
ORIGINAL ARTICLE

Neuromuscular structure of the tibialis anterior muscle
for functional electrical stimulation

Kyu-Ho Yi1 • Liyao Cong2 • Jung-Hee Bae2 • Eun-Sook Park3 •

Dong-wook Rha3 • Hee-Jin Kim2

Received: 31 January 2016 / Accepted: 12 May 2016 / Published online: 20 May 2016

� Springer-Verlag France 2016

Abstract

Purpose This study describes the nerve entry points and

intramuscular nerve branching of the tibialis anterior,

providing essential information for therapeutic functional

electrical stimulation and botulinum toxin injection.

Methods One hundred and ten legs from Korean and Thai

cadavers were dissected. Ten specimens were harvested

and subjected to modified Sihler’s staining.

Results The average total length from the lateral malleolus

to the fibular head was 32.0 cm (SD 1.9). The nerve entry

points were densely distributed between 86.5 and 90.6 %

of the reference length, where the first and second nerve

entry points were observable. A densely arborizing area of

the intramuscular nerve branches was observed at 70–80 %

of the reference length.

Conclusions Based on the results of this study, clinicians

can increase the effectiveness of therapeutic functional

electrical stimulation and identify the ideal sites for botu-

linum toxin injection to the tibialis anterior muscle.

Keywords Tibialis anterior � Sihler’s staining � Functional
electrical stimulation � Spasticity � Botulinum toxin

Introduction

Up to 30 % of patients with cerebral vascular accidents

experience foot drop as a result of impaired control of the

ankle musculature, making it a major disability in reha-

bilitation [5, 30]. Impaired foot clearance caused by foot

drop contributes to high risk of stumbling and falling,

instability of gait, limited functional mobility, and

unwanted compensatory gait patterns.

Functional electrical stimulation (FES) was first intro-

duced in 1961 to correct foot drop and has now become one

of the standard approaches of treating patients with foot

drop [28]. FES is a useful therapeutic option, as it improves

motor reaction time, isometric torque, and alternating

contractions of agonist and antagonist muscles in patients

with stroke [6, 10].

Various electrode positions can be used to elicit the

required muscle contraction to promote ankle dorsiflexion

and improve swing-phase foot clearance [3, 11, 21, 31, 34,

41, 42, 46]. One commonly used method is to place one

electrode over the common fibular nerve, just below the

head of the fibula, and the second electrode over the dor-

siflexors [44]. The common fibular nerve has two branches:

the superficial fibular branch and the deep fibular branch

[1]. The tibialis anterior muscle, exerting as a strong ankle

dorsiflexor and invertor, is innervated by the deep fibular

nerve branch. The fibularis longus and brevis, exerting as

ankle plantarflexors and evertors, are innervated by the

superficial fibular nerve branch. If the stimulation of the

common fibular nerve produces too much eversion of
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ankle, the electrode can be relocated to stimulate the motor

points of the tibialis anterior muscles [40].

It is crucial to note the neuromuscular structures of the

tibialis anterior when applying electrical currents for

treatments. For maximum contraction of the tibialis ante-

rior muscle and minimum contraction of unintended fibu-

laris muscles, the optimal intensity of electrical stimulation

should be applied precisely to the nerve branch innervating

the muscle. Therefore, the electrode must be ideally posi-

tioned and sized when stimulating the tibialis anterior

muscle to obtain the desired responses with minimal

stimulation intensity.

Spasticity of the tibialis anterior muscle has been con-

sidered as a contributor of varus deformity of the ankle in

patients with central nervous system damage [32]. Clini-

cally, ankle plantarflexors and invertors, such as the tibialis

posterior, flexor digitorum longus, and flexor hallucis

longus muscles, are more often targeted to correct varus

deformity of the foot [37, 38]. If this fails to correct the

varus deformity fully, the tibialis anterior can be injected

[35]. Split anterior tibialis tendon transfer (SPLATT) is a

popular surgical procedure for the treatment of the spastic

equinovarus foot deformity as well [13, 29].

The aim of this study was to clarify the anatomic

courses and distribution of the extramuscular and intra-

muscular nerves innervating the tibialis anterior muscle via

topographic examination followed by detailed dissection

and Sihler’s staining.

Methods

Anatomical examinations were performed on 110 specimens

(55 right side and 55 left side) of embalmed adult Korean

cadavers (42 male, 24 female; age in years: range 43–96,

mean 73.5, SD 13.8) and Thai cadavers (36 male, 8 female;

age in years: range 41–93, mean 74.8, SD 14.0). The skin of

the distal leg was delicately removed, and the subcutaneous

tissue was removed to disclose the tibialis anterior. The

extensor digitorum longus and extensor hallucis longus were

carefully distracted to reveal the deep fibular nerve. After a

detailed dissection, the most prominent point of the lateral

malleolus and the fibular head were aligned vertically and

defined as the Y-axis. The horizontal line crossing the lateral

malleolus was defined as the X-axis (Fig. 1).

Nerve entry points (NEPs) were defined as locations

where a nerve penetrated into the muscle belly. Musculo-

tendinous junctions, where muscles became tendons, were

pinpointed and then measured at two points: the proximal

musculotendinous junction (PMTJ), where the most prox-

imal point of the tendinous portion appeared, and the distal

musculotendinous junction (DMTJ), where the most distal

part of the transition point appeared. The length (from the

most proximal point of the tibialis anterior origin to the

LMTJ) and the width (at a point located at 70 % of the total

distance from the lateral malleolus to the fibular head) of

the muscle belly were also measured.

The following locations were measured along the X-axis

and Y-axis to identify their anatomical position using a

protractor and digital caliper capable of measuring to the

nearest 0.01 cm: the fibular head, first nerve entry point

(NEP1), second nerve entry point (NEP2), third nerve entry

point (NEP3), fourth nerve entry point (NEP4), proximal

musculotendinous junction (PMTJ), and distal musculo-

tendinous junction (DMTJ). All measurements along the

Y-axis were converted to a percentage of the total distance

from the lateral malleolus to the fibular head (the reference

distance).

Fig. 1 Nerve entry points from the deep fibular nerve. The anatom-

ical landmarks of the tibialis anterior were measured with the lateral

malleolus as the zero point. The X-axis was drawn horizontally across

the lateral malleolus. The Y-axis was drawn from the lateral malleolus

to the fibular head. LM lateral malleolus, FH fibular head, NEP1 first

nerve entry point, NEP2 second nerve entry point, NEP3 third nerve

entry point, NEP(FL) nerve entry point of fibularis longus, NEP(FB)

nerve entry point of fibularis brevis, PMTJ proximal musculotendi-

nous junction, DMTJ distal musculotendinous junction. NEP(FL) and

NEP(FB) is referred from the research of Lee et al. [25]
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Staining

Sihler’s method was applied to ten tibialis anterior muscles

harvested from the Korean cadavers (5 male, 5 female; age

in years: range 63–73, mean 67.5, SD 7.8) to observe the

intramuscular nerve distribution patterns. The method

included the following steps for fixation, decalcification,

staining, destaining, neutralization, and clearing [47–52].

For Sihler’s neutral staining, the harvested muscles

were fixed by immersion in 10 % unneutralized formalin

for 1 month. After fixation, the specimens were washed

in running water and then placed in 3 % aqueous

potassium hydroxide solution with 0.2 ml 3 % hydrogen

peroxide for 4 weeks. The depigmented muscles were

then transferred into Sihler’s solution I, consisting of

glacial acetic acid, glycerin, and 1 % aqueous chloral

hydrate. Then, the muscles were dyed for 3–4 weeks in

Sihler’s solution II, which comprised Ehrlich’s hema-

toxylin, glycerin, and 1 % aqueous chloral hydrate. After

the staining processes, the specimens were transferred

into Sihler’s solution I and stirred lightly. The solution

was changed when it became purple. This process ended

when the stained nerve branches were clearly visible.

The destained muscles were neutralized by 0.05 %

lithium carbonate solution for 1 h and then washed in

running water for 1 h. Subsequently, the specimens were

soaked in a series of increasing concentrations (40, 60,

80, and 100 %) of glycerin.

After the staining processes, the results were compared

by dividing the reference length into 10 equal sections and

observing and measuring the locations of the densely sited

neuromuscular junctions and the distal end point of the

intramuscular nerve.

Statistical analysis

Comparisons among the cadavers based on sex were per-

formed using independent t tests. P values\0.05 were

considered statistically significant. All measurements were

analyzed using SPSS version 15.0.

Results

The tibialis anterior had branches with one to four NEPs

(mean 1.9; SD 0.7). One NEP was found in 30.9 % of the

specimens, two NEPs were found in 53.6 % of the speci-

mens, three NEPs were found in 13.6 % of the specimens,

and four NEPs were found in only 1.8 % of the specimens.

The average length of the muscle belly was 22.7 cm (SD

2.1 cm), and the average width was 2.7 cm (SD 0.4 cm),

with no significant differences between the sexes.

The anatomical locations of the NEPs, PMTJ, and DMTJ

are summarized in Table 1 and depicted in Figs. 1 and 2. In

terms of percentages of the reference distance, the average

locations of NEP1, NEP2, NEP3, and NEP4 were 90.6 %

(SD 3.4 %), 86.5 % (SD 3.4 %), 82.4 % (SD 3.1 %), and

74.8 %, respectively (Fig. 1). On the X-axis of the most

prominent point of lateral malleolus, NEP1, NEP2, NEP3,

and NEP4 were located at 1.3 cm (SD 0.1 cm), 1.4 cm (SD

0.1 cm), 1.3 cm (SD 0.9 cm), and 1.6 cm from the reference

point of lateral malleolus, respectively. The average position

of the PMTJ as a percentage of the reference length was

30.0 % (SD 4.9 %), and that of the LMTJ was 25.7 % (SD

4.4 %). The Sihler’s depigmenting process revealed, how-

ever, that the actual mean location of the PMTJ was at

78.2 % of the reference length.

Table 1 Anatomical points for

tibialis anterior muscle
Length from LM N Mean (X-axis, Y-axis) SD (X-axis, Y-axis) Percentage distance

Mean (%) SD (%)

FH 110 0, 32.0 0, 1.9 100

NEP1 110 1.3, 29.0 0.1, 1.2 90.6 3.4

NEP2 93 1.4, 27.7 0.1, 1.2 86.5 3.4

NEP3 17 1.3, 26.4 0.9, 1.0 82.4 3.1

NEP4a 2 1.6, 24.0 74.8

PMTJ 110 2.2, 10.0 0.1, 2.7 30.9 4.9

DMTJ 110 3.3, 8.2 0.1, 2.5 25.7 4.4

The nerve entry points, proximal musculotendinous junction, and distal musculotendinous junction were

measured (in cm) according to the X-axis (horizontal line crossing the lateral malleolus) and Y-axis (vertical

line from the lateral malleolus to the fibular head)

The percentage is based on the total distance from the fibular head to the lateral malleolus

LM lateral malleolus, FH fibular head, NEPs nerve entry points, PMTJ proximal musculotendinous

junction, DMTJ distal musculotendinous junction
a SD was not measured because there were only two specimens
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The intramuscular branching appeared to have a mini-

mum of two and a maximum of five branches located at

80–90 % of the reference distance. Arborizing patterns

appeared as those fine branches ran down distally. The

intramuscular neural arborized areas were located at

70–80 % of the reference length. The most distally located

intramuscular nerve ending was observed at around

25–30 % of the reference length (Fig. 3).

Comparisons between the male and female cadavers

were made proportional to the height. There were no sig-

nificant differences between the sexes in the location of the

fibular head, NEP1, NEP2, NEP3, NEP4, PMTJ, or DMTJ.

Discussion

The tibialis anterior is located in the anterior portion of the

distal leg that originates from the proximal two-thirds of the

tibial body and inserts into the medial cuneiform. It is a

muscle commonly targeted for diagnostic and therapeutic

purposes [27]. A prominent method used today to engage

the tibialis anterior is FES-assisted gait training to prevent

foot drop in the swing phase [4, 20, 33, 45]. The foot drop

stimulation using implantable or surface electrodes are as

equivalent as or even more effective than the ankle foot

orthosis. However, implantation of intraneural electrodes

requires experienced surgical skills and these surface elec-

trode stimulation may increase prevalence of skin irritation

[12, 24]. Anatomical researches focused on the motor end

plate zones, NEPs, PMTJ, and DMTJ, must be the guidance

to minimize surgical complications and skin problems when

applying FES-assisted ankle dorsiflexion.

The electrodes for gait-assisting FES devices should be

placed in relation to the NEPs, which were found to be

located at 85–95 % of the distance from the lateral

malleolus to the fibular head. The mean width of the

muscle at its widest point, assumed to be at 70 % of the

distance from the lateral malleolus to the fibular head, was

2.7 cm. The locations of the NEPs and the mean muscle

width can be generalized to the larger population, as no

significant differences among the specimens were found

based on gender or nationality.

A prior cadaveric study that dissected 20 sides reported

that the tibialis anterior is innervated by two to four NEPs

Fig. 2 Anatomical structures

based on percentages regarding

the lateral malleolus and fibular

head. The deep fibular nerve

runs down between the tibialis

anterior and the extensor

digitorum longus. The

descending deep fibular nerve

branches out to the first nerve

entry point, second nerve entry

point, and third nerve entry

point of the tibialis anterior.

Examples of muscles with one

nerve entry point (a), two nerve

entry points (b), and three nerve

entry points (c) are shown. LM

lateral malleolus, FH fibular

head, TA tibialis anterior, EDL

extensor digitorum longus, DFN

deep fibular nerve, NEP1 first

nerve entry point, NEP2 second

nerve entry point, NEP3 third

nerve entry point
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branching out from the deep fibular nerve [36]. This report

did not, however, state exactly the locations of the NEPs

using anatomical indexes or proportions. Here, findings

from 110 sides showed the presence of one to four NEPs

per specimen with precise proportional locations based on

index points.

Previous research using gait-assisted FES described the

location of stimulation only vaguely. Adjustments in the

placements of electrodes were recommended to stimulate

the tibialis anterior more selectively to achieve the desired

motion in both the sagittal and frontal planes [34, 42]. No

detailed information about the locations of stimulation was

given. Misplaced electrodes spaced too far apart promote

deeper penetration of the current, causing plantar flexion by

striking the tibialis posterior [2, 15, 34]. Likewise, the large

size of the electrode can cause unintended stimulation of

the fibularis muscles and evoke unintended plantarflexion

and hypereversion of the ankle, which should be avoided in

patients who have suffered a stroke [16, 22]. Springer et al.

reported that isolated muscle activation of the tibialis

anterior is necessary in cases of ankle hypereversion [44].

Ankle hypereversion may occur when electrodes are placed

laterally, as NEPs of the tibialis anterior and fibularis

longus (90 %) and brevis (72 %) overlap in the vertical

range [25]. If stimulation of the common fibular nerve

produces too much eversion of the ankle, the electrode can

be relocated medially to stimulate the motor points of the

tibialis anterior muscle [40].

The results reported here suggest that isolated contrac-

tion of the tibialis anterior should be performed selectively,

with the electrodes located over the NEPs at 85–95 % of

the distance from the lateral malleolus to the fibular head.

Smaller electrodes should be used, as the tibialis anterior

has a maximum muscle width of 2.73 cm.

By basing the general electrode placement for FES on

the results of this anatomical study, clinicians can obtain

low skin electrode impedance, which can lower the inci-

dence of burning; conduct current uniformly; allow desired

movement; and avoid skin irritation, thereby reducing pain

and increasing effectiveness.

Varus deformity of the foot and ankle are common in

patients with cerebral palsy, particularly those with hemi-

plegic-type neurologic impairments [37]. The tibialis pos-

terior has been considered to be a main contributor to varus

deformity in these patients [9]. Therefore, this muscle is

frequently targeted for botulinum toxin injection in chil-

dren with spastic cerebral palsy to reduce abnormal

hypertonicity and to correct equinovarus deformity [38].

However, a higher prevalence of tibialis anterior spasticity

and dysfunction as a contributor to varus foot deformity

was reported in patients with cerebral palsy using dynamic

electromyography [32]. Although the therapeutic effect of

botulinum toxin injection to the tibialis anterior muscle for

spastic varus deformity of the foot has not been studied

sufficiently, the ideal sites of botulinum toxin injection to

this muscle should be elucidated before performing clinical

research.

While botulinum toxin has been used in various clinical

fields for over 25 years, this treatment remains a challenge

due to the complex considerations required before its

application and its side effects [14]. Usually, side effects

result from inaccurate injection and excessive diffusion. As

the therapeutic effects of botulinum toxin are dependent on

dosage, a sufficient amount of botulinum toxin should be

delivered to the motor end plate zone of targeted muscle

[50]. However, an overdose of botulinum toxin can cause it

to spread to adjacent muscle and induce undesirable

paralysis [18, 23, 26]. To lessen unwanted side effects and

maximize the efficacy, botulinum toxin should be injected

as close as possible to the motor end plate zones.

Accordingly, a comprehensive knowledge of the locations

of the motor end plate zones of the targeted muscle is a

prerequisite for injecting toxin in a swift and accurate

manner, and there has been much research performed on

the anatomical locations of motor end plate zones for tar-

geted muscles [7, 19, 26, 39, 43, 53].

Fig. 3 The nerve distribution inside the tibialis anterior muscle is

revealed by Sihler’s staining. The arborized portion of the tibialis

anterior was located at 70–80 % of the distance from the lateral

malleolus. The most distal part of the nerve ending was at 25–30 % of

the distance from the lateral malleolus, which was same distance as

the distal musculotendinous junction. After the muscle was depig-

mented, the actual proximal musculotendinous junction was revealed

at a mean distance of 78.2 % (instead of the topographic observation

of 30.9 %) of the distance from the lateral malleolus. a The arborized

portion of the nerve ending. b The most distal part of the nerve

ending. TA tibialis anterior, DFN deep fibular nerve

Surg Radiol Anat (2017) 39:77–83 81

123



The findings of the present study with regard to the

intramuscular arborizing patterns of the deep fibular nerve

in the tibialis anterior suggest optimum sites for botulinum

toxin injection at 70–80 % from the lateral malleolus,

where the arborized pattern was observed by Sihler’s

staining (Fig. 3a). Additionally, we could observe by

depigmenting the muscle that the tendinous portion ter-

minated at a mean of 78.2 % and became thicker distally,

although the PMTJ was identified by dissection at a mean

of 30.9 % from the lateral malleolus. The intramuscular

tendon injury should be considered in clinical applications

for the patients with muscle strains and the extents of post-

injury musculotendon remodeling were correlated with

likelihood of re-injury [8, 17]. Therefore, clinicians should

avoid needling below about 70 % from the lateral malle-

olus so as not to penetrate the intramuscular tendon.

However, ultrasonography with electrical stimulation

guidance is helpful for more accurate and efficient

injection.
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