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Abstract
Because of the presence of shallow water tables and consequent secondary salinization in irrigated areas of Xinjiang China, 
there is an urgent need for installation of drainage systems to control the salinity levels in the crop rootzone. The goal of 
this study was to compare the midterm effects of the open ditch (depth of 2.2 m) and subsurface pipe (depth of 2.2 m) 
drainages on soil salinity, drainage, groundwater, cotton biomass, yield, and economic benefits while using drip irrigation 
under mulch (plastic film). We conducted a field experiment for eight consecutive years (2012–2019) in Shawan County of 
Xinjiang, China. Our experimental results indicated that open ditch and subsurface pipe drainages each reduced total soil 
salinity, improved saline–sodic soils, and controlled groundwater level, which caused a significant increase in the cotton 
biomass and yield. The open ditch drainage treatment (ODDA) represented a better desalination effect than the subsurface 
pipe drainage treatment (SPDA) at 73% and 81%, respectively. The electrical conductivity and pH of ODDA and SPDA water 
samples decreased as the soil salinities decreased over time. We used the farmland conditions from 2012 as the baseline for 
our experiment and evaluated how these baseline conditions changed over time in response to these treatments. Compared 
to this baseline, the cotton yield of ODDA and SPDA treated farmland increased by 18.30 times and 19.96 times in 2019, 
respectively. The investment payback periods for ODDA and SPDA treatments were 7.59 and 6.34 years, respectively, and 
their returns on investment were 12% and 30%, respectively. The midterm economic benefits of subsurface pipe drainage 
were more prominent than those of open ditch drainage. These results provide a reference for improving, developing, and 
utilizing soil saline–sodic land, and the sustainable development of agriculture in arid areas.

Introduction

With a population of 1.4 billion, the development of its 
national economy, and the acceleration of industrializa-
tion, the amount of cultivated land occupied in China has 
increased in recent years. China’s per capita arable land 

resources are lacking, but there is significant potential for 
expanding the arable land through the development of 
saline–sodic land (Yun and Chen 2020). Controlling the 
secondary salinization of cultivated land while developing 
and using saline–sodic land is an urgent issue for China's 
agricultural production. Located in the hinterland of Eurasia, 
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Xinjiang is the driest region in China with the greatest distri-
bution of saline lands, resulting from secondary salinization, 
accounting for 31% of the total area of Xinjiang and 22% of 
the total area of China’s saline–sodic soil regions (Liu and 
Zhang 2017).

In Xinjiang, a common method of irrigation is known as 
drip irrigation under mulch where the mulch is a 0.015 mm 
thick plastic sheet that covers the drip tubing and extends 
over the entire area that is cropped. This reduces water lost 
to direct evaporation to the air and increases the soil tem-
perature near the soil surface (Dong et al. 2009; Ning et al. 
2013). By the end of 2020, Xinjiang’s water-saving irrigation 
area reached 2.97 × 106 ha (Hectare), accounting for 61.75% 
of Xinjiang's total irrigation area of 4.81 × 106 ha, including 
2.45 × 106 ha of drip irrigation under mulch, accounting for 
50.94% of Xinjiang's total irrigation area, driving Xinjiang 
to become the world's largest area of large-scale drip irriga-
tion under mulch (Bureau of Statistics of Xinjiang Uygur 
Autonomous Region 2020). After the large-scale application 
of drip irrigation under mulch technology in Xinjiang, the 
original drainage canals were gradually abandoned resulting 
in salt accumulation within the crop rootzone because of 
inadequate natural drainage (Tian et al. 2018). To alleviate 
the agro-ecological problems caused by midterm drip irriga-
tion under mulch, such as increased groundwater level and 
secondary salinization of the soil (Meng et al. 2017; Wang 
et al. 2014), salt leaching technology that combines irriga-
tion and drainage, as done worldwide (Oster and Jayawar-
dane 1998; Wang et al. 1993; Szabolcs 1986, 1994; Hilgard 
1886) needs to occur.

At present, the most commonly used drip irrigation and 
leaching-supported drainage technologies are open ditch 
and subsurface pipe drainage (Liu et al. 2014, 2021). The 
open ditch and subsurface pipe drainages and the desalina-
tion technologies are based on the principle that “salt comes 
and goes with water”. If there is an impervious layer deep 
in the soil, when precipitation or irrigation occurs, the salt 
will migrate to the open ditch, or subsurface pipe, with the 
water. The soil is then discharged through this open ditch 
or subsurface pipe to achieve the effect of salt drenching 
and salt washing. At the same time, the groundwater level 
is maintained at a critical depth, inhibits the upward move-
ment of groundwater and reducing secondary salinization of 
the soil, thus achieving the control of salinity levels in the 
rootzone (Ritzema et al. 2006; Yu et al. 2016). Researchers 
have conducted a series of field and quantitative estimation 
experiments to measure how applying these different drain-
age techniques could reduce soil salinity, control groundwa-
ter level, increase crop yield, and improve economic benefits 
(He et al. 2016; Li et al. 2019; Chen 2016). These studies 
have found that both open ditch and subsurface pipe drain-
age effectively reduce soil salinity. The salinity of soil layers 
decreased significantly, and in these studies, the closer the 

soil was to the open ditch or subsurface pipe, the greater 
the desalination rate (He et al. 2016; Ritzema et al.2008; 
Wang et al. 2020). Open ditch and subsurface pipe drain-
age have significantly increased the control of groundwater 
levels during crop growth and soil thawing periods, reduced 
the groundwater level over time, controlled waterlogging 
disasters and reduced the time that mechanical harvesting 
could not occur due to rainfall (Chen et al. 2018; Yao et al. 
2005; Yu et al. 2016). Drip irrigation and drainage systems 
can also accelerate dry matter production and mineral nutri-
ent absorption resulting in increased crop yields (Hou et al. 
2016; Li et al. 2019; Sallam 2017). Additionally, comparing 
engineering construction costs, operation cycle and mainte-
nance management, and the technical characteristics of these 
drainage methods indicated that subsurface pipe drainage 
can save 10–15% of the land area and improve land utiliza-
tion rates and economic benefits when compared to open 
ditch drainage (Chen 2016; Yao et al. 2005).

Much of these previous works were quantitative assess-
ments conducted of short-term effects (≤ 2 years) and were 
limited to a specific aspect (soil conditions, crop charac-
teristics, or economic benefit). For Xinjiang, there are no 
published results of midterm studies on the impacts of dif-
ferent drainage methods on soil salinity, groundwater, crop 
yield, and economic benefit. Therefore, we conducted an 
8-year field experiment to determine the midterm impacts 
of subsurface pipe and open ditch drainage on salinity 
levels in the soil, drainage water, and groundwater. The 
impacts on crop yields and the costs of installation and 
maintenance were used to assess the economic benefits of 
the two drainage systems. This analysis fills the gaps in the 
literature and provides a theoretical basis for the improve-
ment, development, and utilization of soil saline–sodic 
land and the sustainable development of agriculture in 
arid areas.

Materials and methods

Description of the study area

The experimental site was located at the Xiayedi Irrigation 
Area (44°41′N, 85°39′E) (Fig. 1) in the suburbs of Shawan 
in northern Xinjiang, an autonomous region in north-west-
ern China, and belongs to the temperate continental climate 
zone. The annual average sunshine was 2743 h. The tem-
perature ranged from − 31.6 to 42.9 ℃, and the average 
annual precipitation was 123 mm (Fig. 2). The main physical 
properties of the 0–200 cm soil layer in the experimental 
area are shown in Table 1. The groundwater level in the test 
area was relatively shallow (1.5–2.1 m) in spring and sum-
mer, and relatively low (2.2–3.5 m) in autumn and winter.   
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Experimental design and treatments

We conducted this research in six experimental plots (each 
144 × 80 m). Adjacent plots were separated by 30 m to elimi-
nate lateral soil water and salt seepage (Fig. 3a). All treat-
ments consisted of drip irrigation under mulch using two 
different drainage methods (open ditch drainage: ODDA; 

subsurface pipe drainage: SPDA). In October 2011, open 
ditch and subsurface pipe drainage were constructed in 
the study area. The distance between the subsurface pipes, 
which were a spacing of 48 m, a depth of 2.2 m, and a 3‰ 
design slope. In contrast, the spacing, depth and slope of 
the open ditch were the same as those of the subsurface 
pipe. The width of each open ditch was 10 m at the top and 
0.7 m at the bottom. And the side slope of the open ditch 
drainage was 1:2.11. The pipe was a perforated corrugated 
pipe (Polyvinyl chloride) (diameter = 10 cm) encircled by a 
20 cm-thick sand filter (Zibo Shandong Province, China), 
was laid by digging trenches with an excavator (Fig. 3b and 
Fig. 3c). The study area was close to the west bank canal 
of the Manas River, and a blocking ditch was constructed 
between the study area and the west bank canal to leave the 
groundwater at its normal level and slow the impact of the 
canal on the groundwater level in the test area. 

The Chuangza No. 100 cotton variety, widely grown 
in the local area, was used for all of our experiments. The 
cotton was planted in mid-to-early April and harvested 
in mid-to-late September. A ‘one mulch, two drip pipes, 
and six crop rows’ pattern (Fig. 4) was used, which is 
the main cultivation pattern used by the local cotton 

Fig. 1   The location of experimental site

Fig. 2   Precipitation and tem-
perature from 2012 to 2019

Table 1   Main physical properties of the soil in the study area

ODDA open ditch drainage treatment; SPDA subsurface pipe drainage treatment; SWC saturated water content; FWHC field water holding 
capacity; PWP permanent wilting point; EC electrical conductivity

Treatments Soil depth (cm) Soil texture Particle mass fraction 
(%)

Bulk density
(g·cm−3)

SWC (%) FWHC (%) PWP (%) EC (mS·cm−1)

Sand Silt Clay

ODDA 0–50 Sandy loam 61.47 34.48 4.05 1.38 41.14 25.18 13.35 6.24
50–100 Sandy loam 68.23 29.35 2.42 1.39 42.66 25.45 14.15 4.75

100–150 Sandy loam 71.57 23.48 4.95 1.42 43.15 26.14 14.83 4.11
150–200 Sandy loam 66.24 30.55 3.21 1.43 45.31 26.48 15.17 3.51

SPDA 0–50 Sandy loam 62.25 34.87 3.88 1.38 42.34 25.04 13.41 6.43
50–100 Sandy loam 67.11 30.14 2.75 1.39 43.14 25.49 14.19 4.82

100–150 Sandy loam 70.76 24.51 4.73 1.41 44.25 26.33 14.85 4.23
150–200 Sandy loam 65.45 31.23 3.32 1.42 46.18 26.54 15.14 3.59



690	 Irrigation Science (2023) 41:687–699

1 3

crop management. The thickness of the mulch film was 
0.015 mm and the width was 2.02 m. We used a single-
wing labyrinth drip irrigation belt (Xinjiang Tianye Water-
saving Irrigation Co. Ltd. Shihezi, China) for irrigating the 
plots. The diameter of the drip irrigation belt was 16 mm, 
the wall thickness was 0.2 mm, the distance between drip-
pers was 30 cm, and the flow rate was 3.2 L h−1. The drip 
irrigation water source was the canal on the west bank of 
the Manas River, which had a salinity of 0.6 mS cm−1 and 
7.82 pH. Experienced local farmers suggested an irriga-
tion cycle of 7–10 d, with ten total irrigations, making 
the total irrigation quota 720 mm (Table 2). We installed 
a water meter and ball valve at each plot to control their 
irrigation quotas. The operation pressure, provided by a 
submerged pump, was 0.09 MPa and we assumed that an 
equal amount of water was applied to each plot; and that 

the crop rows and drip tapes were parallel to the drainage 
pipes and ditches.

According to the local recommended fertilization level 
and method, 30% nitrogen fertilizer was used as base fer-
tilizer and 70% as topdressing. All phosphorus, potassium, 
and micro-fertilizers were basally applied in mid-to-early 
April (N 240 kg ha−1, P2O5 105 kg ha−1, K2O 75 kg ha−1, 
FeSO4 19.5  kg  ha−1, MnSO4 10.5  kg  ha−1, ZnSO4 
10.5 kg ha−1). Subsequently, the farm was deep plowed, and 
sowed the next day. The nitrogen, phosphorus, and potas-
sium fertilizers were urea (46% N), calcium phosphate (P2O5 
46%), and potassium sulfate (K2O 51%), respectively. Dur-
ing the main cotton growth period, the nitrogen fertilizer was 
dissolved into a concentrated solution through the fertiliza-
tion tank and applied five times in droplets with irrigation 
water: 10.5% at bud stage, 24.5% at first flowering stage, 

Fig. 3   The layout of the experimental plots, the schematic diagram of vertical section between two adjacent subsurface pipes (b) or open ditches 
(c). 1 The dimensions of (b) and (c) were not in scale. 2 ODDA, open ditch drainage treatment; SPDA subsurface pipe drainage treatment

Fig. 4   The planting pattern of cropping system mulched drip irrigation

Table 2   Irrigation schedule implemented during the cotton growth period

Both drainage treatments had the same water quantities for all years

Irrigation date Late April Early May Early June Mid-June Late June Early July Mid-July Late July Mid-August Late August

Irrigation quota (mm) 180 60 60 60 60 60 60 60 60 60
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17.5% at blooming boll stage, 14% at full boll stage, and 
3.5% at boll opening stage.

Data collection and measurement

Data collection

During the irrigation cycle and cotton growth period, soil 
samples were collected at the seedling stage in mid-May, 
flowering stage in mid-July, and cotton bowl opening stage 
in mid-September. At three sites in each replicate (Fig. 3a), 
we collect soil samples to a depth of 200 cm at a distance of 
24 m from the open ditches and subsurface drainage pipes. 
The samples were divided into ten depths: 0–20, 20–40, 
40–60, 60–80, 80–100, 100–120, 120–140, 140–160, 
160–180, and 180–200 cm. The positioning of the hand-
held GPS device ensures that the sampling accuracy was 
within 1 m.

During the cotton-growing period (between months 4 and 
9 each year), ODDA and SPDA drainage water samples were 
collected on the first of each month. Forty water samples 
were collected from 2012 to 2019. We also collected water 
samples from groundwater observation wells.

Electrical conductivity and pH

The soil samples were air dried and pulverized until they 
could pass through a 2 mm sieve. Then, dry soil and distilled 
water were mixed at a ratio of 1:5 (by weight). The electri-
cal conductivity (EC, mS cm−1) of soil extract and drain-
age water samples were measured with a DDS-11A digital 
conductivity meter (Shanghai INESA Scientific Instruments 
Co. Ltd. Shanghai, China). A Hach LA-pH10 laboratory 
pH meter (Shanghai Shilu Instrument Co. Ltd) was used to 
measure the pH of the drainage water samples.

Biomass and yield

At the harvest stage, three cotton plants with uniform growth 
were randomly selected from each plot of ODDA and SPDA, 
respectively. The roots, stems, and leaves were separated, 
washed with deionized water, put in an oven at 105 °C for 
0.5 h, and then dried at 70 °C to a constant weight. After 
drying, they were cooled and weighed.

Three 1 × 2.4 m plant samples from ODDA and SPDA 
were randomly selected and the seed cotton yields were 
weighed. The measured yield factors were 100-boll weight, 
plant number, and effective boll number per plant.

Economic benefit analysis

For the open ditch and subsurface drainage methods, 
the input costs included three factors: installation of the 

drainage systems, crop production, and operating costs (Li 
et al. 2016). The drainage system costs included purchase 
and installation. The open ditch drainage cost $667 USD 
ha−1 as compared to $1335 USD ha−1 for pipe drainage. 
These costs were amortized over eight years. Crop produc-
tion costs included land lease, mulching film, drip irrigation 
tape, cotton seeds, chemical fertilizers, pesticides, irriga-
tion water, machinery, and labor. Annual operating costs 
included dredging fees and loss of income from the open 
ditch land. Annual dredging fees for the open ditch were 
calculated according to the actual occurrence each year, and 
the land occupation loss fee was 17% (based on the calcula-
tion) of the seed cotton income (open ditches covered an area 
of 17%). Income was the yield of seed cotton multiplied by 
the purchase price of that year. The unit price of materials 
involved in the crop production and operating costs ($ ha−1) 
was determined by the current market prices from 2012 to 
2019 (Liang et al. 2020).

Net present value (NPV) and return on investment (ROI) 
were calculated as:

where B
t
− C

t
 is the net benefit in year t ($ ha−1); i is the 

benchmark discount rate, 8%; To is the total output value ($ 
ha−1); Ti is the total input value ($ ha−1); ROI is the rate of 
return on investment (%). The depreciable life is 8 years and 
there is no salvage value.

Statistical analysis

All data are shown as the mean of multiple data points from 
three plots in the same treatment. The figures were created 
using Origin 2021 (OriginLab, Northampton, Massachu-
setts, USA.). Variance analysis was carried out using the 
SPSS 26.0 package (SPSS Inc. Chicago, USA). The Least 
Significant Difference (LSD) method was used to test the 
significance of the difference between treatments (P < 0.05).

Results

Changes in soil salinity in response to drainage 
treatment

Before sowing in 2012, the surface soil salt content was 
high, however, the salt content in deep soil was low 
(Table 1). The salt mainly accumulated in the surface layer 
(0–50 cm); the salt content in the upper layer (0–80 cm) 

(1)NPV =

n
∑

t=0

(B
t
− C

t
)(1 + i)

−t
,

(2)ROI =
T
O
− T

i

T
i

,
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was significantly different from that in the lower layer 
(100–200 cm). After eight years of using these different 
drainage treatments, the soil salinity was redistributed and 
significantly reduced (Fig. 5). The soil salinity of each soil 
layer decreased vertically over time, the overall soil salin-
ity moved to and accumulated in the lower layer and the 
depth of accumulation was related to drainage treatment 
duration. In 2019, the upper and lower soil salt salinity 
distributions in ODDA and SPDA were relatively uni-
form, with a stable range of change. The salinity of ODDA 
decreased from 3.39–6.72 to 0.50–1.09 mS cm−1, which 
was 81% lower than the initial salinity. The salinity of 
SPDA decreased from 3.44–7.02 to 0.99–1.78 mS cm−1, 
which was 73% lower than the initial salinity.

Desalination varied by depth and time during the eight 
years. During the first year, the following occurred: 1. salt 
levels for ODDA were reduced by 12% in the 0–100 cm 
depth interval whereas salt levels increased by the same 
percentage in the 100–200 cm depth interval (Fig. 6), and 
2. Similar changes occurred for SPDA. Desalination in 
0–80 cm decreased annually while in the at depths below 
80 cm, salinity first increased then decreased. After 2 
years, desalination occurred at all depths for both drain-
age treatments. After 8 years, compared with the initial 
salinity, salinity levels above 80 cm for ODDA and SPDA 
were reduced by 88% and 81%, respectively, with cor-
responding salinities of 1.0 and 1.3 mS cm−1. And, after 
eight years, salinities levels below depths of 100 cm were 
reduced by 73% for the ODDA treatment and 66% for the 
SPDA treatment. These results show that both ODDA and 

SPDA effectively reduced salinity with the ODDA treat-
ment resulting in the greatest reduction.

Changes in the salinity and pH of the drainage 
water in response to ODDA and SPDA

From 2012 to 2019, the salinity of drainage water (Fig. 7) 
generated by the ODDA treatment decreased from 90 to 30 
mS cm−1. For the SPDA treatment, the salinity decreased 
from 120 to 50 mS cm−1 in 2018 and then increased to 60 
mS cm−1 in 2019. During each growing season, the salinity 
of the drainage water from both treatments increased than 
decreased reaching peak values in June. Generally, the drain-
age water pH increased with salinity (Fig. 8). Consequently, 
the changes in pH with time were like those for drainage 
water salinity. As was the case for soil salinity, the salin-
ity and pH of the drainage water generated by SPDA were 
significantly greater than those the drainage water generated 
by ODDA.

Seasonal changes in groundwater level 
and drainage

Annually, in April because of snow melt and the thaw of 
soil water, groundwater levels rose (Fig. 9), and drainage 
started. Drainage continued through the crop season due 
to irrigation. In the fall after irrigation ended and the cot-
ton was harvested, groundwater levels declined, and drain-
age stopped. The highest groundwater levels occurred in 
August. The monthly fluctuations in groundwater level for 

Fig. 5   Distribution of soil 
salinity using different drain-
age measures in cotton fields 
between 2012 and 2019. 1Data 
were mean data (± SD) for 
seedlings, flowering, and cotton 
bowl opening from 0 to 200 cm 
soil depths. 2ODDA, open ditch 
drainage treatment; SPDA, sub-
surface pipe drainage treatment
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both irrigation treatments during each year were similar. 
During the eight years, the annual extent of the changes 
in groundwater table depth was similar for both irrigation 
treatments. However, starting in 2014, the depth of the 

groundwater table for the ODDA treatment was always 
lower than that for the SPDA treatment. When compar-
ing these two types of designs used in this study, these 
results show that both drainage treatments controlled the 

Fig. 6   Effect of time on the extent of desalination (in percent) relative to soil salinity levels at the start of the experiment in 2012. 1a open ditch 
drainage treatment (ODDA), 2b subsurface pipe drainage treatment (SPDA)

Fig. 7   Monthly changes in 
electrical conductivity (EC) 
of drainage water from 2012 
to 2019 during the growing 
season of cotton. 1ODDA open 
ditch drainage treatment; SPDA 
subsurface pipe drainage treat-
ment. 2Error range from 0.2 to 
0.4 mS cm−1
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Fig. 8   The change of drainage 
water pH in samples from 2012 
to 2019. 1Data (average ± SD) 
were collected each month dur-
ing the cotton-growing period. 
2ODDA open ditch drainage 
treatment; SPDA subsurface 
pipe drainage treatment
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groundwater depth, but the control was best for the ODDA 
treatment.

During the cotton growth period, the groundwater salin-
ity increased, then decreased before it reached its highest 
value in September (Fig. 9). The groundwater salinity of 
ODDA and SPDA varied from 20.75–37.4 to 21.55–39.35 
mS cm−1, respectively. The groundwater salinity fluctu-
ated slightly in the same month each year, but there were 
no significant annual differences. The results showed that 
the ODDA groundwater salinity reduction effect was better 
than that of SPDA.

Drainage affects cotton dry matter

Drainage treatments increased the annual dry matter produc-
tion of cotton roots, stems, and leaves, but decreased growth 
rate over time. The ODDA dry matter production of cotton 
roots, stems, and leaves was significantly higher than that 
of SPDA (Fig. 10). The dry matter from ODDA and SPDA 
cotton roots, stems, and leaves were the highest in 2019; and 
were 1%, 2%, and 3% higher in ODDA than SPDA, respec-
tively. However, the increase in dry matter production was 
greater in SPDA than in ODDA. Compared with 2012, in 
2019 the dry matter production of cotton roots, stems, and 
leaves, respectively, increased in ODDA by 39%, 126%, and 
84% and SPDA by 41%, 129%, and 89%.

Cotton yield and yield factors

Over eight years, the 100-boll weight, effective boll (open 
bolls per plant) number, and cotton yield of ODDA and 
SPDA increased with the length of drainage treatments, 
but the rate of increase decreased year by year (Fig. 11). 
These factors were consistent cotton biomass. The results 
showed that the 100-boll weight, effective boll (open 

bolls per plant) number, and cotton yield of ODDA were 
significantly higher than those of SPDA. Both reached 
a maximum in 2019, and the 100-boll weight, effective 
boll number and yield of ODDA cotton were significantly 
increased by 2%, 3% and 7%, respectively, compared with 
SPDA. The minimum value was reached in 2012, and the 
100-boll weight, effective boll number and yield of ODDA 
cotton were significantly increased by 2%, 2% and 16%, 
respectively, compared to SPDA. And the cotton yield 
increased 18.30 times and 19.96 times, respectively, in 
2019 compared to that in 2012.

Economic benefits

Figure 12 shows the economic benefits analysis based on 
the input and output for cotton cultivation for eight years. 
Annual depreciation charges for ODDA treatment and SPDA 
treatment are $83 USD ha−1 and $169 USD ha−1, respec-
tively. From 2012 to 2019, the total input cost for cotton 
production for the SPDA treatment was 19% lower than that 
of the ODDA treatment. Despite the high initial investment 
for the SPDA treatment, there was almost no annual operat-
ing cost over our eight-year investigation. Additionally, the 
SPDA treatment did not occupy land and it increased the 
income of cotton production compared to ODDA treatment. 
The annual operating cost for ODDA treatment for cotton 
cultivation in 2019 was 7.73 times higher than such costs in 
2012. The net present value (NPV) of both SPDA treatment 
and ODDA treatment was greater than zero, which was eco-
nomically feasible. The NPV and the annual rate of return on 
investment for the SPDA treatments were higher than for the 
ODDA treatment. Besides, the SPDA treatment had a shorter 
dynamic payback period than ODDA treatment, which were 
6.34 years and 7.59 years, respectively.

Fig. 9   The dynamic changes 
in groundwater table depth and 
salinity between 2012 and 2019. 
1ODDA open ditch drainage 
treatment; SPDA subsurface 
pipe drainage treatment. 2The 
groundwater table depth error 
ranges from 0.010 to 0.020 m; 
the groundwater salinity error 
ranges from 0.02 to 0.05 mS 
cm−1
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Discussion

The effect of open ditch and subsurface pipe 
drainage technology on soil salinization

Open ditch and subsurface pipe drainage systems can effec-
tively control soil salinization (Jia et al. 2011; Mastrocicco 
et al. 2013). Effective drainage measures can achieve rapid 
desalination of the upper soil layer in the short term and salt 
accumulation in the lower layer (Li et al. 2021; Liu et al. 
2021), which was similar to the results of this study. Differ-
ent from the short-term effect, the midterm effect was the 
overall desalination of the soil. After an 8 year field experi-
ment, the changes of soil salinity in the 0–200 cm soil layer 
of ODDA and SPDA showed a stable trend, decreasing 

by 80.62% and 73.17%, respectively. The salinized soil 
was characterized by continuous desalination of the upper 
(0–80 cm) and lower (100–200 cm) layers, with the upper 
layer showing the most obvious desalination. Salt migrated 
from the upper soil layer to the lower layer, which gradually 
desalinated afterward (Shi et al. 2021). Here, the salt peak 
gradually migrated downwards over time, from a soil depth 
of 80–100 cm to 140–160 cm. The mulch (plastic film) sup-
presses the upward movement of soil water, which results 
in plant transpiration being the principal factor influencing 
water movement in the soil. Downward movement of water 
and salt was assured by the drainage systems—providing 
the means for the excess water to flow out of the rootzone. 
(Aernaguli et al. 2018). Due to the open ditch and the sub-
surface pipe drainage systems, the water in the farmland had 
a downward movement channel that drove the downward 

2012 2013 2014 2015 2016 2017 2018 2019
0
5

10
15
20
25
30

)tnalp/g(stoo
R

Year

ODDA SPDA Significance Level: 0.05

a b
a b a b a b a b a a a b a b

(a) Cotton roots

2012 2013 2014 2015 2016 2017 2018 2019
0

10
20
30
40
50)tnalp/g(s

metS

Year

a a b a a a b
b

a b
a b

a b

a b

(b) Cotton stems

2012 2013 2014 2015 2016 2017 2018 2019
0

10
20
30
40
50

)tnalp/g(sevaeL

Year

a a b a a a b
b

a b
a b

a b

a b

(c) Cotton leaves
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stems (b), and leaves (c) between 2012 and 2019. 1Lowercase letters 
indicate significant differences (P < 0.05, t test uses the standard error 
of the mean) between treatments in each year. 2ODDA, open ditch 
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movement of water and soil salt. The salinity moved down-
ward with the irrigation water due to the leaching effect of 
the irrigation (Liu et al. 2021). Part of the soil salt leached 
into shallow groundwater, with most of the soil salt leach-
ing into deeper soil layers and entering the open ditch or 
subsurface pipe with the water movement before being 
discharged. During the intermittent irrigation period, part 
of the salt in the shallow groundwater was transported to 
the soil and soil surface by phreatic evaporation. After the 
next irrigation and leaching cycle, salt returned to the shal-
low groundwater or deep soil layer and entered the open 
ditch or subsurface pipe before being discharged. During 
the growth period, there were small fluctuations in the salt 
content from the effects of evaporation, fertilization, and 
root water absorption. This process was repeated each year 
and the soil salinity decreased due the combined effects of 
snow and ice melt in the spring, irrigation and evaporation 
in the summer, and drainage system. With the long-term 
use of the drainage system, we speculate that the effect of 
drainage measures will gradually decrease when the salinity 
decreases to a certain level.

The salt content in drainage water is the most direct 
index of soil desalination rates in farmland (Chapman 
et al. 2005). We found that the drainage salinity of ODDA 
and SPDA showed a gradual decrease over time. Although 
the drainage salinity and pH fluctuated during the grow-
ing period. The groundwater salinity rose during the crop 
season while the drainage water salinity decreased and the 
salinity of the drainage water was generally higher than 
that of the groundwater throughout the experiment. This 
likely occurred because the groundwater sample was mark-
edly influenced by the concentrating effects of crop water 
uptake, whereas the changes in the salinity of the drainage 
water reflected water flow paths from deeper depths, where 
the salinity of the soil water was much higher, causing the 

salinity of the drainage water to be greater than that of the 
groundwater (Quinn 2014; Alaya et al. 2014). The meas-
ured salinities of both the groundwater and drainage water 
were directly affected by bypass flow of the non-saline 
irrigation water to depths within and below the rootzone 
(Liu et al. 2014).

Open ditch and subsurface pipe drainage technology 
can control groundwater at the depth necessary for crop 
growth (Abdel-Dayem and Ritzema 1990; Liu et al. 2017). 
We found that the groundwater table level for SPDA was 
usually higher than for ODDA throughout the experiment, 
and the ability of open ditch drainage to control groundwa-
ter level was better than that of subsurface pipe drainage. 
This is because both open ditch and subsurface pipe drain-
age are used seasonally and intermittently in arid areas. 
Drip irrigation under mulch uses periodic irrigation and 
from the perspective of the soil profile, the beginning of 
each streamline in the soil flow field for open ditch and 
subsurface pipe drainage was perpendicular to the ground, 
with the end directed toward the ditch or subsurface pipe 
(Van der Molen et al. 2007). The hydraulic gradient caused 
by irrigation and crop water uptake resulted in water flow 
along the hydraulic gradient streamlines to the open ditch 
or the subsurface pipe, where the streamlines converged 
along the subsurface pipe (Afruzi et al. 2014; Chahar and 
Vadodaria 2012). In our study fields, the confluence sur-
face of the open ditch was at the side wall of the open 
ditch, while that of the subsurface pipe was at the wall 
of the subsurface pipe, which had low porosity. The con-
fluence area of the open ditch was much larger than the 
subsurface pipe; therefore, its drainage flow was much 
larger than the subsurface pipe. Therefore, the volume of 
salt discharged from the open ditch was greater than the 
subsurface pipe, and the control of the groundwater was 
better than the subsurface pipe.
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Effects of open ditch drainage and subsurface 
pipe drainage on cotton dry matter weight, yield, 
and yield factors

The accumulation of cotton biomass is the basis for obtain-
ing high-yield and high-quality cotton (Ren et al. 2021). 
Cotton has some salt tolerance; its organs and tissues have 
different salt sensitivities (Zhang et al. 2018). With drip irri-
gation under mulch, 85% of the cotton roots were distributed 
in the 30–50 cm soil layer (Yang et al. 2017). Soil salinity 
can have a significant influence on cotton growth (Pettigrew 
2004). A soil salinity greater than 7 mS cm−1 reduced cotton 
yield, quality, and the dry weight of the cotton (Dong 2012). 
In this study, the effects of open ditch and subsurface pipe 
drainage on cotton growth were represented by changes in 
the dry matter weight of roots, stems, and leaves. With drain-
age treatments over time, the soil salinity decreased, which 
promoted cotton growth and the accumulation of dry matter 
(Miura and Tada 2014). The dry matter weight in ODDA 
was significantly higher than that in SPDA. Open ditch 
and subsurface pipe drainage technology can significantly 
improve crop yield (Feng et al. 2017; Tolomio and Borin 
2019). We found that annual drainage treatments reduced 
soil salt content and increased 100-boll weight, effective boll 
number, and cotton yield over time. The faster the desalina-
tion rate, the more significant the yield improvement effect 
observed.

Analysis of the economic benefits of open ditch 
and subsurface pipe drainage treatment

The ultimate goal of open ditch and subsurface pipe drainage 
systems is to increase crop yield and income by improv-
ing saline–sodic land. Economically, the SPDA treatment 
required a high initial one-time investment for construc-
tion, but the area where cotton could be grown increased, 
increasing the income. Therefore, the net present value was 
– 1 to 414% higher than that of the ODDA treatments from 
2012 to 2019. In this study, the payback periods of ODDA 
and SPDA were 7.59 and 6.34 years, respectively. In this 
8-year operation cycle, the average annual investment of 
ODDA was 19% higher than that of SPDA. This increase 
in the ODDA average annual investment was primarily 
due to income losses from dredging and land occupation 
(Chen 2016). There was a significant difference in net profit 
between ODDA and SPDA even though the average annual 
ROI of ODDA (12%) was lower than that of SPDA (30%), 
which was primarily because the subsurface pipe drainage 
did not occupy arable land, and there were no annual opera-
tion and dredging costs. Although the income of open ditch 
drainage was relatively high, it needed regular dredging, 
occupied arable land that could have been used for planting, 
and was not conducive to the operation of large agricultural 

machinery, which contributed to its low return on investment 
(Yu et al. 2012). Therefore, subsurface pipe drainage has a 
more significant return on investment than open ditch drain-
age. Subsurface pipe drainage could be the most popular 
method used in Xinjiang.

Conclusions

To solve the problem of irrigation without drainage and salt 
accumulation with drip irrigation under mulch, open ditch 
and subsurface pipe drainage technology can remove soil 
salt from farmland. Our eight-year field experiment of open 
ditch and subsurface pipe drainage systems used with drip 
irrigation under mulch reached the following conclusions:

(1) Both open ditch and subsurface pipe drainage effec-
tively reduced total soil salinity and improved saline–
sodic soil. The desalination effect of open ditch drain-
age was better than that of subsurface pipe drainage. Soil 
desalination was continuous in the upper soil layer, while 
the lower layer first accumulated salt and then desali-
nated. The salinity and pH of ODDA and SPDA drain-
age water samples decreased throughout the experiment, 
following a decrease in soil salinity. The effect of open 
ditch drainage on groundwater level was better than that 
of subsurface pipe drainage, indicated by a significantly 
lower groundwater salinity in ODDA than SPDA.
(2) Over time, the drainage treatments increased cotton 
biomass, 100-boll weight, effective boll number, and 
yield in ODDA and SPDA. The ODDA yield was higher 
than that in SPDA, but the effect on increased yield was 
lower in ODDA than in SPDA.
(3) The payback period and eight-year ROI were better 
in SPDA than ODDA. Subsurface pipe drainage technol-
ogy had higher economic benefits than open ditch drain-
age technology. These drainage technologies can both 
improve saline–sodic land to increase crop yield and 
income. The economic benefits of subsurface pipe drain-
age were more prominent in the long term.
(4) The midterm use of the technical model of drip irriga-
tion under mulch supported by open ditch or subsurface 
pipe drainage may cause other ecological problems, such 
as the formation of bottom soil layers that are difficult to 
plow, which would inhibit irrigation water from washing 
salt into these deep soil layers. This would further impede 
the salt washing effect of the drainage technology. More 
research is needed to understand the midterm ecologi-
cal effects of drainage treatments. Additionally, further 
research is needed to determine the viability of custom-
izing irrigation and desalination management systems for 
specific alkali soil conditions.
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