

were not considered as only axial slices were studied.

Also, some muscles were grouped because of border’s lack

of visibility. Other studies reported this issue particularly

considering the border between the vastus lateralis and

vastus intermedius [2] suggesting to group the two mus-

cles together because of frequent fusion in young adults.

Similar grouping was made to build up the adductor group,

erector spinae group and iliopsoas group. While the last

group is widely considered as such in the literature [11, 22,

32], grouping muscles comes from the difficulty to iden-

tify proper border between muscles of this group; this

difficulty is enhanced here by the inclusion of young

healthy students presenting little fat between aponeurosis

of different muscles [2]. This study did not include the

small external hip rotators as choice was made to consider

muscles frequently used in the sagittal postural mainte-

nance as part of a wider project. These small muscles

should, however, be included in a future finer study. It

must be kept in mind, however, that grouping muscles will

reduce the ability to quantify precisely these muscles’

characteristics and, therefore, to provide basic values for

comparison with other populations. Nevertheless, this

study’s objective was to provide a first global database for

these muscles, and a clinical-user-friendly tool to estimate

global muscular group’s volume and estimate, quantita-

tively, muscular changes. The model using reduced set of

MRI segmented slices has been built on right-side data of

subjects. The equations of the model have been applied on

the left side and resulted in similar RMS errors (less than

1 % difference), except for the spine flexors (13.5 % for

the left side vs 5.7 % for the right side).

With these points in mind, the first objective of this

study was to report reference values for spinopelvic

muscles’ geometry, for young asymptomatic subjects, as

few studies in the literature reported some of these values.

Considering the cross-sectional area (CSA), our values are

greater than the ones reported by Rasch et al. [31] but of

the same order of magnitude; this can be due to the dif-

ference in the population studied; we included young

asymptomatic subjects, whereas their data come from the

healthy limb of people planned for unilateral total hip

Table 3 Means; standard deviations (SD) and coefficient of variation

(CV = SD 9 100/mean) of functional groups’ volume ðVgpÞ and

functional groups’ ratio of flexors/extensors (Rflex=ext), for females and

males, for right and left sides

Females Males

Mean SD CV (%) Mean SD CV (%)

Volume (cm3): Vgp

Spine flex

R 287.4 38.0 13.2 518.4 49.0 9.5

L 294.4 36.5 12.4 511.2 40.1 7.9

Spine ext

R 328.1 48.2 14.7 482.5 53.7 11.1

L 330.6 52.4 15.8 485.7 61.4 12.6

Hip flex

R 1351.9 145.2 10.7 2176.7 160.6 7.4

L 1358.7 154.9 11.4 2130.2 190.0 8.9

Hip ext

R 1072.0 124.0 11.6 1538.0 138.8 9.0

L 1082.1 128.0 11.8 1535.7 144.7 9.4

Knee flex

R 636.1 76.6 12.0 980.3 96.1 9.8

L 639.5 78.3 12.3 968.0 104.7 10.8

Knee ext

R 1319.7 138.8 10.5 1927.1 162.0 8.4

L 1337.6 163.0 12.2 1907.8 103.0 5.4

Ratio of flexors over extensors: Rflex ext

Spine

R 0.9 0.1 15.7 1.1 0.1 13.2

L 0.9 0.2 16.8 1.1 0.1 12.8

Hip

R 1.3 0.1 7.8 1.4 0.1 6.9

L 1.3 0.1 8.6 1.4 0.1 5.2

Knee

R 0.5 0.0 8.7 0.5 0.0 8.8

L 0.5 0.0 6.7 0.5 0.0 7.0

No significant differences were found between right and left sides.

Males’ and females’ values were reported separately to account for

differences found in volume for each individual muscle
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replacement (Table 2). Another reason for the difference

observed can be that we reported the maximal CSA,

contrary to Rasch et al. reporting CSA at the distal

femoral level [31]. To our knowledge, no values were

reported for the length of these muscles from axial ima-

ges. The volume ratio, in percentage of total volume, was

found similar to the values reported by Südhoff et al. [35]

for the lower limb’s muscles. We also reported an

invariance of this volume ratio between subjects (SD less

than 1.2 %) (Table 1). This parameter would be particu-

larly interesting when studying altered muscles of elders

or patients.

Fig. 2 RMS (root mean square) error for each functional group and on average over the six groups (RMS Average), for the different slices

combinations chosen

Table 4 For each muscular group, coefficients of the predictors in column. Equation to predict the muscular volume of a functional group using

slices numbering as detailed in Fig. 2 (Volume in cm3; Area in cm2; Constant in cm3; A, B in cm): Volume = Constant 9 1 ? A 9 Area_-

slice21 ? B 9 Area_slice56

Hip Knee

Flex Ext Flex Ext

Constant -191.9 -73.0 -193.1 -294.8 

A 40.2 36.6 21.6 12.6 

B 33.4 33.4 18.2 22.5 
Slices:
21 – 56

Area_slice_N corresponds to the sum of the areas of the muscles labeled in the functional group studied, on the slice N (in cm2)
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Considering muscular volume, comparison can be made

with some previous studies from the literature [2, 4, 13,

22]; overall, our findings are in line with these results.

Looking into more details to the iliopsoas, for the men, our

findings are greater than those of Lube et al. [22] and

Handsfield et al. [13]: 515 cm3 vs between 442 and

452 cm3 for these studies. For the women, our results are

greater (291 cm3) than Lube’s (252 to 268 cm3) [22] but

lower than Handsfield’s (452 cm3) [13]. Differences can be

due to differences in the population studied (higher BMI,

wider age range, etc…): for example, Handsfield et al.

reported values for 24 healthy participants (with only 8

females) [13], and Lube et al.’s study [22] included only 3

females and 3 males. All these comments could also apply

to differences observed with these studies for the adductor

group and biceps femoris. For the latter, Lube et al. already

reported large variation of its volume across different

populations; difference in the participants of each study

could explain these differences, maximal difference of

47 cm3 for men with Lube’s data [22]. Moal et al. [24]

reported muscular volume for the same functional groups

as this study did, but including patients with adult spinal

deformities: overall, the muscles studied presented a

greater volume in the young asymptomatic group of this

study. This agrees with the general and documented

knowledge of sarcopenia (loss of skeletal mass) occurring

with aging [1, 10, 26] as well as muscular degradation

occurring with spinal pathologies [12, 29].

No major asymmetry was reported between right and

left volumes of individual muscles. In comparison, previ-

ous studies have reported a limited role of multifidus vol-

ume asymmetry in prediction of low back pain syndrome

[7]. Fortin et al. reported a threshold of 10 % of asymmetry

to be the limit before abnormality [9]: the asymmetries

found in this study were less than 12 % which confirm our

population as a reference group, in addition to its young

age.

Considering the muscular groups’ volumes, sex differ-

ences were found (Table 3).

As for the shape factor, the methodology described here

was based on the study of Mersmann et al. [23] on lower

leg muscles. Still, we found similar variability of the shape

factor as they did: maximum SD found here = 0.04 vs 0.04

(untrained subjects) and 0.05 (endurance athletes) as

reported by Mersmann et al. [23] (Table 2). One can note

that the maximal variability between subjects for the shape

factor was reported here for the quadratus lumborum; this

can be explained by its short length (Table 1); as it is

visible on few slices with an irregular shape along the

proximal–distal axis, it is difficult to characterize it by the

same equation for all subjects. The use of this shape factor

appears as adapted to compute muscle volume for most

muscles (RMS\ 10 %), but is not adapted for short

muscles: gluteus minimus (RMS = 11.9 %), quadratus

lumborum (RMS = 17.7 %) (Table 2).

Among all models studied (from two to five slices), the

two-slices model provided a gross estimation of muscular

volume (Fig. 2: average RMS = 10.9 %). The five-slices

model is a possible compromise between accuracy and

analysis time in a routine environment, while the whole 3D

model could be more appropriate for research, particularly

when considering the spine extensors (RMS\ 8 % for the

average over the six functional groups (Fig. 2)). This

model uses a combination of two ‘‘distal slices’’ and three

‘‘proximal slices’’. Two ‘‘distal slices’’ are required: one

near the distal end of the femur (slice 21) to estimate

volume of muscles (semimembranosus and biceps femoris

breve for example); one mid-way on the diaphysis (slice

56) to better evaluate the great thigh muscles (adductor,

vastii, rectus femoris, for example). The three ‘‘proximal’’

slices (slices 116, 126 and 136) are located between the

acetabulum and T12 to estimate the volume of spine flexors

and extensors: these slices are close to each other (10 slices

apart) to focus on an area with segmentation for all the

three muscles of interest (iliopsoas, erector spinae and

quadratus lumborum) but also to estimate volume of a

small and changing muscle in shape: the quadratus lum-

borum. Also, the model is not sensitive to the exact posi-

tion of the slice suggested in the model; using a slice

positioned five slices above or below, changes the aver-

aged RMS by 1.5 % maximum. Therefore, if validated on

other populations, this method could be implemented in

clinical routine for muscle characterization.

The two methods presented to compute muscular vol-

ume from little information are of same accuracy (RMS

around 10 % for both), but differ in their implementation:

if the shape factor is useful for an individual muscle, the

five-slices model can compute volume of muscles’ group.

Table 5 For each muscular group, coefficients of the predictors in

column. Equation to predict the muscular volume of a functional group

using slices numbering as detailed in Fig. 2: Volume = Constant 3
1 ? A 9 Femoral_Length ? B 9 Area_slice116 ? C 9 Area_-

slice126 ? D 9 Area_slice136

Spine

Flex Ext

Constant -465.6 -24.4

A 11.3 0

B 8.0 5.5

C -0.8 2.5

D 14.9 12.1

Slices:
116 – 126 – 136

Area_slice_N corresponds to the sum of the areas of the muscles

labeled in the functional group studied, on the slice N (in cm2). Vol-

ume in cm3; Constant in cm3; Femoral_Length in cm; A in cm2; B, C,

D in cm
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Both, however, gain time during analysis of MRI images

(reconstruction time fairly reduced: five slices segmented

vs more than 120 slices for total 3D reconstruction).

Different levels of analysis may be needed for charac-

terizing muscular geometry; in clinical routine, a rapid

method could provide a global insight of the patients’

muscles, while in research, a longer method can be con-

sidered to obtain a finer analysis. If the DPSO method is the

current method providing the most relevant estimation of

each individual muscle’s geometry, a new method has been

proposed here for use in a clinical environment: it is less

time-consuming and provides, still, a good estimation of

functional groups’ muscular volumes.

The current model appears promising for clinical routine

to quantify muscular volume of functional groups. This

model still needs to be validated on other populations

(older adults, patients), and when validated, could provide

a clinical-user-friendly tool to determine quantitatively the

muscular degradation of patients/volunteers.

In conclusion, our study provided a database for geo-

metrical parameters of spinopelvic muscles for young

asymptomatic adults. A new model computing the func-

tional groups’ muscular volume has been proposed and

appears promising in estimating muscular volume of

volunteers/patients.
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