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Abstract
A growing number of intensive irrigated production systems of the almond crop have been established in recent years. How-
ever, there is little information regarding the crop water requirements. Remote sensing-based models such as the two-source 
energy balance (TSEB) have proven to be reliable ways to accurately estimate actual crop evapotranspiration. However, few 
efforts have been made to validate the transpiration with sap flow measurements in woody row crops with different production 
systems and water status. In this study, the TSEB Priestley-Taylor (TSEB-PT) and contextual approach (TSEB-2T) models 
were assessed to estimate canopy transpiration. In addition, the effect of applying a basic clumping index for heterogeneous 
randomly placed clumped canopies and a rectangular hedgerow clumping index on the TSEB transpiration estimation was 
assessed. The TSEB inputs were obtained from high resolution multispectral and thermal imagery using an unmanned aerial 
vehicle. The leaf area index (LAI), stem water potential (Ψstem) and fractional intercepted photosynthetically active radia-
tion (fIPAR) were also measured. Significant differences were observed in transpiration between production systems and 
irrigation treatments. The combined use of the TSEB-2T with the C&N-R transmittance model gave the best transpiration 
estimations for all production systems and irrigation treatments. The use of in situ PAR transmittance in the TSEB-2T model 
significantly improved the root mean squared error. Thus, the better agreement observed with the TSEB when using the 
C&N-R model and in situ PAR transmittance highlights the importance of improving radiative transfer models for shortwave 
canopy transmittance, especially in woody row crops.

Introduction

Almond production has increased worldwide in the last 
decade (FAOSTAT 2022). Currently, more than 2 million 
ha of orchards are cultivated worldwide (FAOSTAT 2022). 
In Spain, almond has traditionally been planted in rainfed Manuel Quintanilla-Albornoz and Joaquim Bellvert contributed 
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marginal areas with poor and shallow soils. However, the 
establishment of modern orchards in new irrigated areas has 
led to significant progress in the production techniques of 
almond tree cultivation. Among them, intensive plantations, 
characterized by smaller spacing distances and more planar 
canopies, are increasingly common. The area of irrigated 
almond cultivation in Spain has increased from 4.7% in 
2005 to 22.1% in 2021. Moreover, new intensive orchards 
amounted to over 140,000 ha in 2020 (MAPA 2021). This 
trend in orchard intensification from 3D canopy architectures 
to modern high density, simple/planar designs is happen-
ing in other Prunus species as well as almond (Iglesias and 
Echeverria 2022).

The shift to a more intensified agriculture coincides 
in time with a context of water scarcity in which water 
resources are already limited in, for example, the Medi-
terranean countries (Tramblay et al. 2020; Moldero et al. 
2021, 2022; Soares and Lima 2022). Therefore, proper 
water management of irrigated crops will be essential to 
ensure successful long-term agricultural activity (Garcia-
Tejero et al. 2014). In this context, the adoption of regulated 
deficit irrigation (RDI) strategies plays an important role in 
contributing to reducing water consumption without signifi-
cantly impacting yield (Girona et al. 2005; Egea et al. 2010). 
Numerous studies have quantified crop water requirements 
and analyzed the impact of RDI strategies in almond (Girona 
et al. 2005; Fereres and Soriano 2007; Espadafor et al. 2017; 
López-López et al. 2018a, b; Moldero et al. 2021, 2022). 
However, these studies have mostly considered open-vase 
training systems with large spacing distances. Thus, little is 
known about actual crop water usage of the new and more 
intensive almond production systems with planar canopies 
or their response to the adoption of RDI strategies. Transpi-
ration or crop water use is mostly driven by the atmospheric 
saturation deficit, the amount of solar radiation intercepted 
by the canopy, and regulated by stomatal and aerody-
namic conductance (Ayars et al. 2003; Girona et al. 2011; 
Espadafor et al. 2015). The balance between the last two 
components depends on the degree of coupling of leaves to 
atmosphere (Jarvis 1985). The implantation of novel training 
systems at/or different planting densities also has a signifi-
cant impact on light interception and therefore on transpira-
tion. For instance, Casanova-Gascón et al. (2019) reported 
that almonds in an open-center system resulted in higher 
light intercepted than a superintensive system. Iglesias and 
Echeverria (2022) also showed that although the intercepted 
light of planar canopies was compensated for by a higher 
tree density, less light was intercepted than with other 3D 
canopy systems like the Y-trellis, open vase, transversal 
ypsilon or double Y. Despite the differences encountered 
in light interception, to the best of our knowledge no evapo-
transpiration comparisons have been made between different 
trellis systems.

A number of methodologies have been developed to 
measure or estimate crop evapotranspiration or its com-
ponents (transpiration and soil evaporation) across a spec-
trum of spatial scales and crops. Examples of measurement 
techniques include weighing lysimeters (Girona et al. 2011; 
López-Urrea et al. 2012), eddy covariance (Bellvert et al. 
2018; Drechsler et al. 2022; Knipper et al. 2023), soil water 
balance (López-López et al. 2018a; Moldero et al. 2021) 
and sap flows (Espadafor et al. 2015; Mancha et al. 2021). 
Sap flow sensors offer significant advantages, measuring the 
transpiration of each plant in a simple, continuous, auto-
mated way, and with high temporal resolution (Smith and 
Allen 1996; Forster 2017; Fernandez et al. 2001). Among 
the sap flow measuring methods available, the Compen-
sation Heat-Pulse (CHF) has been suggested as a tool for 
detecting water stress and for irrigation scheduling purposes 
(Fernandez et al. 2001; Alarcón et al. 2005). Nonetheless, it 
is advisable to calibrate measurements to accurately assess 
transpiration for the entire plant, given the azimuthal vari-
ability in sap velocity within the trunk (López-Bernal et al. 
2010; Forster 2017; Noun et al. 2022).

In recent decades, remote sensing surface energy bal-
ance models have also been used to estimate actual crop 
evapotranspiration (ETa) in a wide variety of environments 
and ecosystems (Shuttleworth and Wallace 1985; Bastiaans-
sen et al. 1998; Drexler et al. 2004; Overgaard et al. 2006; 
Allen et al. 2007; Timmermans et al. 2007; Kalma et al. 
2008; Kustas and Anderson 2009; Gómez-Candón et al. 
2021). Several energy balance model schemes have been 
developed; these can be classified as either one-source or 
two-source schemes (Bastiaanssen et al. 1998; Allen et al. 
2007; Kalma et al. 2008; Kustas and Anderson 2009). In 
the one-source approach, the land surface is treated as if 
it were one large leaf with a single uniform layer, with no 
distinction being made between sinks related to vegetation 
and soil. The Land Surface Temperature (LST) in the scene 
is used to define the upper (LE ~ Rn -G) and lower (LE ~ 0) 
limits of evapotranspiration (Bastiaanssen et al. 1998; Allen 
et al. 2007). In contrast, the two-source approach parameter-
izes the biophysical processes to separately estimate plant 
transpiration and evaporation from non-vegetated surfaces 
(Norman et al. 1995; Colaizzi et al. 2014; Nieto et al. 2019). 
The two-source scheme emerged as a strategy to address cru-
cial factors affecting the relationship between aerodynamic 
and radiometric temperature, which had yielded unsatis-
factory outcomes in cases of partial canopy cover and for 
heterogeneous landscapes when one-source modelling was 
used (Norman et al. 1995). Although the new one-source 
formulations redefine the radiometric-aerodynamic relation-
ship, they still need similar inputs to the two-source scheme 
despite providing less output information, although compa-
rable performance (Kustas and Anderson 2009; Peddinti and 
Kisekka 2022). Additionally, the transpiration output from 
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the two-source scheme offers the advantage of permitting the 
direct determination of plant water use and canopy stress. 
The two-source energy balance (TSEB) has demonstrated 
robustness in estimating plant transpiration and evaporation 
fluxes for various surface conditions and many different 
landscapes (Kustas and Anderson 2009; Kustas et al. 2019; 
Gómez-Candón et al. 2021; Gao et al. 2023; Knipper et al. 
2023).

The TSEB partitions the surface energy fluxes between 
nominal soil and canopy sources using estimates of soil (Ts) 
and canopy temperature (Tc). Since direct measurements of 
Tc and Ts cannot be directly retrieved from coarse resolution 
satellite images, the Priestley and Taylor (1972) formula-
tion has been proposed to derive Tc and Ts separately from 
the radiometric temperature (Trad). Tc and Ts can also be 
obtained separately using unmanned aerial vehicles (UAVs) 
and very high resolution images (Nieto et al. 2019). Interest 
in the use of UAVs for monitoring crop evapotranspiration 
or water status has increased in recent years (López-Oli-
vari et al. 2016; Nieto et al. 2019; Niu et al. 2020; Peddinti 
and Kisekka 2022; Gao et al. 2023; Ramírez-Cuesta et al. 
2023). Nieto et al. (2019) showed in grapevine that using 
the TSEB with a simple contextual algorithm to derive soil 
and canopy temperatures separately (TSEB-2T) yielded the 
closest agreement with flux tower measurements. Bellvert 
et al. (2018) also reported a better performance of the TSEB-
2T approach in estimating vine transpiration in comparison 
to the Priestley-Taylor approach. More recently, Gao et al. 
(2023) proposed a new method for temperature partition-
ing based on a quantile technique separation (QTS) and 
high-resolution information which, coupled with the TSEB 
model, improved the sensible heat flux (H) estimation by 
61% in comparison to the Priestley-Taylor approach.

Besides Tc and Ts, the fractional cover (fc), canopy height 
(hc), canopy width (wc) and leaf area index (LAI) are inputs 
that are also required with the TSEB modelling scheme. 
These parameters are used to estimate the shortwave canopy 
transmittance and reflectance of vegetated surfaces (Camp-
bell and Norman 1998). However, there is some uncertainty 
in the estimation of canopy transmittance, especially in 
hedge row crops with partial canopy cover. In those cases, 
radiative transfer models need to account for the amount 
of radiation that will be directly transmitted through the 
inter-row space as well as the radiation transmitted through 
canopy gaps and through the canopy leaves (Parry et al. 
2019). In this regard, there have been refinements suggested 
to algorithms of TSEB for row crops related to radiation par-
titioning (Colaizzi et al. 2012; Parry et al. 2019; Nieto et al. 
2019). One such suggestion is based on using the Campbell 
and Norman (C&N) radiation transfer model and in which 
the clumping index is derived considering a geometrical 
model with a rectangular canopy shape (C&N-R) (Parry 
et al. 2019; Colaizzi et al. 2012).

Determining the optimal TSEB model framework for 
ET partitioning in row crops remains a challenge, as is also 
verification of TSEB-estimated soil evaporation and canopy 
transpiration in trees with different canopy structures and 
water status. Current methodologies used to validate total 
ET are mostly based on eddy covariance flux towers, but 
evaporation and transpiration cannot be directly measured 
(Gao et al. 2023). On the other hand, sap flows, once cali-
brated, can be used as a sensor to validate actual estimates of 
transpiration. Therefore, the main objectives of this research 
are: (1) to validate and compare the estimates of almond crop 
transpiration made for three different production systems and 
irrigation treatments using sap flow measurements; and (2) 
to evaluate the effect of applying the shortwave transmit-
tance model C&N-R in the TSEB using the Priestley-Taylor 
(PT) and contextual (2T) schemes.

Materials and methods

Trial location and design

This study was carried out during 2021 in an almond orchard 
located at the experimental station of the IRTA (Institute 
of Agrifood Research and Technology) in Les Borges 
Blanques, Spain (41°30′31.89’’N; 0°51′10.70’’E, 323 m ele-
vation, Fig. 1). The study site has a Mediterranean climate 
and the annual precipitation and evapotranspiration recorded 
in 2021 were 288 and 1054 mm, respectively. During the 
flight campaign conducted on March 24, May 19, June 3 and 
29, and July 29, 2021, the hourly air temperatures recorded 
during flight time were (Ta) 19.05 °C, 20.54, 28.9, 26.9 and 
31.34 °C, respectively, and the hourly vapor pressure deficits 
(VPD) were 1.33 kPa, 1.45 kPa, 2.24 kPa, 2.33 kPa, and 
2.44 kPa. The almond orchard was planted in June of 2009 
under three different production systems: open vase with a 
spacing distance of 5.5 × 3.5 m, central axis with 5 × 3 m, 
and hedgerow with 4.5 × 3 m (Fig. 1). The almond scion 
was “Marinada” on an INRA GF-677 rootstock. Trees were 
managed according to commercial practices in the region. 
The soil texture was a clay loam and its depth ranged from 
1.6 to 2 m, with field capacity and wilting point values of 
27.16% and 14.32%, respectively.

Trees were irrigated daily using a drip irrigation sys-
tem. The open vase system was irrigated with two later-
als placed on each side of the tree at 40 cm. The central 
axis and hedgerow systems had a lateral pipe along the 
row line. The open vase trees had a dripper each 70 cm 
with a water discharge of 2.2 L h−1, while in the central 
axis and hedgerow systems drippers were located each 60 
cm with a water discharge of 3.8 L h−1 per dripper. Each 
production system was subjected to three different irriga-
tion treatments: (i) Full-irrigation control, where irrigation 
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aimed to meet ET requirements (100% ETC) throughout 
the growing season, (ii) mild stress, irrigated at 50% ETC 
throughout the growing season; and (iii) severe stress, 
irrigated at 20% ETC throughout the growing season. 
Weekly irrigation was scheduled following the method 
described by Allen et al. (1998) which seeks to replace 
crop evapotranspiration (ETC) as follows: ETC = (ETo x 
Kc)—effective rainfall. ETo and Kc represent the refer-
ence evapotranspiration and crop coefficient, respectively. 
Effective rainfall was estimated as half of the rainfall for 
a single event-day with more than 10 mm of precipita-
tion, and otherwise was considered to be zero (Olivo 
et al. 2009). The Penman–Monteith method was used to 
determine ETo (Allen et al. 1998) and the Kc values were 
derived from Goldhamer and Girona (2012) at different 
phenological stages: Kc1 = 0.70 (April), Kc2 = 0.95 (May), 
Kc3 = 1.09 (June), Kc4 = 1.15 (July), Kc5 = 1.17 (August), 
and Kc6 = 1.12 (September). ETo was collected from a 
weather station belonging to Catalonia’s official network 
of meteorological stations (SMC, www.​rural​cat.​net/​web/​
guest/​agrom​eteo), which was located 500 m from the study 
site. The amount of water applied to each treatment was 
measured with digital water meters (CZ2000-3M, Con-
tazara, Zaragoza, Spain).

Field measurements

Sap flow measurement

Transpiration was estimated in situ using a sap flow meas-
urement system based on the compensation heat pulse 
(CHP) method combined with the calibrated average gradi-
ent technique. The system was developed by the IAS-CSIC 
laboratory and corresponds to a 4.8-W stainless steel heater 
of 2 mm diameter and two temperature sensors located 10 
and 5 mm downstream and upstream of the heater. The sap 
flux densities across the trunk radius are calculated on the 
basis of the heat pulse velocities at 5 and 15 mm below the 
cambium. Each temperature sensor has two embedded type 
E (chromel constantan wire) thermocouple junctions spaced 
10 mm along the needle. For further specifications see Vil-
lalobos et al. (2009). Sap flow data were recorded every 
15 min and registered in a CR1000 datalogger (Campbell 
Scientifc Inc., Logan, UT, USA).

In each production system, two trees of the fully irrigated 
and severe stress treatments and one tree of the mild stress 
treatment were monitored with sap flow sensors installed 
0.5 m above the ground. Measurements of sap flow tran-
spiration (Tsf) were corrected for wounding and azimuthal 

Fig. 1   Location of the almond field in Les Borges Blanques (Lleida, Spain) and experimental design of the field, showing in different colours the 
three production systems and the three irrigation treatments (color figure online)

http://www.ruralcat.net/web/guest/agrometeo
http://www.ruralcat.net/web/guest/agrometeo
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effects (López-Bernal et al. 2010). For each tree, sensor 
transpiration was corrected for actual transpiration at the 
beginning of the growing season using a correction coeffi-
cient. The correction coefficients were derived from in situ 
measurements of transpiration obtained via a water balance 
method using Eq. 1 and based on the strong correlation 
between transpiration estimated via water balance meth-
ods and all-season sap flow measurements, as described by 
López-López et al. (2018a).

where, Twb corresponds to daily transpiration obtained by 
the water balance, P is precipitation, IR is the amount of 
water applied through irrigation, ΔSWC is the difference in 
soil water content between two consecutive days, DP is deep 
percolation and ES corresponds to evaporation. However, 
the water balance was calculated during days without P and 
no IR applied, therefore P, DP and IR were considered null. 
During sap flow validation, the soil was covered with plas-
tic sheeting to avoid evaporation fluxes (ES = 0). Soil water 
content (SWC) was measured every 20 cm down to 180 cm 
depth using a neutron probe (Campbell Pacific Nuclear Sci-
entific, Model 503). The neutron probe measurements were 
calibrated based on the volumetric moisture content (cm3 of 
water/cm3 of soil) of soil samples taken at the time of tube 
installation. Tube design consisted of six tubes in each tree 
installed in one quarter of the planting area. Two groups of 
three tubes (6 tubes) were installed in parallel. The distribu-
tion of each group was: below the emitter, at a quarter of 
the distance between rows and at half the distance between 
rows. Calibration coefficients estimated with Twb and Tsf 
measurements were assumed to be constant throughout the 
season (Espadafor et al. 2015). The calibration coefficient 
varied from tree to tree and ranged from 0.56 to 1.62. The 
calibrated Tsf was used to calculate total hourly transpiration 
at the time of image acquisition.

Stem water potential, leaf area index and fractional 
intercepted photosynthetically active radiation

In those trees with sap flow data, the midday stem water 
potential (Ψstem) was measured continuously every two 
weeks following the protocol established by McCutchan and 
Shackel (1992). The Ψstem was calculated as an average of 
three measurements taken from each tree on ten dates during 
the growing season. Shaded leaves were selected and kept 
in a plastic bag covered by aluminum foil for 1 h before the 
measurement to equilibrate the water potential between leaf, 
stem and branches. All measurements were acquired in less 
than 1 h with a pressure chamber (Plant Water Status Con-
sole, Model 3500; Soil Moisture Equipment Corp., Santa 
Barbara, CA).

(1)Twb = P + IR − ΔSWC − DP − ES

The LAI was measured using both direct and indirect 
methods. The direct measurement corresponded to a destruc-
tive sampling in eight trees, one for each production system 
in the fully irrigated treatment and on two different dates 
corresponding to March 25th and June 8th of 2021. The 
total amount of leaf extracted was weighed and the leaf area 
of 200 g of sample was measured using the LI-3100C Area 
Meter instrument (LI-COR Inc., Lincoln, NE, USA). The 
total LAI was extrapolated based on a ratio of sample weight 
to leaf area.

The LAI-2200 Plant Canopy Analyzer (PCA) (LI-COR 
Inc., Lincoln, NE, USA) was used to obtain LAI indirectly 
in trees with sap flow measurements and for each flight cam-
paign at midday. The radiation from the sky incident above 
the tree was measured in an open space using five sensor’s 
rings. Subsequently, four measurements were made under 
the tree in the N, S, E and W directions. Measurements were 
performed by covering the sensor lens with the diffuse cap. 
The data were imported into the FV2200 v. 2.1.1 software 
to calculate the LAI using the vertical profile of the tree 
crown. The vertical profile was obtained using canopy height 
images of a digital elevation model (DEM) generated from 
point clouds of multispectral images.

In addition, the diurnal evolution of fractional intercepted 
photosynthetically active radiation (fIPAR) was obtained 
for all measured trees in each production system follow-
ing the methodology described by Casadesús et al. (2011). 
The fIPAR was obtained by installing in each tree 125 cm 
long sensor bars containing photodiodes every 10  cm 
(VTB8440BH, PerkinElmer Optoelectronics, Vaudreuil, 
Canada). Each photodiode was installed in an aluminum 
channel with an outer section of 25 mm and covered by a 
4.6 mm thick PTFE sheath (TECAFLON PTFE, Ensinger 
Ltd., Llantrisant, UK) that acted as a light diffuser. The pho-
todiodes have a spectral response over the photosynthetically 
active radiation (PAR) region between wavelengths 330 and 
720 nm (with a peak at 580 nm). The PAR below the canopy 
(PARbelow) was measured using bars installed on the ground 
of the planting system. The sensing bars were placed parallel 
to the crop rows and positioned to cover all the tree spacing. 
Due to the different spacing between production systems, 10 
sensing bars were installed in the open vase system, while 5 
were used for the central axis and hedgerow systems. For its 
part, PAR above the canopy (PARabove) was obtained from 
two sensing bars installed outside the field with direct inci-
dent PAR. The PAR data were recorded every 15 min from 
March to October of 2021. Then, the average hourly fIPAR 
at the time of image acquisition was calculated.

Image acquisition campaign

The image acquisition campaign consisted of five flights 
conducted on March 24, May 19, June 3 and 29, and July 29 
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of 2021. All flights were carried out with an UAV Drone-
hexa XL (DRONETOOLS, Seville, Spain) equipped with 
a multispectral and thermal camera. The Micasense Red-
Edge-MX (Micasense, Northlake Way, Seattle, USA) has 
five spectral bands located at the wavelengths 475 ± 20 nm, 
560 ± 20 nm, 668 ± 10 nm, 717 ± 10 nm, and 840 ± 40 nm. 
The thermal camera used was the FLIR SC655 (FLIR Sys-
tems, Wilsonville, OR, United States) which has a spectral 
response in the range of 7.5–13 µm and an image resolution 
of 640 × 480 pixels. All flights were conducted at solar time 
(14:00h local time) under clear sky conditions and at 50 m 
above ground level to obtain images with a spatial resolu-
tion of 0.03 m and 0.06 m for the multispectral and thermal 
images, respectively.

Images were radiometrically, atmospherically and geo-
metrically corrected. The radiometric calibration for the 
multispectral images was applied using an external incident 
light sensor which measured the irradiance levels of light at 
the same bands as the Micasense multispectral sensors. In 
addition, in situ spectral measurements for ground calibra-
tion targets were performed using a Jaz spectrometer (Ocean 
Optics, Inc., Dunedin, FL, United States) for radiometric 
calibration. The Jaz has a wavelength response from 200 
to 1,100 nm and an optical resolution of 0.3–10.0 nm. Dur-
ing spectral collection, spectrometer calibration measure-
ments were taken with a reference panel (white color Spec-
tralonTM) and dark current before and after taking readings 
from radiometric calibration targets. The radiometric cali-
bration of the thermal sensor was assessed in the laboratory 
using a blackbody (model P80P, Land Instruments, Dron-
field, United Kingdom). In addition, in situ measurements 
were conducted in the field concomitant to image acquisition 
in different ground calibration targets. In situ temperature 
measurements were conducted with an SI-111-SS apogee 
infrared radiometer connected to an Apogee AT-100 micro-
Cache Bluetooth micrologger (Apogee instruments Inc, 
Logan, UT, USA). The mosaicking process of obtaining 
thermal and multispectral images and the generation of the 
DEM from point clouds of multispectral images was per-
formed with the Agisoft Metashape Professional software 
(Agisoft LLC., St. Petersburg, Russia). After the mosaicking 
process, geometric and radiometric corrections were carried 
out using QGIS 3.4 (QGIS 3.4.15).

Temperatures and biophysical traits using UAVs

To retrieve Tc and Ts separately and the biophysical traits, 
a canopy layer was obtained. The canopy layer was created 
based on a contextual classification using the DEM and the 
soil-adjusted vegetation index (SAVI). SAVI minimizes 
the influence of soil brightness in the red and near-infrared 
wavelengths, thereby enhancing the contrast between vegeta-
tion and the soil surface (Qi et al. 1994). Pixels with a DEM 

greater than 1.5 m and SAVI greater than 0.2 were classified 
as canopy, while pixels that did not meet the conditions were 
classified as soil. The canopy layer was used to extract the 
Tc and Ts from thermal images, while Trad corresponds to 
the total average temperature in each scene. The fractional 
canopy cover (fc), canopy height (hc) and canopy width (wc) 
were obtained using the canopy layer and DEM (Fig. 2). 
In addition, the canopy volume (vc), normalized difference 
vegetation index (NDVI), normalized difference water index 
(NDWI) and modified triangular vegetation index (MTVI2) 
were calculated as additional inputs of a machine learning 
approach for estimating LAI in all trees. The extraction of 
biophysical traits and temperature from high-resolution 
images was conducted using the Python programming lan-
guage (Python Software Foundation. Python Language Ref-
erence, version 3.10. Available at http://​www.​python.​org).

According to Gao et al. (2022), who compared machine 
learning algorithms to estimate LAI, the random forest tech-
nique performed slightly better than the other algorithms. 
Therefore, the random forest algorithm (scikit-learn Python 
library) was trained in this study to estimate LAI using the 
contextual, spectral, structural information as input data 
(production system, vc, fc, wc, hc and the canopy mean and 
canopy standard deviation of the vegetation indexes NDVI, 
NDWI and MTVI2) and the measured LAI as calibration 
data. The model was calibrated using a random sample of 
80% of the total collected data. Figure 2 shows the methodo-
logical scheme used to obtain the main parameters needed 
for the TSEB model.

TSEB model description

Transpiration was retrieved from the TSEB model originally 
formulated by (Norman et al. 1995) and further improved 
by Kustas and Anderson (2009). The TSEB model is based 
on an energy balance approach that assumes that the energy 
available at the surface is distributed mainly between sensi-
ble heat flux (H), latent heat flux (LE) and soil heat flux (G). 
Therefore, LE (W m−2) can be calculated as a residual of the 
surface energy equation (Eq. 1):

where Rn is net radiation and the subscripts C and S corre-
spond to the canopy and soil covers, respectively. The Rn,s 
and Rn,c were calculated using the canopy radiative transfer 
model of Campbell and Norman (1998). Radiation models 
depend on accurate estimation of shortwave transmittance 
(τC). The radiative transfer model of Campbell and Norman 

(1.1)LE ≈ Rn − H − G

(1.2)LEs ≈ Rn,s − Hs − G

(1.3)LEc ≈ Rn,c − Hc

http://www.python.org
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(1998) has been widely used to estimate τC in energy balance 
models. However, woody crops are usually arranged in rows, 
so τC models have to add the effect of radiation transmitted 
to the surface through the inter-row space to the radiation 
transmitted through the canopy (Kustas and Norman 1997, 
1999a, b; Anderson et al. 2005). Due to their accuracy and 
simplicity, two models were selected to estimate τC: (1) a 
basic clumping index meant for heterogeneous randomly 
placed clumped canopies combined with the Campbell and 
Norman transfer model (C&N–H); and (2) a rectangular 
hedgerow clumping index combined with the Campbell and 
Norman transfer model (C&N–R). The dependency of the 
radiative transfer τC on wavelength is accounted for, in part, 
by a leaf absorption parameter for the PAR and near infrared 
spectra, which may be species dependent (e.g., Gausman 
and Allen 1973). The estimated PAR transmittance (τC,PAR) 
was evaluated using fIPAR obtained from the sensing bars, 
where fIPAR corresponds to 1-τC,PAR. More detailed infor-
mation about the two transfer models can be found in Parry 
et al. (2019), who evaluated and compared the radiation par-
titioning of both models in a vineyard.

G is usually calculated as a constant fraction of Rn,s of 
around 0.35 at solar noon. H is partitioned into soil (HS) 
and canopy (HC) fluxes, with their corresponding resist-
ances acting in series—as an analogy of Ohm’s law for 
electrical transport (Eqs. 2.1, 2.2, 2.3).

where � is the air density, Cp is the specific heat of air, Ts 
is the soil temperature, Tc is the canopy radiometric tem-
perature, Ta is the air temperature, Tac is the temperature in 
the canopy air space, Rs is the resistance to heat flow in the 
boundary layer immediately above the soil surface, Rx is 
the total boundary layer resistance of the complete canopy 
leaves, and Ra is the aerodynamic resistance to turbulent heat 
transport between the air canopy layer and the overlying air 
layer. The resistances were estimated following Kustas and 
Norman (1997, 1999a, b) and Norman et al. (1995).

Energy fluxes can be directly estimated by contextual esti-
mation of canopy and soil temperature (TSEB-2T) using high 
resolution temperature images, as shown in Fig. 2a. However, 
there are cases where it is difficult to obtain these tempera-
tures separately. For this reason, the Priestley-Taylor iterative 
retrieval model (TSEB-PT) was developed by Norman et al. 

(2.1)Hs = �Cp

Ts − Tac

Rs

(2.2)Hc = �Cp

Tc − Tac

RX

(2.3)Hs + Hc = �Cp

Tac − Ta

RA

Fig. 2   Flowchart of the procedures used for processing the multi-
spectral and thermal images and the digital elevation model (DEM) 
to obtain the different biophysical variables of the vegetation and 

some of the inputs needed in the different two-source energy balance 
(TSEB) modelling approaches
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(1995) as a solution to estimate Tc and Ts by a single direc-
tional radiometric temperature observation Trad using Eq. 3.

where fc(�) corresponds to the fraction of vegetation 
observed at a zenith angle � . An iterative process was estab-
lished to estimate HS, HC, Tc and Ts, defining an initial guess 
of the potential canopy transpiration.

where �PT is the Priestley-Taylor coefficient initially set to 
1.26, fC is the fraction of LAI that is green and thus capable 
of transpiring, Δ is the slope of saturation vapor pressure 
vs. temperature, and �p is the psychometric constant. Using 
Eqs. 2, 3 and 4, LEC is iteratively recalculated by reduc-
ing the �PT value until both LES and LEC become zero or 
positive. The calculated LEC was converted to hourly tran-
spiration in mm using: 1000 × 3600 × LEC/(� w λ) where 
1000 converts m to mm, 3600 converts seconds to hours, 
� w is the density of water (assumed to be 1000 kg m−3) 
and λ is the latent heat of vaporization (J kg−1): λ = 1e6 × 
(2.501–0.002361 Ta).

This study compares the TSEB-2T and TSEB-PT 
approaches to estimate almond transpiration in combination 
with the Campbell and Norman transfer model with a basic 
(C&N–H) and with a rectangular hedgerow clumping index 
(C&N–R) to estimate τC. Therefore, four models will be 
assessed: TSEB-PTH, TSEB-PTR, TSEB-2TH and TSEB-2TR. 
The subscript H represents the C&N–H shortwave transmit-
tance model and the subscript R represents the C&N-R short-
wave transmittance model. TSEB models developed by Nieto 
et al. (2019), which are available in the Python programming 
language, were used (https://​github.​com/​hecto​rnieto/​pyTSEB). 
Evaluation of the TSEB transpiration models is performed 
through a comparison with hourly Tsf measurements at the 
time of image acquisition for each of the five flights performed 
during the 2021 season.

Model evaluation

Model agreement was evaluated using the following metrics: 
correlation coefficient (R2, Eq. 5), bias (Eq. 6), Root Mean 
Square Error (RMSE, Eq. 7) and Mean Absolute Error (MAE, 
Eq. 8).

(3)Trad(�) ≈ [fc(�)T
4

c
+
(

1 − fc(�))T
4

s

]0.25

(4)LEc = �PT fc
Δ

Δ + �p
Rn,c

(5)R2 =

∑n

i=1

�

Ei − E
��

Oi − O
�

�

∑N

I=1

�

Oi − O
�2

�0.5�

∑N

I=1

�

Ei − E
�2

�0.5

where n is the number of observations, Oi is the measured 
value, Ei is the estimated value, O is the average of meas-
ured values and E is the average of estimated values. The 
evaluation of the model was performed using the Python 
programming language.

Results

Biophysical traits

The actual LAI of defoliated trees showed R2 and RMSE 
values of 0.89 and 0.57 m2 m−2, respectively, with respect to 
estimated LAI using the LAI-2200 Plant Canopy Analyzer 
(LAI2200) (Fig. 3a). Trees with a higher LAI corresponded 
with those defoliated on June 8, while those with a lower 
LAI corresponded with those defoliated on May 25. Eleven 
variables were required for the random forest model. These 
correspond to vegetation indices obtained from multispectral 
images (mean MTVI, std MTVI, std NDWI, mean NDWI, 
std SAVI, mean NDVI), structural parameters of trees (fc, 
vc, wc, hc) and production system as contextual information. 
When the random forest LAI (LAImodeled) was regressed 
against LAI2200, it showed R2 and RMSE values of 0.94 and 
0.30 m2 m−2, respectively (Fig. 3b). It can be observed that 
there was high variability in LAI values, which ranged from 
1.4 to 4.5 m2 m−2. LAI estimations presented significant dif-
ferences in both production system and irrigation treatment, 
but not in their interaction (Table 1). The hedgerow system 
had a mean LAI of 3.42 m2 m−2 during the season and was 
significantly higher than the open vase and central axis sys-
tems (3.19 and 3.03 m2 m−2, respectively) (Table 2). The 
fully irrigated treatment showed significantly higher values 
of LAI, averaging 3.33 m2 m−2, while the severe stress treat-
ment presented the lowest, averaging 3.10 m2 m−2.  

Other evaluated biophysical traits showed significant dif-
ferences in both production system and irrigation treatment, 
with the partial exception of fc for the latter (Table 1). The 

(6)bias =

∑n

i=1

�

Ei − Oi

�

n

(7)RMSE =

�

∑n

i=1

�

Ei − Oi

�2

n

(8)MAE =

∑n

i=1
�

�

Oi − Ei
�

�

n

NASH = 1.0 −

∑n

i=1

�

Oi − Ei

�2

∑n

i=1

�

Oi − O
�2

https://github.com/hectornieto/pyTSEB
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Fig. 3   Calculated vs. measured leaf area index (LAI) for LAI2200 vs. LAI defoliated (a) and LAI estimated by random forest using inputs derived 
from UAV images (LAImodeled) vs. LAI2200 (b)

Table 1   Analysis of variance 
(three-way ANOVA) testing the 
influence of date, production 
system (PS) and irrigation 
treatment (TRT) on biophysical 
traits during the flight campaign

Variables/sources hc fc hc/wc LAI fIPAR Ψstem Tsf

Dates  < .0001  < .0001  < .0001  < .0001  < .0001  < .0001  < .0001
PS  < .0001  < .0001  < .0001 0.0008 ns  < .0001  < .0001
TRT​  < .0001 ns 0.0054 0.0198 ns  < .0001  < .0001
Dates*PS ns ns ns ns ns 0.0311 ns
Dates*TRT​ ns ns ns ns ns  < .0001 ns
PS* TRT​  < .0001 0.0325 0.0053 ns 0.0062 0.0252 ns
Dates*PS* TRT​ ns ns ns ns ns 0.0361 ns

Table 2   Comparison of the main biophysical traits measured during the flight campaign

Different letters indicate significant differences at p < 0.05 using Tukey’s honest significant difference test. The letters in the Mean rows indicate 
differences between production system, while the letters in the other rows indicate differences relating to the interaction between the production 
system and irrigation treatment

Production system Irrigation treatment IR (mm) hc (m) fc hc/wc LAI (m m−2) fIPARinst Ψstem (MPa) Tsf (mm h −1)

Open Vase Mean 476 5.17 a 0.62 a 1.33 b 3.19 b 0.53 a − 1.05 a 0.44 a
Fully irrigated 837a 5.4 a 0.63 ab 1.38 abc 3.34 abc 0.55 a − 0.8 a 0.52 a
Mild stress 414b 5.13 ab 0.66 a 1.28 cd 3.25 abc 0.55 a − 1.02 bc 0.46 ab
Severe stress 177c 4.98 bc 0.57 abc 1.33 bc 2.97 c 0.49 ab − 1.32 e 0.34 bc

Central Axis Mean 429 3.99 c 0.54 b 1.25 b 3.03 b 0.49 a − 1.17 b 0.37 b
Fully irrigated 741a 4.22 e 0.56 bcd 1.31 c 3.05 bc 0.51 ab − 0.82 a 0.43 ab
Mild stress 394b 4.25 de 0.53 cde 1.34 abc 3.16 abc 0.46 ab − 1.23 cd 0.37 abc
Severe stress 152c 3.5 f 0.52 cde 1.11 d 2.89 c 0.51 ab − 1.46 f 0.3 bc

Hedgerow Mean 471 4.31 b 0.49 c 1.49 a 3.42 a 0.49 a − 1.18 b 0.29 c
Fully irrigated 850a 4.07 e 0.44 e 1.48 ab 3.62 a 0.41 b − 0.93 ab 0.31 bc
Mild stress 390b 4.64 cd 0.54 cde 1.53 a 3.22 abc 0.51 ab − 1.13 de 0.34 bc
Severe stress 175c 4.23 e 0.48 de 1.47 ab 3.43 ab 0.54 a − 1.47 f 0.23 c
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fIPAR measured at the time of image acquisition did not 
show significant differences in either production system or 
irrigation treatment. However, when considering the inter-
action between production system and irrigation treatment, 
the trees measured in the hedgerow system with the fully 
irrigated treatment presented significantly lower values of 
fIPAR. Table 2 shows the mean values for all the biophysi-
cal traits in each production system (mean row), the inter-
action between production system and irrigation treatment, 
and also Tukey’s analysis. In general, the open vase systems 
had larger trees with higher hc, and fc, while the hedgerow 
system had higher values in hc/wc than the open vase and 
central axis systems. The trees from the severe stress irriga-
tion treatment were slightly smaller throughout the season 
(hc of 4.20 m, fc of 0.52) than those from the mild stress (hc 
of 4.67 m, fc of 0.57) and fully irrigated treatments (hc of 
4.56, fc of 0.54).

Water applied and physiological measurements

The total amount of irrigation water applied (IR) in each 
production system and each irrigation treatment is shown 
in Table 2. Differences in the total amount of water applied 
were statistically significant between irrigation treatments 
(p < 0.0001) but not between production systems. Stem water 
potential (Ψstem) showed significant differences between 
production system, irrigation treatment and their interac-
tion (p < 0.0001) (Table 1). This is mostly attributable to 
the open vase system which, for the latest growing stages, 
showed significantly higher values in the mild stress and 
severe stress treatments (Table 2).

The seasonal pattern of Ψstem by production system and 
irrigation treatment is shown in Fig. 4. At the beginning of 
the growing season, all trees had a Ψstem around − 0.6 MPa. 
No significant differences were observed between irriga-
tion treatments in this initial growing stage. After May 5, 

treatments began to differentiate and Ψstem decreased until 
June 15 when the values stabilized. During this period, 
the fully irrigated and mild stress treatments showed Ψstem 
values above − 1.0 MPa, without significant differences 
between them. However, the Ψstem value of the severe stress 
treatment declined progressively until reaching − 1.6 MPa. 
From June 15 to harvest, the severe stress treatment had 
significantly lower values for all the production systems, 
ranging between − 1.4 and − 2.1 MPa. During this period, 
the Ψstem values of the open vase system were slightly higher 
in comparison to those for the central axis and hedgerow 
systems. The open vase system had values ranging from 
− 1.0 to − 1.7 MPa, while the central axis and hedgerow 
values ranged between − 1.1 and − 2.1 MPa. On the other 
hand, the Ψstem exhibited significant differences between 
fully irrigated and severe stress treatments for all dates, but 
some similarity between the fully irrigated and mild stress 
treatments, except in the central axis and hedgerow systems 
on July 29.

Transpiration measured with sap flow sensors (Tsf) also 
showed significant differences in production system and irri-
gation treatment, but not in their interaction (Table 1). The 
seasonal pattern of daily transpiration by production sys-
tem and irrigation treatment is shown in Fig. 5. This clearly 
shows higher transpiration values in the fully irrigated treat-
ment and lower values in the severe stress treatment for all 
the production systems. Transpiration began to differentiate 
between treatments around ten days after May 5 when irriga-
tion was applied. Thus, no significant differences in Tsf were 
observed for the first flight conducted on March 24. On that 
date, Tsf ranged from 0.86 to 1.78 mm day−1. Transpiration 
in the fully irrigated treatment followed a similar pattern to 
ETo, with the maximum values observed during July coin-
ciding with dates with higher ETo and high canopy devel-
opment. These maximum values reached 7.8 mm day−1 for 
some specific dates. The maximum values of transpiration 

Fig. 4   Seasonal trends of midday stem water potential (Ψstem) in each production system and irrigation treatment. Dashed lines indicate the days 
on which flights were performed (color figure online)
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for the severe stress treatment were observed during May 
and June, depending on the production system. During 
August and September, Tsf started progressively declining in 
all the treatments with ETo and leaf senescence. In the open 
vase and hedgerow systems, transpiration in the mild stress 
and fully irrigated treatments followed a similar pattern of 
values throughout the season. However, for the central axis 
system, the values for the mild stress treatment were closer 
to those for the severe stress treatment.

Table 2 shows the average hourly transpiration measured 
at the time of image acquisition. The open vase system had 
significantly higher transpiration rates in all treatments. 
Overall, cumulative transpiration in the fully irrigated treat-
ment was 761, 625 and 487 mm for the open vase, central 
axis and hedgerow systems, respectively. The mild stress 
treatment accumulated 701, 545, and 520 mm of transpira-
tion for the open vase, central axis and hedgerow systems, 
respectively. Finally, the cumulative transpiration of the 
severe stress treatment was 594, 495, 384 mm for the open 
vase, central axis and hedgerow systems, respectively. In 
the case of the hedgerow system, trees of the mild stress 
irrigation treatment transpired 33.9 mm more than those 
of the fully irrigated treatments during the season. This is 
explained by its larger canopy size and similar Ψstem values 
until July 29, just before ETo began to decrease. In Fig. 5, 
symbols in bold correspond to Tsf values recorded for the 
flight campaign dates. It can be observed that, except for 
the first flight (March 24), all flight dates showed notable 
differences between irrigation treatments in each produc-
tion system.

Comparison of the Priestley‑Taylor and contextual 
method for the retrieval of Tc and Ts

The comparison of the Tc obtained with the contex-
tual methodology (Tc2T) and the two Priestley-Taylor 

methodologies, applying the shortwave transmittance 
models C&N–H (TcPTH) and C&N-R (TcPTR), showed 
an overall RMSE of 1.46 °C and 1.24 °C, respectively 
(Fig. 6). Thus, the adoption of the C&N-R model resulted 
in an estimate of Tc closest to the contextual method. 
However, differences in Tc between the contextual and the 
TcPTH model, and between the contextual and the TcPTR 
model varied significantly between dates, production sys-
tem, irrigation treatment and the interaction of the latter 
two (p < 0.0001). The TcPTH and TcPTR models had sig-
nificantly higher errors in the hedgerow production system 
(RMSE of 2.03 and 1.45 ºC for TcPTH and TcPTR, respec-
tively). The TcPTH and TcPTR showed a similar error in 
the open vase and central axis systems (RMSE values of 
0.95 and 1.04 °C in the open vase system for TcPTH and 
TcPTR, respectively, and 1.21 and 1.21 °C in the central 
axis system for TcPTH and TcPTR, respectively) (data not 
shown). In addition, the TcPTH and TcPTR approaches had 
significantly higher (p < 0.0001) errors in the fully irri-
gated treatment (RMSE of 1.68 and 1.37 °C for TcPTH and 
TcPTR, respectively) in comparison to the other treatments. 
This was especially evident in the hedgerow system, which 
had a higher error in both models.

In addition, TcPTH and TcPTR showed significantly 
lower errors in the mild stress treatment. Figure 7 shows a 
comparison of the Tc–Ta mean retrieved with the PTH, PTR 
and contextual approaches. Overall, the PTH model esti-
mated significantly higher Tc–Ta values than the PTR and 
contextual approaches. Moreover, significant differences 
between models were observed in the hedgerow system, 
but not in the open vase and central axis systems. The PTH 
model overestimated the Tc–Ta in the hedgerow system 
with a mean 3.53 ºC vs. 2.65 ºC and 2.44 ºC in the PTR 
and contextual approaches, respectively.

Fig. 5   Seasonal trends of daily sap flow transpiration (Tsf) measurements during 2021 for each production system and irrigation treatment. 
Dashed lines correspond to reference evapotranspiration (ETo) (color figure online)
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Assessment of the radiative transfer models 
for the retrieval of fIPAR

Modeled fIPAR with the C&N–H and C&N-R approaches 
was regressed with measured fIPAR (Fig.  8a, b). The 
C&N–R model showed a better agreement than the 
C&N–H model, with an RMSE of 0.09 and 0.12, respec-
tively. Both the C&N–H and C&N–R models overesti-
mated fIPAR with a bias of 0.09 and 0.03, respectively, 
which represented an error of 17.5% and 6.1% with respect 
to measured fIPAR. However, C&N–H estimated signifi-
cantly higher values than C&N-R and measured fIPAR 

(0.59 vs. 0.53 and 0.50 for C&N–H vs. C&N–R and meas-
ured fIPAR).

The accuracy of the fIPAR estimates depended on the 
production system (Fig. 9). In the hedgerow production sys-
tem, there was better agreement with the C&N-R (RMSE 
of 0.074) than with the C&N–H (RMSE of 0.156). The lat-
ter estimated significantly higher values than both C&N-R 
and measured fIPAR. In the central axis system, C&N-R 
showed a lower error than C&N–H (RMSE of 0.69 vs. 0.091 
in C&N–H vs. C&N–R). In contrast, the fIPAR with the 
model C&N-R in the open vase production system indicated 
a higher error in comparison to the C&N–H (RMSE of 0.095 

Fig. 6   Comparison of canopy temperature (Tc) obtained with the 
contextual (Tc2T) approach and Tc obtained with the Priestley-Taylor 
approach using the C&N–H (TcPTH) (a) and the C&N-R (TcPTR) (b) 
transmittance models. The color indicates each irrigation treatment 
(TRT), with blue, orange and red representing the fully irrigated (FI), 

mild stress (MS) and severe stress (SS) treatments, respectively. The 
point shape shows each production system (PS) with OV, CA and 
HGR corresponding to open vase, central axis and hedgerow, respec-
tively (color figure online)

Fig. 7   Differences between irrigation treatments (TRT) and produc-
tivity systems (PS) in the average Tc-Ta retrieved with the Priestley-
Taylor approach using the C&N–H (TcPTH) and the C&N-R (TcPTR) 
transmittance models and the contextual (Tc2T) approach. Mean col-

umns correspond to the average value of all irrigation treatments. Dif-
ferent letters indicate significant differences at p < 0.05 using Tukey’s 
test (color figure online)
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vs. 0.125 for C&N–H vs. C&N-R). Open vase trees present a 
more isolated structure than those in central axis and hedge-
row systems, which explains the better fit with the C&N–H 
model. Despite this, significant differences between models 
were not observed in either the open vase or central axis 
systems.

Validation of transpiration with different TSEB 
methods

Table 3 shows the fluxes retrieved with the different TSEB 
modeling approaches for each production system and 

irrigation treatment. Only the central axis and hedgerow 
systems showed significant differences between models in 
Rn,c, HC and LEC. Models that used the C&N–H approach 
(TSEB-PTH and TSEB-2TH) estimated Rn,c values signifi-
cantly higher (p < 0.0001) than the others. This occurred for 
all irrigation treatments. For HC, TSEB-PTH indicated sig-
nificantly higher values (p < 0.0001) than the other models, 
which did not show significant differences between them. 
Similarly, the TSEB-2TH model showed significantly higher 
values of LEC (p < 0.0001) than the others, between which 
no significant differences were observed. Estimated LES 
ranged from 0 to 17.5% of total LE and was significantly 
different between models, production systems and irriga-
tion treatments. The TSEB-PTR and TSEB-2TR estimated 
significantly higher LES than TSEB-PTH and TSEB-2TH. 
With respect to the production systems, the hedgerow sys-
tem presented higher estimated LES, while the central axis 
system recorded significantly lower LES values. For its part, 
significantly lower LES values were estimated in the severe 
stress treatment.

In all production systems, the TSEB-2TR model had the 
best performance in terms of almond crop transpiration, 
with an RMSE of 0.13 mm h−1 and a bias of 0.08 mm h−1 
when regressed against Tsf (Fig. 10 and Table 4). In contrast, 
the TSEB-PTH, TSEB-PTR and TSEB-2TH models showed 
RMSE values of 0.22, 0.17 and 0.21 mm h−1, respectively. We 
observed that use of the C&N-R transmittance model improved 
the estimates of transpiration in both the TSEB-PT and TSEB-
2T models when compared to C&N–H. These improvements 
were reflected in the RMSE (0.22 vs 0.17 mm h−1 for TSEB-
PTH vs. TSEB-PTR and 0.21 vs 0.13 mm h−1 for TSEB-2TH 
vs TSEB-2TR). Adoption of the C&N–R transmittance model 

Fig. 8   Relationship between estimated and measured hourly fractional intercepted photosynthetically active radiation (fIPAR) for the canopy 
radiative transfer model C&N–H (a) and C&N–R (b)

Fig. 9   Comparison between the mean fIPAR values obtained in the 
two radiative transfer models with the measured values for each pro-
duction system (color figure online)
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also contributed to a significant reduction in R2, bias and the 
mean absolute error (MAE) in both TSEB-PT and TSEB-2T. 
Moreover, the hedgerow system presented significantly higher 
RMSE in all the TSEB models, except in TSEB-PTR (Table 4). 
Regarding irrigation treatments, only the TSEB-PTH model 
did not show significant differences in the RMSE between 
irrigation treatments. The TSEB-PTR showed a higher RMSE 
in the severe stress and mild stress treatments than in the fully 
irrigated treatment. For their part, the two TSEB-2T models 
showed a higher RMSE in the fully irrigated treatment than in 
the mild stress and severe stress treatments.

Discussion

Many studies have reported different values for the almond 
crop coefficient (KC), with these mostly depending on 
environmental conditions, water management, fractional 
canopy cover, fIPAR and albedo (Girona 2005, Espadafor 
et al. 2015; García-Tejero et al. 2015). In our results, the 
Tsf had significant differences between production systems, 
which may be affected by hc, fc, hc/wc, and LAI. Consid-
ering KT as a ratio between transpiration and reference 

Table 3   Estimated energy partitioning into canopy net radiation (Rn), 
canopy latent heat flux (LEC), canopy sensible heat flux (HC), soil 
latent heat flux (LES), soil sensible heat flux (HC) and soil heat flux 

(G), retrieved with the different TSEB modelling approaches for each 
production system and irrigation treatment

Flux -
Model

Open Vase Central Axis Hedgerow
Fully 

Irrigated
Mild
Stress

Severe
Stress

Fully 
Irrigated

Mild
Stress

Severe
Stress

Fully 
Irrigated

Mild
Stress

Severe
Stress

Rn,c-PTH 484.2 482.5 457.5 462.6 461.7 439.8 460.4 462.1 460.5
Rn,c-PTR 467.8 485.6 429.2 424.2 414.5 403.9 360.3 405 379.1
Rn,c-2TH 490 480.5 464.9 475.3 475.4 455 496.7 476.8 472.6

Rn,c-2TR 473.7 483.6 432.1 433.5 412.5 408.9 379.3 413.5 378.9

LEC-PTH 417 436.8 310.5 369.3 290.6 187.1 247.4 351.6 261.3
LEC-PTR 401.7 439.6 307.6 359.4 333 208.1 245.9 340.8 258.5
LEC-2TH 430.7 398.2 344.9 408.2 382.7 286.4 467.6 438.3 353.3

LEC-2TR 414.5 401.3 311.5 366.4 318.2 238.5 349.9 361.6 253.2

HC-PTH 67.1 45.7 147 93.2 171.2 252.8 213.1 110.5 199.2
HC-PTR 66 46 121.6 64.7 81.6 195.8 114.4 64.2 120.5
HC-2TH 59.3 82.3 120 67.1 92.7 168.6 29.1 38.6 119.3

HC-2TR 59.1 82.3 120.6 67.1 94.2 170.3 29.4 51.9 125.7

LES-PTH 28.3 38.8 12.6 19.2 6.2 3.7 9.7 27.4 16
LES-PTR 38.2 37.3 22.4 34.1 10.5 8.2 42.3 47.5 42.2
LES-2TH 24.1 37.7 12.7 10.4 8.2 0 9.5 23.5 23

LES-2TR 31.9 36.5 24.5 25.3 18.5 9.4 41.4 46.2 53.7

HS-PTH 85.9 77.5 110.6 103.4 112.9 121.7 107.7 95.9 103.5
HS-PTR 85.4 77.4 117.5 110.8 137.3 138.3 135.1 108.9 125.2
HS-2TH 85.7 77.5 104.3 104 102.2 116.2 91.1 91.3 89.6

HS-2TR 87.2 77 111.2 112.9 127.7 133 126 104.6 112.2

G-PTH 61.5 62.6 66.4 66 64.1 67.5 64 66.4 64.3
G-PTR 66.6 61.7 75.3 78 79.6 79.7 95.5 84.3 90.1
G-2TH 59.1 62 63 61.6 59.5 62.6 54.2 61.8 60.6

G-2TR 64.2 61.1 73.1 74.4 78.7 76.7 90.2 81.2 89.3

The fluxes are in W m−2. Colours indicate from lower values (white) to higher values (yellow) for each flux
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evapotranspiration (T/ETo) in fully irrigated conditions, 
the maximum KT values obtained in this study were 1.2, 
1.13 and 0.94 for the open vase, central axis and hedge-
row production systems, respectively. These values are 
slightly higher than those reported in other recent studies. 
For instance, Bellvert et al. (2018) estimated KT values 
of 1.0 in almond trees planted at a spacing distance of 
5.5 × 7.3 m and with an LAI of around 3 m m−2. Espada-
for et al. (2015) also estimated a maximum KT of 1.02 in 
almonds with an fc of around 50% based on a ratio with 
daily fIPAR. In another study, Espadafor et al. (2017) 
reported a KT of around 1.1 in almonds with an fc of 

around 40%. In our study, however, the KT values cor-
responded to almonds with an fc higher than 55% and LAI 
values between 3.5 and 4.5 m m−2. Therefore, the higher 
size of trees in the open vase and central axis systems may 
explain why the KT values obtained in this study were 
higher than others reported in the literature. The fact that 
fully irrigated trees in the hedgerow system had the low-
est KT can be explained by their smaller size (Table 2). 
Differences between canopy architectures have a direct 
effect on the amount of light intercepted by the canopy 
and consequently on the transpiration rates. We observed 
a variability in transpiration rates of 0.11–0.83 mm h−1, 

Fig. 10   Regressions between measured and estimated hourly transpi-
ration with the modelling approaches TSEB-PTH (a), TSEB-PTR (b), 
TSEB-2TH (c), and TSEB-2TR (d). The color indicates each irrigation 
treatment (TRT), with blue, orange and red representing the fully irri-

gated (FI), mild stress (MS) and severe stress (SS) treatments, respec-
tively. The point shape shows each production system (PS), with OV, 
CA and HGR corresponding to open vase, central axis and hedgerow, 
respectively (color figure online)
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from the beginning of the season in March to the maxi-
mum transpiration values in July, with significant differ-
ences among production systems and irrigation treatments.

Our results showed an RMSE error of 0.30 m2 m−2 in 
UAV-modeled LAI, which corresponds to a relative RMSE 
of around 11%. These results are slightly better than those 
reported by Gao et al. (2022) who obtained an error of 
0.31 m2 m−2 (25.3% of relative RMSE) using random forest 
algorithms. In contrast to the latter, our study also incor-
porated in the random forest model canopy structure and 
contextual information of trees under different production 
systems. Bellvert et al. (2021) reported, for almond trees, 
an RMSE of 0.24 m2 m−2 using a multiple regression model 
with parameters of canopy structure (crown area and canopy 
volume) estimated from multispectral images. However, the 
lower error recorded by Bellvert et al. (2021) can be attrib-
uted to the fact that the trees had a lower LAI (between 
0.5 and 2 m2 m−2) compared to the values obtained in this 
study (between 1.4 and 4.5 m2 m−2). Gao et al. (2022) dem-
onstrated that use of a hybrid machine learning approach 
with random forest and relevance vector machine algorithms 
provides better results than random forest by itself. This type 
of approach could be easily applied in future studies using 
our datasets to assess the degree of improvement in LAI 
estimates.

It was observed that regression between transpiration esti-
mations with the different TSEB approaches and sap flow 
measurements had overall RMSE values of 0.22, 0.18, 0.21 
and 0.13 mm h−1 for the TSEB-PTH, TSEB-PTR, TSEB-
2TH and TSEB-2TR models, respectively. These values cor-
respond to relative RMSE values of 61%, 49%, 56% and 
36%, respectively. Numerous studies have evaluated different 
approaches of the TSEB model in woody crops, including 
grapevine, olive and almond (Nieto et al. 2019; Aguirre-
García et al. 2021; Guzinski et al. 2021; Kool et al. 2021; 
Nassar et al. 2021; Jofre-Čekalović et al. 2022; Peddinti 

and Kisekka 2022). However, to our knowledge, no study 
has assessed ET partitioning and validated the transpiration 
component with sap flows in trees with different production 
systems and irrigation treatments.

Those studies that validated the transpiration component 
were based on different modelling approaches with eddy 
covariance flux tower (Kool et al. 2021; Zhang et al. 2022; 
Gao et al. 2023; Knipper et al. 2023) data and sap flow 
measurement (Peng et al. 2023). Among them, Kool et al. 
(2021) obtained the highest accuracies with the TSEB-PT 
approach, indicating an error of 35 W m−2 (29% relative 
error) in grapevines. In contrast, Gao et al. (2023) reported 
an error of 70 W m−2 and an R2 of 0.54 using the TSEB-2T 
model, also in grapevines. In almonds, Knipper et al. (2023) 
obtained an error of 0.82 mm day−1 with the TSEB-PT using 
satellite data at 30 m resolution. One of the main challenges 
faced in these works was accurately measuring actual tran-
spiration. To address this issue, Gao et al. (2023) compared 
three eddy covariance flux tower methods for ET partition-
ing and found that the Modified Relaxed Eddy Accumu-
lation (MREA) and Conditional Eddy Covariance (CEC) 
produced the most consistent results. However, these eddy 
covariance models rely on various assumptions and their 
outcomes are estimates, rather than precise transpiration val-
ues. Furthermore, they are unable to differentiate between 
crop and inter-row transpiration. To address this uncertainty, 
the synergistic application of sap flow and water balance 
methods has proven effective for monitoring transpiration 
in orchards (López-López et al. 2018a; Peng et al. 2023). 
For instance, Peng et al. (2023) successfully established a 
reliable relationship between transpiration estimates using 
TSEB-PT and actual transpiration measured through sap 
flow calibrated with water balance methods in tomato crops. 
Nevertheless, measuring transpiration in complex woody 
crops, such as almond, remains a challenge. It is therefore 
crucial to acknowledge that the accurate measurement of 

Table 4   Root mean squared 
error (RMSE) and significant 
differences between hourly 
estimated transpiration rates, 
using the different TSEB 
models vs. transpiration 
measured with sap flow sensors, 
for each production system (PS) 
and irrigation treatment (TRT)

Model PS PS RMSE 
(mm h−1)

PS TRT​ TRT RMSE 
(mm h−1)

TRT​
P value P value

TSEB-PTH Open vase 0.19 b  < .0001 Fully irrigated 0.22 ns
Central axis 0.16 b Mild stress 0.23
Hedgerow 0.3 a Severe stress 0.22

TSEB-PTR Open vase 0.17 ns Fully irrigated 0.16 b 0.0026
Central axis 0.15 Mild stress 0.21 a
Hedgerow 0.21 Severe stress 0.18 a

TSEB-2TH Open vase 0.14 b  < .0001 Fully irrigated 0.23 a 0.0005
Central axis 0.16 b Mild stress 0.2 b
Hedgerow 0.3 a Severe stress 0.17 b

TSEB-2TR Open vase 0.13 ab 0.0033 Fully irrigated 0.15 a 0.0154
Central axis 0.1 b Mild stress 0.14 ab
Hedgerow 0.16 a Severe stress 0.1 b
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actual transpiration in almond cultivation continues to pre-
sent a challenge.

In our study, the percentage of estimated evaporation with 
respect to the total estimated ET represented an average of 
6.68% and ranged from 0 to 17%. Due to the low estimated 
evaporation, it is possible to perform a relative comparison 
of the transpiration evaluated in this study with previous 
evaluations of ET or LE in almond crops (Xue et al. 2020; 
Jofre-Čekalović et al. 2022; Peddinti and Kisekka 2022). In 
their study, Xue et al. (2020) reported RMSE values of 0.93, 
1.19 and 1.53 mm day−1 for the Surface Energy Balance 
Algorithm for Land (SEBAL), Mapping Evapotranspiration 
at High Resolution with Internalized Calibration (METRIC) 
and Surface Energy Balance System algorithm (SEBS) 
models, respectively. For instance, Peddinti and Kisekka 
(2022) reported an relative RMSE of 10% (0.64 mm day−1 
of RMSE) using the TSEB-PT approach. Jofre-Čekalović 
et al. (2022) also observed an average relative RMSE of 
30% (equivalent to 87 W m−2 of RMSE) using the sharp-
ened temperature (TSEBS2+S3) and TSEB-PT with almonds 
that exhibited a high degree of water status heterogeneity. 
In our study, we obtained slightly higher errors which, in 
part, may be attributed to the fact that our validations were 
conducted with in situ sap flow sensors; this gave us actual 
measurements rather than estimations. Additionally, our 
evaluation included trees with a higher degree of variability 
in their canopy architecture and water status than in other 
studies. We also evaluated a greater number of trees. Among 
the different shortwave transmittance models evaluated, the 
lowest error was obtained with the C&N-R. This empha-
sizes the need to use radiative transfer models adapted to 
the canopy shapes of woody row crops. When comparing 
the Rn,c values obtained with the two transmittance models, 
it can be observed that the C&N-R model estimated a radia-
tion absorbed by the canopy which was 3%, 10% and 18% 
lower than the C&N–H model for the open vase, central axis 
and hedgerow production systems, respectively. Similarly, 
Parry et al. (2019) reported an underestimation of transmit-
tance (Rn,c is inversely proportional to transmittance) using 
the C&N–H model in comparison to the C&N–R model. 
The same study showed a higher sensitivity of the C&N–H 
model to LAI. In our study, despite the high LAI values in 
the hedgerow production system, the amount of radiation 
transmitted in the inter-row space was of greater impor-
tance due to the lower fc and higher hc/wc ratio. Therefore, 
we hypothesize that the highest values of LAI observed in 
the hedgerow system probably affected the transmittance 
estimations with the C&N–H model. Along with the Rn,c 
reduction, the C&N-R model showed a better agreement in 
Tc estimates than the C&N–H when using the PT approach 
(1.46 vs. 1.24 °C for TcPTH vs. TcPTR). This fact explains 
the better accuracy of the TSEB-PTR modelling approach 
to estimate transpiration. These differences in the TSEB-PT 

models are in concordance with Kustas and Norman (1997, 
1999a, b) and Anderson (2005), who demonstrated a reduc-
tion in overestimation of the sensible heat fluxes when 
TSEB-PT was used considering the clumping effect in the 
transmittance models.

The TSEB-2T and C&N-R transmittance models syner-
gistically (TSEB-2TR) obtained the most robust estimations 
of canopy transpiration. In grapevine, Nieto et al. (2019) 
concluded that using a contextual algorithm to derive soil 
and canopy temperatures separately yielded a closer agree-
ment with flux tower measurements in comparison to the 
Priestley-Taylor model. Gao et al. (2023) also reported better 
agreement in ET partitioning using a temperature-separation 
method named quantile temperature separation (QTS). In 
contrast, Kool et al. (2021) obtained much lower accura-
cies using the TSEB-2T model. They attributed this to the 
loss of flexibility within the model or a bias in measured 
temperatures. In any case, improving on techniques based 
on the combination of photogrammetry, multispectral and 
thermal images to derive accurate values of Tc and Ts in 
sparse canopies remains a challenge.

The forced estimation of HC using the TSEB-2TH 
approach resulted in an overestimation of LEC and, there-
fore, hourly transpiration. Given the comparable RMSE 
obtained from the estimation of Tc using the PTH and PTR 
methods (1.44 and 1.22 °C for PTH and PTR), the overesti-
mation deriving from the model could have been attribut-
able to the higher values of Rn,c estimated by the C&N–H 
model. In contrast to our results, Kool et al. (2021) observed 
a model tendency to underestimate transpiration due to an 
underestimation of available energy. To counteract this 
underestimation, the authors proposed adaptations that 
included accounting for the higher leaf radiation absorption 
that would be expected in dense, clumped canopies. In this 
context, in crops with a complex canopy structure, it is key 
to apply models capable of accurately estimating canopy 
transmittance. This is particularly important in productive 
systems such as the hedgerow system, with high LAI values 
but low levels of fIPAR. Therefore, one source of the higher 
error observed in the hedgerow system could be inconsist-
ent clumping index estimates in intensive orchards. Ther-
mal remote sensing models can be particularly sensitive to 
inhomogeneous distributions of vegetation because clump-
ing affects the relationship between temperature and cover 
information and the overall energy balance (Kustas and Nor-
man 1997, 1999a, b; Anderson et al. 2005). Many studies 
have used radiation transfer models and clumping indices 
in woody row crops (Kustas and Norman 2000; Kustas and 
Anderson 2009; Parry et al. 2019). But, to our knowledge, 
these modelling approaches have never been validated in 
orchards with different production systems and, hence, can-
opy structures, as is the case of this study. It is possible that 
the error in transmittance models will be more exacerbated 
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in superintensive production systems with narrower plant-
ing distances.

Given the importance in solar irradiance of the PAR spec-
trum which, according to Campbell and Norman (1998), 
corresponds to about 45% of the light spectrum, we decided 
to additionally estimate transpiration with the TSEB-2TR 
modeling approach but replacing the C&N-R PAR transmit-
tance model with in situ PAR transmittance measurements 
(TSEB-2TfIPAR). Figure 11 shows the regression between 
sap flow measured transpiration and that obtained with the 
TSEB-2TR and TSEB-2TfIPAR models in trees for which 
in situ fIPAR measurements were conducted. The results 
show how the use of in situ fIPAR measurements enhanced 
transpiration estimates, with the RMSE decreasing from 
0.15 mm h−1 (34%) for TSEB-2TR to 0.10 mm h−1 (29%) 
for TSEB-2TfIPAR. Therefore, it occurs to us that the way to 
improve estimates of transpiration in woody crops in rows 
can either be to improve the shortwave transmittance model 
and adapt the clumping index for canopies with different 
architectures, or directly assimilate the transmittance of the 
PAR spectrum in the canopy net radiation model.

Conclusion 

As a novel contribution, this study evaluated differences in 
transpiration estimates in three different production systems 
and irrigation treatments and undertook validation with sap 
flow data. In addition, this study compared the performance 

of transpiration estimation with the TSEB Priestley-Taylor 
(PT) and contextual (2T) modeling approaches and the 
effect of applying two clumping indexes to estimate canopy 
transmittance. One approach considered a basic clumping 
index for heterogeneous randomly placed clumped canopies 
(C&N–H) and the other a rectangular hedgerow clumping 
index (C&N–R).

Significant differences were observed in transpiration 
between production systems and irrigation treatments. 
We conclude that the TSEB-2T and C&N-R transmittance 
models used synergically (TSEB-2TR) improved transpira-
tion estimations in all production systems and irrigation 
treatments, with an overall R2 of 0.77 and an RMSE of 
0.13 mm h−1, representing a relative error of 36%. The bet-
ter performance of TSEB-2TR confirms that the availabil-
ity of high-resolution UAV imagery allows more detailed 
characterization of the different input parameters needed in 
the TSEB scheme (fc, wc, hc/wc). It also allows an adequate 
separation of canopy and soil temperatures. In addition, the 
inclusion of estimates of canopy architecture parameters and 
vegetation indices in a random forest machine learning algo-
rithm allowed a good estimation of LAI. The modeled LAI 
showed an error of 0.30 m m−2 in comparison to measured 
LAI2200.

The better results obtained with the C&N-R shortwave 
transmittance model highlights the importance of adapt-
ing these models to heterogeneous architectures to bet-
ter estimate canopy transmittance (or Rn,c) and, in conse-
quence, transpiration. Use of a clumping index adjusts the 

Fig. 11   Regressions between measured and estimated hourly tran-
spiration with the modelling approaches TSEB-2TR (a)  and TSEB-
2TfIPAR  (b). TSEB-2TfIPAR corresponds to the TSEB-2TR modelling 
approach using in  situ PAR transmittance measurements. The color 
indicates each irrigation treatment (TRT), with blue, orange and red 

representing the fully irrigated (FI), mild stress (MS) and severe 
stress (SS) treatments, respectively. The point shape shows each pro-
duction system (PS), with OV, CA and HGR corresponding to open 
vase, central axis and hedgerow, respectively (color figure online)
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relationship between the overall energy balance, the cover 
and surface temperature. In our results, one source of error 
may be an inconsistent estimation of the clumping index in 
the different almond production systems. For its part, the use 
of in situ PAR transmittance measurements in the TSEB-
2TR model improved the RMSE from 0.15 to 0.10 mm h−1. 
Therefore, we suggest that future studies should focus on 
the improvement and adaptation of shortwave transmittance 
to heterogeneous canopies and/or on the use of in situ PAR 
transmittance measurements in canopy net radiation models.
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