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Abstract
Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit 
water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To 
be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolu-
tion and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods 
for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface 
moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors. 
This study investigates the efficacy of a data fusion method for combining information from multiple medium-resolution 
sensors toward generating high spatiotemporal resolution ET products for water management. TIR data from Landsat and 
ECOSTRESS (both at ~ 100-m native resolution), and VIIRS (375-m native) are sharpened to a common 30-m grid using 
surface reflectance data from the Harmonized Landsat-Sentinel dataset. Periodic 30-m ET retrievals from these combined 
thermal data sources are fused with daily retrievals from unsharpened VIIRS to generate daily, 30-m ET image timeseries. 
The accuracy of this mapping method is tested over several irrigated cropping systems in the Central Valley of California 
in comparison with flux tower observations, including measurements over irrigated vineyards collected in the GRAPEX 
campaign. Results demonstrate the operational value added by the augmented TIR sensor suite compared to Landsat alone, 
in terms of capturing daily ET variability and reduced latency for real-time applications. The method also provides means 
for incorporating new sources of imaging from future planned thermal missions, further improving our ability to map rapid 
changes in crop water use at field scales.
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Introduction

Agriculture is impacted by many environmental issues, 
including climate change, and degradation of land and 
freshwater (Foley et al. 2011; Hall et al. 2008). In agricul-
tural regions, water availability is one of the most impor-
tant factors determining crop quality and production. 
In recent years, there have been increasing demands on 
global freshwater resources for food production to support 
the world’s growing population. At the same time, fresh-
water availability has become increasingly limited in some 
production regions due to changing atmospheric condi-
tions, aquifer overdrafts, extended droughts, and increased 
competing uses (Ficklin and Novick 2017; Richey et al. 
2015). To develop sustainable agricultural systems, there 
is a critical need for accurate assessments of water use and 
increased water-use efficiency. Agricultural water man-
agement requires detailed information about crop water 
use and soil moisture status at field scales, which is con-
veyed by daily to seasonal estimates of evapotranspiration 
(ET)—the main form of agricultural water loss.

Remote sensing data are well suited to providing accu-
rate estimates of ET at the spatial scales required for 
agricultural management, with low demands for ancillary 
information and at low cost (Anderson et al. 2012). Over 
the past few decades, a number of remotely sensed surface 
energy balance (SEB) approaches have been developed 
for mapping ET that exploit the land surface temperature 
(LST) derived from satellite thermal bands as a proxy 
indicator of water status (Allen et  al. 2007; Anderson 
et al. 1997, 2004, 2007; Bastiaanssen et al. 1998; Norman 
et al. 2003). In particular, thermal-based energy balance 
approaches are sensitive to rapid changes in moisture sta-
tus and, therefore, capable of effectively capturing vegeta-
tion water use changes. This is due to the fact that canopy 
temperature tends to change faster under stress than many 
other canopy biophysical properties reflected in optical 
imagery (Moran 2004). In addition, thermal signals are 

also sensitive to soil moisture changes under low canopy 
cover (e.g., early season irrigation). A suite of optical and 
thermal ET modeling systems form the basis for OpenET 
(Melton et al. 2021)—a powerful tool for improved agri-
cultural water management providing field-scale ET esti-
mates across the western United States.

In addition, anomalies in ET (i.e., deviations of cur-
rent ET from normal ET, as averaged over a relatively long 
period) show great potential for identifying agricultural 
drought onset and impacts. The Evaporative Stress Index 
(ESI), defined as temporal anomalies in the ratio of actual-
to-reference ET (fRET), has proven to be a good leading indi-
cator of stress, particularly in rapid onset, or “flash” drought 
events (Anderson et al. 2013, 2015, 2016; Otkin et al. 2013). 
Regional ESI generated at 4–10 km scale over the U.S. using 
thermal data from geostationary satellites has been demon-
strated its utility as an agricultural drought indicator (Otkin 
et al. 2018, 2019). However, the relatively coarse spatial res-
olution of these products in some cases may not adequately 
separate the stress responses of individual land-cover types 
(e.g., crop vs. forest) and cannot provide effective guid-
ance for field-scale irrigation management. More recently, 
attempts have been made to generate ESI at crop stand scale 
by using high spatial-resolution data (30–100 m) from Land-
sat (Knipper et al. 2019b; Yang et al. 2020, 2021a, 2018).

To date, Landsat has been considered a gold standard 
for field-scale ET monitoring and stress detection, provid-
ing data in the visible, near-infrared, shortwave infrared 
(VSWIR) and thermal infrared (TIR) bands required for 
SEB modeling, all co-collected from a single platform 
and with excellent calibration and registration (Ander-
son et al. 2012). However, the relatively low revisit fre-
quency of Landsat imagery (i.e., 16 days for a single sys-
tem; Table 1) constrains full reconstruction of daily and 
seasonal water use dynamics at field scales, particularly 
during periods of rapid change including green-up, har-
vest, intensive management, and flash drought. Previous 
studies have investigated the integration of other thermal 
data sources in addition to Landsat to improve temporal 

Table 1  Characteristics of 
satellite data used in this study

Platform/sensor Launch date Equatorial 
crossing 
time

Spatial resolution Temporal resolution

SR bands (m) TIR bands

Landsat 8 Feb. 11, 2013 10:00 a.m. 30 100 16 day
Sentinel-2A Jun. 23, 2015 10:30 a.m. 10–20 – 10 day
Sentinel-2B Mar. 7, 2017 10:30 a.m. 10–20 m – 10 day
ECOSTRESS Jun. 29, 2018 – –  ~ 70 1–5 day
VIIRS Oct. 28, 2011 1:30 p.m. (I bands) 375 375  ~ daily

(M bands) 750 750
MODIS (Terra) Dec. 18, 1999 10:30 a.m. 250–500 1000 A few times per day

(Aqua) May 5, 2002 1:30 p.m.
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sampling. For example, the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) provides imaging for 
ET retrieval at coarser scales (~ 500 m) on a near-daily 
basis (Table 1). Fusing high-spatial/low-temporal resolu-
tion Landsat ET with low-spatial/high-temporal resolution 
MODIS ET timeseries (Gao et al., 2006; hereafter referred 
to as “Landsat-only fusion”) has proven effective in gen-
erating ET timeseries with both high spatial and tempo-
ral resolution over a range of land cover types (Anderson 
et al. 2018; Cammalleri et al. 2013; Knipper et al. 2020; 
Semmens et al. 2016; Sun et al. 2017; Yang et al. 2017). 
Still, the accuracy of fused timeseries strongly depends 
on the frequency of the high-resolution ET retrievals 
anchoring the fusion process; therefore, other studies 
have investigated the utility of including other medium 
resolution thermal data sources in addition to Landsat. 
For example, Anderson et al. (2021) incorporated ECO-
system Spaceborne Thermal Radiometer Experiment on 
Space Station (ECOSTRESS) as an additional Landsat-
like TIR data source. Xue et al. (2021) tested using TIR 
data from the Visible Infrared Imaging Radiometer Suite 
(VIIRS) I–5 band together with VSWIR data from Senti-
nel-2 (S2; Table 1) for augmenting Landsat ET timeseries. 
Both studies have demonstrated the value of additional 
temporal sampling complementing Landsat in improved 
ET monitoring.

In this study, we propose to combine ET retrievals from 
ECOSTRESS and VIIRS I-5 with Landsat imaging to pro-
vide even more frequent medium-resolution ET sampling 
capabilities (referred to as Landsat + ECOSTRESS +  VIIRSI/
S2 fusion). We evaluated the improvement in fusion results 
over Landsat-only fusion in capturing disturbance events 
(e.g., rainfall, flash drought, green-up, and harvest) in 
which the resulting changes in crop water use are transient 
and not recorded in available Landsat scenes. These two 
fusion approaches (Landsat-only and Landsat + ECOS-
TRESS +  VIIRSI/S2 fusion) were used to create 30-m 
daily ET datacubes for the period of 2018–2020 over three 
domains in California, U.S., sampling a broad range of cli-
mate and water management practices. The accuracy of 
modeled ET timeseries is evaluated in comparison with 
long-term flux tower measurements collected over these 
study domains. We also propose VIIRS M-band products to 
replace MODIS (soon to be extinct) as the new ET fusion 
backbone and test its feasibility. The goal is to lay a new 
foundation for future enhancements to projects including 
OpenET and ET-based drought monitoring, to demonstrate 
the value of more frequent thermal imaging, and to suggest 
methods for multi-source integration looking forward to the 
future medium-resolution TIR satellite missions. We also 
investigate the effectiveness of ET anomalies in capturing 
the impacts of crop management practices and stress in water 
use at both daily and monthly time steps and sub-field scales. 

The overall aim of this work was to evaluate the capabilities 
of the multi-source ET modelling framework for reconstruct-
ing daily and seasonal ET dynamics at field scale.

Study area

The study domain, as illustrated in Fig. 1, includes three 
grape-growing regions in California (CA), USA, that were 
sampled as part of the USDA-ARS Grape Remote Sensing 
Atmospheric Profile and Evapotranspiration eXperiment 
(GRAPEX) (Kustas et al. 2018). The three vineyard sites 
are near Cloverdale, CA (site name BAR); near Lodi, CA 
(site name SLM); and near Madera, CA (site name RIP). 
Together they sample a north–south gradient in climatic 
conditions due to variations in precipitation, temperature 
and humidity, along with different grape varieties, row-ori-
entations, and soil types. The SLM and RIP sites are located 
in the Central Valley, while the northern BAR site is in the 
Sonoma Valley area. The climate changes from north coastal 
region to the southern Central Valley with decreasing pre-
cipitation and increasing air temperature. The BAR site has 
cooler and moister air conditions, while the SLM and RIP 
sites experience a warm Mediterranean climate character-
ized by warm days and cool nights (Knipper et al. 2020). The 
primary land cover type of the three sites is irrigated vine-
yards, surrounded with irrigated orchards and pastures, and 
unirrigated grasslands (Fig. 1). In addition to the GRAPEX 
sites, flux sites on Bouldin Island, CA sampling irrigated 
alfalfa (USBi1) and corn (USBi2) fields were also included 
in our analyses to test the utility of integration of data from 
multiple Landsat-like platforms.

The Central Valley aquifer system that supports irrigation 
in this agricultural production area is extremely stressed with 
an annual depletion rate of −20 mm  year−1 from groundwa-
ter for the period 2003–2010 and even higher during drought 
years (Famiglietti et al. 2011; Richey et al. 2015). The exten-
sive groundwater extraction has resulted in land subsidence 
in many areas of the Central Valley over the last decades, 
partially related to regions where non-permanent crops and 
pastures were converted to long-term crops such as vine-
yards with a relatively inflexible demand for water (Faunt 
and Sneed 2015; Faunt et al. 2016). Possible strategies to 
deal with increasingly limited water resources include more 
efficient irrigation methods or converting to crops with lower 
water needs (Anderson et al. 2018). In addition, an improved 
understanding of the water use changes associated with these 
management practices is urgently needed. Previous studies 
(Knipper et al. 2019b; Semmens et al. 2016) focusing on 
these regions have demonstrated that the 16-day revisit of 
Landsat 8 was not enough to capture the vineyard response 
to stress. Other studies showed Landsat sampling was even 
more insufficient for crops like alfalfa which have higher 
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ET temporal dynamics due to monthly cuttings, and pose a 
significant challenge to ET modeling (Anderson et al. 2021; 
Xue et al. 2021).

In this study, we focus on a 3-year period from 2018 
to 2020 (2020 is a drought year), after the severe drought 
(2012–2017) in California. This period was characterized by 
a variety of meteorological conditions and soil water avail-
ability, with varying cropping and irrigation strategies in the 
Central Valley. A modeling domain of 90 × 90  km2 centered 
on the target flux tower sites was used. Detailed information 
about each flux tower site is provided in “Study sites and flux 
tower measurements”.

Methods

In this study we use a multi-scale ET modelling system to 
generate various ET data with inputs from multi-source TIR 
and SR data. A Data Mining Sharpener (DMS) approach is 
applied to sharpen raw LST inputs for DisALEXI to finer 
resolution. The output ET data on overpass dates are fused 
to generate 30-m daily ET time series using the Spatial and 
Temporal Adaptive Reflectance Fusion Model (STARFM). 

Fig. 1  Three study domains (Cloverdale, Lodi and Madera) in Cali-
fornia, U.S. (center column). Flux tower locations are indicated with 
red stars on the Google Earth true color images (left column). Site 

photographs to the right are from PhenoCams installed at each flux 
site (colour figure online)

Fig. 2  Schematic diagram illustrating the flow of the multi-source ET 
modelling system
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A schematic diagram illustrating the flow of ET process-
ing is shown in Fig. 2, with each component of the system 
explained in greater detail below and in “Data and analyses”.

Multiscale ET modelling framework

The multi-scale ET modelling framework used here is 
based on the regional Atmosphere-Land Exchange Inverse 
(ALEXI) model (Anderson et al. 2007) and the associated 
disaggregation scheme DisALEXI (Anderson et al. 2004; 
Norman et al. 2003), which are built upon the Two Source 
Energy Balance (TSEB) model (Kustas and Norman 1997; 
Norman et al. 1995). The TSEB estimates the surface energy 
balance and radiometric temperature separately for the soil 
and canopy components of each model pixel, partitioned 
based on the local fractional vegetation cover or leaf area 
index (LAI). To reduce the uncertainty in remote sensing 
thermal retrievals, in the regional ALEXI model, the TSEB 
is used in a time-differencing mode by coupling with a slab 
model of the atmospheric boundary layer to morning ther-
mal observations collected by geostationary satellites at rela-
tively coarse spatial resolution (roughly 3–10 km). The Dis-
ALEXI component of the framework spatially disaggregates 
ALEXI daily fluxes by applying TSEB to finer-resolution 
thermal data from polar orbiting satellites. In DisALEXI, the 
air temperature is iteratively tuned at the ALEXI pixel scale 
to enforce consistency between ALEXI and reaggregated 
DisALEXI fluxes. This normalization process also ensures 
the consistency between DisALEXI fluxes from different 
sensors with thermal data acquired at different times of day, 
a key factor in successful multi-source data fusion. For more 
ALEXI/DisALEXI modelling details, the reader is referred 
to Cammalleri et al. (2013) and Sun et al. (2017).

Multi‑source data fusion scheme

Thermal data sharpening

In multi-spectral satellite imaging systems, the spatial reso-
lution of thermal infrared (TIR) data is typically coarser than 
that of surface reflectance (SR) data from the same platform. 
However, the TSEB land-surface representation in ALEX/
DisALEXI requires physical and spatial consistency between 
the LST and LAI inputs derived from TIR and SR imagery, 
respectively. To achieve resolution consistency between 
bands and platforms, the DMS (Gao et al. 2012b; Xue et al. 
2020) approach was used in this study to sharpen Landsat-
like LST imagery (i.e., Landsat, ECOSTRESS and VIIRS 
I–5 band) from native resolution (i.e., 100, ~ 70 and 375 m, 
respectively) to 30 m and MODIS-like LST (i.e., MODIS 
and VIIRS M-bands) from 1 km and 750 m, respectively, 
to 500 m. DMS is a machine-learning algorithm that builds 
an ensemble of cubist regression trees between SR and LST 

data at the coarse resolution of the TIR bands and then uses 
these statistical relationships to predict LST at the finer 
resolution of the SR bands. To conserve energy at coarse 
resolution, the residuals between the actual LST and mod-
eled LST at coarse resolution are interpolated and applied 
to the fine resolution LST image. VSWIR bands were used 
to sharpen Landsat-like LST images, while NDVI band was 
used for MODIS-like LST sharpening. It should be noted 
that the purpose of MODIS-like LST sharpening is mainly 
to reduce the bowtie effect due to off-nadir pixel smearing 
(Gómez-Landesa et al. 2004). In this case, DMS was run 
using NDVI, similar to the localized TsHARP approach 
which was reported effective in prior studies (Cammalleri 
et al. 2014; Kustas et al. 2003; Semmens et al. 2016; Sun 
et al. 2017). Note that in addition to the enhanced spatial res-
olution of LST, thermal sharpening also improves the spatial 
consistency between LST and SR (including LAI, NDVI, 
and albedo) inputs for the DisALEXI model, which helps 
relieve spatial misalignment in data from different satellite 
platforms or LST data noise that may come from an imper-
fect atmospheric correction. For instance, a modified DMS 
approach (Xue et al. 2020) with a relaxed scale of energy 
conservation was successfully applied to ECOSTRESS and 
VIIRS LST sharpening to 30 m.

ET data fusion

Periodic Landsat-like and daily MODIS-like ET retrievals 
were integrated into a single 30-m/daily timeseries using 
the STARFM algorithm, which provides a feasible way for 
fusing remote sensing data from different satellite platforms 
(Gao et al. 2006). STARFM combines high spatial informa-
tion from Landsat-like sensors and high temporal informa-
tion from MODIS-like sensors to generate data with high 
resolution in both time and space. The STARFM approach 
takes advantage of the continuous phenology changes 
observed by MODIS-like timeseries to benefit the predic-
tion between Landsat-like overpasses. In STARFM, one or 
more existing Landsat/MODIS image-pairs collected on 
the same date are used to predict Landsat-like images on 
other MODIS observation dates when Landsat data are not 
available. STARFM employs a weighting function describ-
ing the spectral, spatial and temporal relationship between 
existing Landsat/MODIS image-pairs to downscale MODIS 
images on prediction dates. One-pair STARFM uses a single 
image pair to predict images on dates surrounding the pair 
date, while two-pair STARFM uses two nearest image pairs 
bracketing the prediction date. The application of STARFM 
in ET fusion has been widely investigated over various land 
cover types and most of these works used one-pair STARFM 
due to its simplicity and flexibility in near-real-time applica-
tions (Anderson et al. 2021; Knipper et al. 2019a; Yang et al. 
2017). While most previous ET fusion studies have used the 
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one-pair fusion method, in this study, we used the dual-pair 
method described by Yang et al. (2022) as it has been found 
to generate smoother ET timeseries with smaller errors in 
highly dynamic agricultural systems.

In this study, two categories of ET data with different 
spatial and temporal resolutions were directly retrieved 
using DisALEXI. One is high-spatial low-temporal resolu-
tion (30 m; periodic) Landsat-like ET including Landsat, 
ECOSTRESS and  VIIRSI/S2. The other is low-spatial high-
temporal resolution (500 m; ~ daily) MODIS-like ET includ-
ing MODIS and  VIIRSM. The two sets of ET data were fused 
using STARFM, combining each dataset’s strength to gener-
ate ET datacubes at 30-m resolution and daily time scale. We 
tested two fusion scenarios: (1) 30-m Landsat ET retrievals 
with 500-m  VIIRSM daily ET; (2) 30-m Landsat + ECOS-
TRESS +  VIIRSI/S2 ET retrievals with 500-m  VIIRSM daily 
ET. The two fused datacubes were compared with flux tower 
observations to evaluate the value added by the additional 
temporal sampling from ECOSTRESS and  VIIRSI/S2. The 
two fusion schemes were also applied in simulated real-
time scenarios based on one-pair STARFM. In addition, 
for the first scenario, we also fused Landsat ET estimates 
with 500-m MODIS ET, which was used as a benchmark to 
evaluate the performance of 500-m  VIIRSM ET as the new 
post-MODIS era fusion backbone.

Evaporative stress index (ESI)

ESI is a remote sensing-based agricultural drought index, 
defined in terms of anomalies in fRET relative to a long-term 
mean. An advantage of ESI is it does not require information 
about the soil moisture status or rainfall, but rather diagnoses 
vegetation stress via impacts of elevated canopy temperature 
on the ET retrieval (Anderson et al. 2011, 2007). Normal-
izing by reference ET better focuses on the soil moisture sig-
nal, reducing the impact of seasonal variations of available 
energy and evaporative demand on actual ET. Here we use 
reference ET for a short grass under well-watered conditions 
calculated based on the FAO-56 Penman–Monteith formula-
tion (Allen et al. 1998). ESI has been demonstrated to be a 
valuable early warning indicator of stress at both regional 
scale (Anderson et al. 2013; Otkin et al. 2013, 2019) and 
sub-field scale (Yang et al. 2021a, 2018).

At regional-to-continental scales, ESI is typically calcu-
lated as a standardized anomaly relative to long-term base-
line conditions. First, fRET composites are generated within 
4-, 8- and 12-week windows moving with a 7-day time step 
to investigate the drought impacts at different timescales. 
Then standardized anomalies in the fRET composites are 
computed to highlight differences in moisture conditions 
between years, normalizing each composite interval to a 
mean of 0 and standard deviation of 1 using mean and stand-
ard deviation computed for that time window over a multi-
decade baseline period. Currently, routine ESI products are 
generated over the continental United States (CONUS) and 
globally based on ALEXI ET, and have shown comparable 
accuracy with other standard drought indicators (Anderson 
et al. 2015).

For sub-field scale stress analyses, a non-standardized 
fRET anomaly (named Δ fRET) has generally been used due to 
the shorter time-frame associated with these analyses (Knip-
per et al. 2019a; Yang et al. 2021a, 2018, 2021b). This study 
investigates the utility of both fused fRET timeseries and fRET 
anomaly (named ΔfRET) for stress detection, computed for 
the 3-year study period at both daily and monthly average 
scales.

Data and analyses

Study sites and flux tower measurements

Each study domain discussed in “Study area” contains one 
or more flux towers equipped with eddy covariance (EC) 
and meteorological sensors measuring surface fluxes and 
micrometeorological data. Data collected at six towers are 
used to evaluate model performance, model crop biomass 
changes, and detect vine stress (Table 2). This includes 
four GRAPEX towers in irrigated vineyards, all equipped 
with similar instrumentation (Alfieri et al. 2019; Knipper 
et al. 2020). The BAR012 tower is located in the Cloverdale 
domain. The grapes in this block are Cabernet Sauvignon 
and planted in 2010 with an area of 10 ha. The RIP760 
tower is sited in the Madera domain, with 31-ha Chardon-
nay grapes planted in 2010. Measurements of surface energy 

Table 2  Characteristics of flux 
towers used in this study

Domain Tower Land cover Vine variety Year planted Latitude Longitude

Lodi SLM001 vineyard Pinot Noir/Cabernet Sauvignon 2009/2020 38.289 − 121.118
Lodi SLM002 vineyard Pinot Noir/Merlot 2011/2020 38.280 − 121.118
Lodi USBi1 alfalfa – 2016 38.099 − 121.499
Lodi USBi2 corn – 2017 38.109 − 121.535
Cloverdale BAR012 vineyard Cabernet Sauvignon 2010 38.751 − 122.975
Madera RIP760 vineyard Chardonnay 2010 36.839 − 120.210
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fluxes and meteorological data at SLM001 and SLM002 
sites began in 2013 and in 2017 for BAR012 and RIP760, 
respectively.

Flux towers SLM001 and SLM002 are within the Lodi 
domain. Both vineyard blocks are planted with Pinot noir 
vines since 2009 and 2011 with an area of 35 ha and 21 ha, 
respectively. The Lodi domain also contains two AmeriF-
lux towers (https:// ameri flux. lbl. gov/), USBi1 and USBi2, 
located in the California Delta regions (Bouldin Island). The 
two towers are situated in irrigated fields with USBi1 in 
alfalfa since 2016 and USBi2 in corn since 2017 (Anderson 
et al. 2021; Eichelmann et al. 2018). The observed fluxes 
from the two towers were also used in this study to compare 
with modeled fluxes.

Model results are compared to flux measurements from 
EC systems as observed, and with a correction for energy 
balance closure error, which is reported on the order of 
10–30% (Allen et al. 2011). Following previous studies 
(Anderson et al. 2021; Xue et al. 2021), a residual correc-
tion approach was used at most sites, assigning the energy 
budget residual to the daily latent heat flux. At SLM001 
and SLM002, a modified residual correction was used to 
minimize impacts of nighttime shifts in wind patterns from 
off-field (Anderson et al., 2018). At each site, closure cor-
rections were limited to 30% for days with closure errors 
exceeding 30% of unclosed measurement. Modeled daily 
fluxes were compared with both unclosed and closed tower 
observations under the assumption that these likely bound 
the true flux value and provide a metric of uncertainty in the 
flux observations (Twine et al. 2000).

DisALEXI model inputs

In the DisALEXI model component, CONUS-wide ALEXI 
daily ET at 4-km scale (Anderson et al. 2007) was used as 
the baseline for disaggregation. Other major inputs to Dis-
ALEXI include remote sensing data (LST, LAI, and albedo) 
and meteorological data (air temperature, atmospheric pres-
sure, vapor pressure, wind speed, and insolation). Moderate 
ET at 500-m scale was obtained by applying DisALEXI to 
MODIS-like data and used as the fusion backbone. Three 
sets of sub-field ET at 30-m resolution were obtained by 
applying DisALEXI at Landsat-like scale. In this section, 
we provide a brief overview of the key inputs for each ET 
disaggregation scheme.

DisALEXI‑MODIS and DisALEXI‑VIIRSM

MODIS ET estimates at 500-m resolution were generated 
with DisALEXI (DisALEXI-MODIS) by disaggregating 
ALEXI 4-km ET using MODIS LST and VSWIR products. 
Three products from Collection 6 were used: LST (MOD11_
L2; (Wan et al. 2015)), LAI (MCD15A3H; (Myneni et al. 

2015)) and albedo (MCD43A3; (Wang et al. 2018)). The 
LAI and albedo products are at 500-m resolution, and the 
LST product provided at 1-km resolution was sharpened to 
500 m using the DMS approach described in “Thermal data 
sharpening”.

The VIIRS instrument follows the legacy of MODIS and 
collects imagery at two spatial resolutions: 750 m (M-bands) 
and 375 m (I-bands). In this study, we also generated 500-m 
ET estimates using VIIRS 750-m LST data with DisALEXI 
(DisALEXI-VIIRSM) and evaluated its performance in com-
parison with DisALEXI-MODIS, which has been used as the 
fusion backbone in all ET STARFM fusion experiments to 
date. DisALEXI-VIIRSM used instantaneous LST and emis-
sivity version-1 swath product (VNP21; (Hulley and Hook 
2018)) constructed at daily timesteps and 750-m spatial reso-
lution, and sharpened to 500 m using DMS. Other inputs to 
DisALEXI-VIIRSM include the 8-day 500-m LAI compos-
ite (VNP15A2H; (Myneni and Knyazikhin 2018)), 16-day 
500-m vegetation indices composite (VNP13A1; (Didan and 
Barreto 2018)), and 1-km daily albedo (VNP43MA3; (Liu 
et al. 2017)) resampled to 500-m pixel scale.

Both the near-daily DisALEXI-MODIS and DisALEXI-
VIIRSM ET retrievals were gap-filled and smoothed to gen-
erate daily 500-m ET datacubes (Sun et al. 2017).

DisALEXI‑Landsat, DisALEXI‑VIIRSI/S2 
and DisALEXI‑ECOSTRESS

ALEXI ET fields were also disaggregated to 30 m with three 
sets of inputs from Landsat 8, Sentinel-2 plus VIIRS 375-m 
LST, ECOSTRESS plus harmonized Landsat and Sentinel-2 
(HLS). The Landsat 8 and Sentinel-2 data used in this study 
come from NASA’s HLS v1.4 dataset (https:// hls. gsfc. nasa. 
gov/; L30 and S30 products) which provides a consistent 
surface reflectance data product from Landsat and Sentinel-2 
(Claverie et al. 2018).

For Landsat disaggregation (DisALEXI-Landsat), Land-
sat 7 was not used in this study due to gap stripes resulting 
from the failure of the scan-line corrector. Instead, Landsat 8 
SR and TIR data from HLS dataset (L30) were used to gen-
erate 30-m ET retrievals at Landsat overpass dates. TIR data 
were atmospherically corrected using MODTRAN (Cook 
et al. 2014) and then sharpened using DMS from 100 to 
30 m for consistency with the SR data. 30-m LAI was esti-
mated by downscaling the MODIS 500-m LAI product using 
a regression tree approach (Gao et al. 2012a) and Landsat 
SR data. 30-m albedo was derived based on a narrowband 
to broadband conversion formulae developed for Landsat 
data (Liang 2001).

The combined 3- to 4-day revisit of HLS makes it attrac-
tive for ET mapping at sub-field scales; however, S2 does 
not collect the TIR data required for ET modelling. VIIRS 
I-5 band provides TIR data at 375 m and near-daily temporal 

https://ameriflux.lbl.gov/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
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revisit. The combination of SR inputs from S2 and TIR from 
VIIRS has been successfully applied for 30-m ET disag-
gregation (namely DisALEXI-VIIRSI/S2) on S2 overpass 
dates (Xue et al. 2021). Given that the S2 SR data from HLS 
(S30) are co-registered and spectrally adjusted with respect 
to Landsat 8 (L30) and resampled to 30-m resolution, S2 
LAI and albedo model inputs were constructed similarly 
to Landsat. VIIRS I-5 brightness temperatures were down-
loaded from NASA LANCE and atmospherically corrected 
using a single channel inversion (Price 1983). The VIIRS 
LST data were then sharpened to 30 m by the modified DMS 
approach (Xue et al. 2020) using S2 SR data as inputs. As 
demonstrated by Xue et al. (2021), 30-m ET retrievals from 
DisALEXI-VIIRSI/S2 show comparable accuracy with 
DisALEXI-Landsat, with performance slightly affected with 
larger view angles. As suggested by Xue et al. (2021), we 
removed VIIRS LST data with view angle greater than 52° 
in this study.

The final set of 30-m ET was ECOSTRESS-based 
(namely DisALEXI-ECOSTRESS). ECOSTRESS is a 
thermal-only instrument, so the SR inputs for ECOSTRESS 
disaggregation have to be obtained from other satellites. In 
a previous study, Landsat 7 + 8 SR data collected closest 
in time to the target ECOSTRESS LST date were used for 
ET disaggregation (Anderson et al. 2021). Anderson et al. 
(2021) found that the temporal separation between SR and 
TIR inputs impacts the accuracy of ET retrievals. In this 
study, we use HLS SR data instead to generate LAI and 
albedo inputs because the 3-to 4-day temporal frequency 
of HLS data are higher than combined Landsat 7 and 8 
(8 days). ECOSTRESS level-2 LST and emissivity (ECO2L-
STE) and cloud mask swath products (ECO2CLOUD) were 
downloaded from USGS Land Processes Distributed Active 
Archive Center (LP DAAC) and gridded to the geographical 
coordinates. The ECOSTRESS LST data were resampled to 
a 30-m UTM grid to match with HLS data and sharpened to 
30 m using the modified DMS approach (Xue et al. 2020), 
which was found critical to relieving spatial misregistra-
tion and enhancing the consistency in SR and TIR inputs 
to DisALEXI modelling. Anderson et al. (2021) found that 
the ECOSTRESS LST data at view angles greater than 20° 
resulted in poor sharpening results. Therefore, we carefully 
screened the ECOSTRESS LST data exceeding 20° before 
use and removed those with poor performance from further 
analysis.

Spatial gaps in the generated three sets of 30-m ET 
images due to cloud cover were gap-filled using the tech-
nique developed by Yang et  al. (2017). For days with 
more than one 30-m ET retrieval, the order of priority 
for inclusion in the fused timeseries is DisALEXI-Land-
sat, followed by DisALEXI-VIIRSI/S2, and DisALEXI-
ECOSTRESS since DisALEXI-Landsat typically has the 
best accuracy. For more details about DisALEXI-Landsat, 

DisALEXI-ECOSTRESS and DisALEXI-VIIRSI/S2 model 
inputs, the reader is referred to see Sun et al. (2017), Ander-
son et al. (2021) and Xue et al. (2021).

U.S. Drought monitor time series

The U.S. Drought Monitor (USDM) is developed through 
the integration of a variety of drought indicators including 
precipitation, soil moisture, groundwater storage, and local 
reports from field observers. USDM timeseries data for the 
State of California and the Sacramento County (Lodi) from 
2018 to 2020 were extracted from the National Drought 
Mitigation Center at the University of Nebraska-Lincoln 
(https:// droug htmon itor. unl. edu/ DmData/ TimeS eries. aspx) 
and used to demonstrate the crop water status under various 
rainfall and water management practices. USDM classifies 
drought into five classes and maps them with numerical val-
ues: D0 = 0 (abnormally dry), D1 = 1 (moderate drought), 
D2 = 2 (severe drought), D3 = 3 (extreme drought), and 
D4 = 4 (exceptional drought). The timeseries show the tem-
poral evolution of percent area covered by each class within 
a county or state.

Model evaluation configurations

In this study, the accuracy of ET retrievals was evaluated 
in five stages. We first evaluate the relative performance 
of 500-m/daily ET estimates from DisALEXI-VIIRSM and 
DisALEXI-MODIS, serving as the daily backbone in the 
STARFM fusion process. This is a necessary first step as we 
transition away from retrievals based on MODIS, which is 
nearing the end of life. We then compare 30-m ET estimates 
derived from, ECOSTRESS and  VIIRSI/S2 on satellite over-
pass dates with Landsat retrievals as a reference, and with 
the flux tower observations. To compare with tower obser-
vations, modelled 30-m ET were averaged over a 3 × 3 win-
dow (90 × 90 m) centered on the tower location (Anderson 
et al. 2021; Xue et al. 2021), approximating the flux source 
area which is typically on the order of 100 m, depending 
on the tower height and surface conditions (Li et al. 2008). 
We note that more sophisticated flux footprint models (e.g., 
Kljun et al. 2015) may provide a more accurate comparison. 
We moved the center of extraction by a few pixels to avoid 
edge effects for towers located at field edges. For 500-m 
ET, the pixel containing the towers is selected to compare 
with fluxes measurements. Next, daily 30-m ET datasets 
generated from Landsat-only fusion and Landsat + ECOS-
TRESS +  VIIRSI/S2 fusion are compared to investigate the 
added value of increased temporal sampling frequency by 
the additional medium-resolution ET samples. In this case, 
STARFM fusion is performed in both retrospective (two-
pair) and real-time (one-pair) modes to explore the benefits 
of the extra temporal sampling for real-time applications. 

https://droughtmonitor.unl.edu/DmData/TimeSeries.aspx
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Finally, the capabilities of the fused daily ET timeseries 
in capturing rapid changing crop conditions are assessed, 
including changes due to crop management practices and 
flash drought.

Statistical comparisons with flux tower observations 
include mean absolute error (MAE), root mean square 
error (RMSE), mean bias error (MBE), and relative error 
(RE = MAE/ <O>) where <O> is the mean observed flux. 
The MAE is a better indicator of model performance, while 
RMSE is more sensitive to isolated outliers (Willmott and 
Matsuura 2005)—for the fused timeseries, both metrics are 
provided for comparison.

Results

Evaluation of DisALEXI‑VIIRSM 500‑m ET

To evaluate the relative performance of the  VIIRSM and 
MODIS 500-m ET timeseries, modeled ET timeseries of 
2018 from both DisALEXI-MODIS and DisALEXI-VIIRSM 
were compared with flux tower observations over the four 
sites in the Lodi domain (SLM001, SLM002, USBi1, and 
USBi2) (Fig. 3). Note that the 500-m pixel scale is much 

coarser than the footprint of the EC tower in each case 
(~ 100 m), so we do not expect perfect agreement between 
models and observations at this scale. Still, the comparison 
can provide some insights into the relative biases in compar-
ison with ET observations. In addition, Fig. 3 also provides 
the comparisons of inputs to DisALEXI modeling including 
LAI, NDVI, and LST timeseries. For NDVI at the USBi1 
site, we additionally have NDVI at 5-m resolution from 
Planet Labs in 2018, included only as reference (green line 
in Fig. 3) to demonstrate the monthly alfalfa cutting cycle. 
The daily LAI, NDVI, and LST timeseries from MODIS 
and VIIRS show good temporal agreement, and are broadly 
consistent with variability in the Planet NDVI at USBi1.

Despite small biases seen on some days likely due to 
the local heterogeneity within the 500 m pixel area, both 
MODIS and VIIRS-based ET timeseries match well with 
the seasonal trends in the ET observations. The close align-
ment between MODIS and VIIRS-derived ET highlights the 
ability of VIIRS, as a follow-on instrument, in generating 
comparable 500-m ET estimates with MODIS and replac-
ing MODIS as a new moderate-resolution fusion backbone. 
In addition, we notice the outperformance of VIIRS over 
MODIS in capturing the observed ET variability in a few 
circumstances.

Fig. 3  Time series of modeled MODIS (black line) and  VIIRSM 
(red line) daily LAI, NDVI, LST and ET, and the Planet Labs NDVI 
(green line) for SLM001, SLM002, USBi1 and USBi2 sites in 2018. 
Blue circles are closed (solid) and unclosed (open) ET observations 

at flux tower sites. Green and blue vertical bars indicate precipitation 
and irrigation data, respectively. Note that irrigation data for USBi1 
and USBi2 sites are not available (colour figure online)
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For example, the underestimation of ET from MODIS 
for DOY 230–260 at the USBi1 site is likely due to the 
abnormally high MODIS LAI retrievals around DOY 240 
(Fig. 3), which were physically inconsistent with the LST 
inputs to DisALEXI. The TSEB land-surface representation 
interprets elevated LST in patches of very high LAI as a 
signal of canopy stress, and accordingly decreases the tran-
spiration component of ET (Kang et al. 2021). Relative to 
MODIS, VIIRS in general shows a better performance in ET 
at USBi1; even though the dip in LAI around the DOY 270 
cutting (see the Planet NDVI timeseries) is not reflected in 
the 500-m VIIRS estimates, the retrieved LAI values remain 
within a reasonable range.

At the USBi2 site (corn), MODIS overestimates ET dur-
ing the DOY 150–180 period before crop emergence, while 
VIIRS better captures this dip due to the higher values of 
LST retrieved during this interval (Fig. 3). Consistent with 
the high LST, there is no precipitation over this period. 
The higher native resolution of the VIIRS M thermal band 

(750 m) compared to MODIS (1 km) may lead to some 
improvement in capturing spatial details at field scale. As 
an example, Fig. 3 compares  VIIRSM and MODIS 500-m 
ET maps at USBi2 and SLM001, along with 30-m Landsat 
or  VIIRSI/S2 ET at the same day for reference. While both 
MODIS and  VIIRSM reproduce the large-scale ET patterns 
seen in 30-m ET, the  VIIRSM ET maps exhibit a larger spa-
tial contrast than MODIS, especially for the more hetero-
geneous USBi2 site. For DOY 170, the low ET values at 
USBi2 pre-emergence are well captured by  VIIRSM ET, but 
are not by MODIS. By DOY 184, the 500-m ET values are 
more similar near the tower (Fig. 3), although  VIIRSM shows 
a higher spatial variability than MODIS and is closer to the 
30-m Landsat ET distribution (Fig. 4).

We further investigate the performance of DisALEXI-
VIIRSM ET as a daily moderate resolution backbone for 
STARM data fusion. Figure 5 shows comparisons of tower 
observations with daily30-m ET estimates generated by fus-
ing MODIS and  VIIRSM 500-m ET timeseries with Landsat 

Fig. 4  Comparison in spatial pattern of ET between MODIS (first 
row) and  VIIRSM (second row) on DOY 170 and 184 of 2018 over a 
9 × 9  km2 area around towers USBi2 (left two columns) and SLM001 

(right two columns). ET maps at 30-m resolution are shown in the 
third row for comparison. Red stars indicate the location of flux tow-
ers (colour figure online)
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ET retrievals (i.e., Landsat-only fusion), respectively, over 
the four sites in the Lodi domain. Both MODIS and VIIRS-
based fused ET show a reasonable agreement with measured 
fluxes, with generally improved performance from  VIIRSM 
with R2 ranging from 0.69 to 0.84 and RMSE ranging from 
0.73 to 1.36 mm  day−1 (Fig. 5). These results suggest that 
 VIIRSM will serve as a reasonable replacement for MODIS 
as it approaches end of life; therefore, we use  VIIRSM as the 
fusion backbone in the following analyses.

Evaluation of multi‑source 30‑m ET timeseries

Evaluation on satellite overpass dates

In our evaluation of multi-source data fusion, we first 
assessed direct 30-m flux retrievals from DisALEXI-
Landsat, DisALEXI-ECOSTRESS and DisALEXI-VIIRSI/
S2 on satellite overpass days. Scatter plots are shown in 
Fig. 6 comparing modelled daytime fluxes including solar 
radiation, net radiation, latent heat, soil heat, and sensi-
ble heat at all six flux tower sites on Landsat, S2, and 

ECOSTRESS overpass dates with measurements over a 
3-year period (2018–2020). For latent heat flux, the model 
estimates are compared to both closed and unclosed flux 
measurements, which collectively are assumed to bracket 
the ‘true’ flux. Statistical metrics of agreement between 
measured and modeled latent heat flux are provided in 
Table 3. In general, all three sets of modelled flux com-
ponents agree reasonably well with measurements along 
the one-to-one line, suggesting a good partitioning of the 
surface energy budget. The DisALEXI-ECOSTRESS and 
DisALEXI-VIIRSI/S2 show comparable accuracy with 
DisALEXI-Landsat retrievals, giving similar RMSE val-
ues but providing more samples due to a higher revisit 
frequency. The mean RMSE of all the sites are comparable 
among the three data sources: approximately 1.06, 1.27, 
and 1.18 mm  day−1 for DisALEXI-Landsat, DisALEXI-
ECOSTRESS, and DisALEXI-VIIRSI/S2 with closed flux 
measurements, respectively. In most cases, model agree-
ment is improved with the residual closure correction, 
except at the USBi2 site where RMSE values are rela-
tively large.

Fig. 5  Scatter plots of fused vs. 
measured 30-m daily ET for 
year 2018 for sites a SLM001, 
b SLM002, c USBi1, and d 
USBi2. Blue dots are MODIS-
based fusion results, and orange 
dots are  VIIRSM-based fusion 
results, with RMSE and R2 also 
given in corresponding colors 
(colour figure online)
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Fig. 6  Comparisons of meas-
ured and modeled daytime 
integrated fluxes estimated 
from DisALEXI-Landsat, 
DisALEXI-ECOSTRESS and 
DisALEXI-VIIRSI/S2 on Land-
sat, ECOSTRESS and S2 over-
pass dates for years 2018–2020 
at the six flux towers
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In addition to point comparison of time-series at tower 
sites, the agreement in spatial pattern among the three 
sets of ET retrievals and key inputs was also assessed. 

Figure 7 shows an example comparison over a sub-region 
in the Madera domain in 2018. Here, the ECOSTRESS 
and  VIIRSI/S2 maps are from DOY 217, while the Landsat 

Table 3  Statistical accuracy metrics for modeled daily ET flux retrievals (mm  day−1) on Landsat, ECOSTRESS, and  VIIRSI/S2 overpass dates at 
the six tower sites

Tower ET N Landsat ECOSTRESS VIIRSI/S2

MAE RMSE MBE MAE RMSE MBE MAE RMSE MBE

SLM001 Unclosed 70/83/84 0.92 1.09 0.89 1.09 1.32 0.88 0.98 1.2 0.87
Closed 69/83/83 0.56 0.83 0.14 0.73 0.95 0.04 0.61 0.82 0.04

SLM002 Unclosed 61/73/74 1.04 1.32 1 1.34 1.59 1.14 1.15 1.48 1.07
Closed 61/73/74 0.72 0.85 − 0.04 0.89 1.08 0.15 0.84 1.06 0.02

USBi1 Unclosed 37/56/72 0.97 1.23 0.3 1.16 1.48 0.47 1.02 1.26 0.2
Closed 43/69/97 0.95 1.13 − 0.66 1.24 1.46 − 0.55 1.18 1.4 − 0.69

USBi2 Unclosed 34/58/78 1.11 1.42 0.2 1.50 1.86 0.56 1.35 1.66 0.25
Closed 36/64/95 1.34 1.75 − 0.86 1.12 1.94 − 0.55 1.49 1.81 − 0.76

BAR012 Unclosed 40/70/168 0.69 0.9 0.46 0.77 1.04 0.61 0.79 1.05 0.58
Closed 39/70/167 0.58 0.82 − 0.38 0.69 0.9 − 0.35 0.67 0.83 − 0.39

RIP760 Unclosed 65/69/89 0.64 0.78 0.49 1.02 1.21 1 0.8 1.02 0.68
Closed 51/56/74 0.81 0.99 − 0.63 0.83 1.02 − 0.34 0.8 0.96 − 0.47

All sites Unclosed 307/409/565 0.88 1.12 0.62 1.13 1.43 0.8 0.97 1.25 0.61
Closed 299/415/590 0.79 1.06 − 0.33 0.97 1.27 − 0.25 0.92 1.18 − 0.4

Fig. 7  Spatial maps of LAI (first column), LST at native resolution 
(°C; second column), sharpened LST (°C; third column), and daily 
ET retrievals (mm  day−1; four column) for DisALEXI-ECOSTRESS 
(top row; 2018217), DisALEXI-VIIRSI/S2 (middle row; 2018217), 

and DisALEXI-Landsat (bottom row; 2018218) over a subset of the 
Madera domain. ET difference maps (ECOSTRESS  (VIIRSI/S2) 
minus Landsat) are shown in top (middle) panel of the fifth column, 
respectively. The acquisition time of LST data is also listed
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maps are from DOY 218 as the same-day overpass is una-
vailable. However, there was no precipitation on either day 
and the mean air temperature and insolation rates meas-
ured at the tower were similar, allowing a reasonably fair 
comparison. In general, the ET patterns are similar for the 
three thermal data sources. The LAI data used for both 
DisALEXI-ECOSTRESS and DisALEXI-VIIRSI/S2 mod-
eling are from S2 on DOY 217, and show good agreement 
with Landsat LAI from DOY 218. The VIIRS LST map 
has less spatial contrast due to the much coarser native TIR 
resolution (Bellvert et al. 2020; Xue et al. 2021); however, 
the DMS sharpening approach effectively improves the 
spatial contrast and detail, resulting in comparable spa-
tial structure between the three sensors. The remaining 
differences in LST are largely due to the different times 
of acquisition, with progressively hotter temperatures as 
we move through the diurnal cycle. Despite these tem-
poral differences in LST, the spatial patterns of daily ET 
from the three sources are consistent due to the multi-scale 

constraints inherent in the ALEXI/DisALEXI modeling 
system.

Evaluation of fused daily timeseries

The comparable quality of the three ET datasets on sat-
ellite overpass dates suggests utility for combined use as 
layers within the ET fusion method, generating 30-m daily 
ET timeseries. Two ET datacubes were constructed by fus-
ing 500-m  VIIRSM ET with Landsat (Landsat-only fusion) 
and with Landsat, ECOSTRESS and  VIIRSI/S2 (Land-
sat + ECOSTRESS +  VIIRSI/S2 fusion) over the period of 
2018–2020. Time series of fused daily ET from both data-
cubes are compared with flux tower observations in Fig. 8. 
The modelled ET on Landsat, ECOSTRESS and S2 overpass 
dates, and daily total of rainfall and irrigation applied are 
also indicated in Fig. 8. Overall, both fusion schemes well 
capture the seasonal dynamics in ET measurements at all 
six sites. At SLM001 and SLM002, the Pinot noir vines 

Fig. 8  Time series comparison between measured and modeled daily ET obtained from both Landsat-only and Landsat + ECOS-
TRESS +  VIIRSI/S2 fusion at the six flux tower sites for the 3-year study period
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were cut and grafted to Cabernet Sauvignon and Merlot, 
respectively, at the beginning of 2020, gradually regrowing 
through the course of the season. The relatively lower ET in 
2020 than 2018 and 2019 and the regrowth trends in 2020 
were reasonably diagnosed by the model with no a priori 
information on management.

Statistical metrics in terms of MAE, RMSE, MBE and 
RE between modelled and observed ET at daily and weekly 
scales for both fusion schemes are given in Table 4. Both 
fusion schemes give MAE (RMSE) of 0.52–0.69 (0.69–0.94) 
mm  day−1 at a daily timestep for all four vineyard flux sites. 
The results are consistent with the previous ALEXI/Dis-
ALEXI-based studies at vineyard sites with RMSE ranging 
between 0.7 and 1.0 mm  day−1 (Anderson et al. 2018; Knip-
per et al. 2020, 2019a; Semmens et al. 2016; Xue et al. 2021) 
and other remote sensing-based models such as METRIC 
with RMSE of 0.6–1.1 mm  day−1 (Carrasco-Benavides et al. 
2012; Galleguillos et al. 2011). This also aligns with the 
target model error of ± 0.8 mm  day−1 suggested by Seguin 
et al. (1999) for the field scale of agricultural and hydro-
logical studies. Irrigation decision making often occurs 
at the weekly timescale, where MAE (RMSE) reduces to 
0.44–0.62 (0.56–0.87) mm  day−1 due to time averaging of 
random errors. The model errors are more pronounced at the 
USBi1 and USBi2 sites relative to the vineyard sites, in part 
due to the inherent greater ET temporal variation at these 
sites (Xue et al. 2021).

At all but the SLM vineyard sites, performance in daily 
and weekly ET improved in terms of MAE, RMSE and/
or MBE with the extra sampling in the Landsat + ECOS-
TRESS +  VIIRSI/S2 fusion, as did the Nash–Sutcliffe coef-
ficient of efficiency (not shown). At the SLM sites, per-
formance was slightly disimproved with the inclusion of 
ECOSTRESS and  VIIRSI/S2 in these retrospective analyses. 

At these sites, the temporal dynamics were already rea-
sonably reproduced using Landsat alone, and adding the 
lower quality supplementary retrievals (especially ECOS-
TRESS, see Table 3) served to add noise to the timeseries. 
In future studies, a weighting scheme will be evaluated, 
enabling differential strength of contribution to the fused 
timeseries based on sensor retrieval accuracy (Table 3). We 
note, however, that the multi-source retrievals do add value 
at these sites in real-time mode (see “Value for real-time 
applications”).

Added value of extra temporal sampling

Capturing rapid changes

At many sites, the Landsat + ECOSTRESS +  VIIRSI/S2 
fusion shows an improved performance in capturing ET tem-
poral dynamics than Landsat-only fusion, yielding smaller 
errors in comparison with observations. For instance, 
at the USBi1 site the incorporation of ECOSTRESS and 
 VIIRSI/S2 data results in a reduction in RMSE from 1.42 
to 1.29 mm  day−1 and 1.21 to 1.07 mm  day−1 at daily and 
weekly time steps (Table 4), respectively. The monthly cut-
ting of alfalfa and following quick regrowing result in strong 
ET temporal variations, making it difficult for Landsat-only 
fusion to reproduce the frequent ET changes due to insuffi-
cient Landsat scenes. The extra ECOSTRESS and  VIIRSI/S2 
samples provide key complements to Landsat in capturing 
the monthly peaks and lows. Figure 9 shows one representa-
tive example demonstrating the significant benefit of extra 
samples in helping capture ET dynamics. For the period of 
DOY 90–210 in 2020, the alfalfa at USBi1 was cut three 
times on DOY 116, 156 and 188, respectively. The ECOS-
TRESS retrieval on DOY 119 and  VIIRSI/S2 retrieval on 

Table 4  Statistical metrics of 
comparison between meas-
ured (closed) and modeled 
ET (mm  day−1) obtained from 
both Landsat-only and Land-
sat + ECOSTRESS +  VIIRSI/
S2 fusion at daily and weekly 
timesteps over the 3-year study 
period

Domain Tower Timescale N Landsat-only Landsat + ECO +  VIIRSI/S2

MAE RMSE MBE %RE MAE RMSE MBE %RE

Lodi SLM001 Daily 722 0.52 0.69 0.24 20.6 0.55 0.75 0.29 21.8
Weekly 90 0.44 0.56 0.26 16.6 0.49 0.63 0.32 18.2

SLM002 Daily 618 0.60 0.80 0.26 22.1 0.69 0.94 0.41 25.1
Weekly 76 0.54 0.72 0.26 18.6 0.62 0.87 0.43 21.1

USBi1 Daily 1044 1.19 1.42 − 0.77 37.5 1.08 1.29 − 0.69 34.2
Weekly 146 1.07 1.21 − 0.75 33.3 0.95 1.07 − 0.67 29.8

USBi2 Daily 985 1.27 1.64 − 0.73 40.8 1.27 1.62 − 0.77 40.8
Weekly 136 1.18 1.50 − 0.74 37.0 1.18 1.47 − 0.78 37.1

Cloverdale BAR012 Daily 653 0.59 0.78 0 24.1 0.57 0.75 0.06 23.6
Weekly 76 0.51 0.63 0 20.0 0.47 0.57 0.06 18.3

Madera RIP760 Daily 521 0.67 0.87 − 0.20 14.7 0.67 0.87 − 0.10 14.8
Weekly 67 0.50 0.63 − 0.16 10.5 0.49 0.63 − 0.05 10.2

All All sites Daily 4543 0.87 1.18 − 0.28 28.7 0.86 1.15 − 0.23 28.4
Weekly 591 0.79 1.05 − 0.30 25.0 0.78 1.01 − 0.24 24.4
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DOY 190 lead to improved estimates of the low ET after 
cutting in comparison with Landsat-only fusion. During 
DOY 100–115, the increasing trend of ET as the crop with 
increasing alfalfa biomass is not captured by Landsat-only 
fusion. The  VIIRSI/S2 ET estimate on DOY 115 elevates the 
fused ET timeseries to be closer to the observations.

Additional ECOSTRESS and  VIIRSI/S2 samples also 
improved ET estimates at the BAR012 site, reducing rela-
tive errors from 20 to 18% at the weekly timescale (Table 4). 
Further to the south in California, where clear-sky condi-
tions are more prevalent, extra sampling from ECOSTRESS 
and  VIIRSI/S2 did not lead to significant improvement in 
the overall statistical metrics at SLM and RIP760 site. Still, 
these extra samples are important in better defining local 
water use at key phenological stages during growing season. 
Looking in greater detail at the multi-source ET retrievals 
in 2018 over RIP760 site in Fig. 10, we can see the added 
value of extra sampling. For example, a few ECOSTRESS 
samples over DOY 210–240 facilitated a better definition of 
the reduction in ET timeseries during the veraison to post-
veraison stage from late July or early August (Kustas et al. 
2018) in which the irrigation was curtailed (Fig. 10). During 
this period, the vines are still actively transpiring with the 

ripening of the fruit until the grapes reach the required sugar 
content by late August or early September for harvesting. 
In addition, one additional  VIIRSI/S2 sample on DOY 87 
effectively filled a large gap in springtime (DOY 75–115), 
during which there are no clear-sky Landsat overpasses. This 
period of vine phenological stages from bud break to flower-
ing with low vine cover typically has significant cover crop 
biomass (Fig. 10). An ET acquisition near the bud break 
(around DOY 90)—start of the vine growing season- is very 
important for monitoring cover crop water use and in making 
decisions on initiating irrigation.

Value for real‑time applications

The ET fusion results in “Evaluation of fused daily time-
series” and “Capturing rapid changes” were generated ret-
rospectively by using all image-pairs available before and 
after each prediction date. In this case, clear-sky Landsat 
overpasses may often be sufficient to capture the ET dynam-
ics over vineyard sites in central and southern California. 
However, for operational applications, only the image-pair 
before the prediction date will be available, which tends 
to exacerbate the disadvantages of insufficient Landsat 

Fig. 9  Model-measurement timeseries comparison of daily ET at the 
USBi1 site during DOY 90–210, 2020 (upper panel). The dashed 
vertical lines indicate the alfalfa cutting dates. Bottom panel, photo-

graphs from a PhenoCam at the USBi1 site showing alfalfa cuttings 
on dates highlighted in the upper timeseries plot
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overpasses and highlight the value of extra temporal sam-
plings from ECOSTRESS and  VIIRSI/S2. The importance 
of temporal sampling frequency for real-time applications 
was examined in this study. While data latency was not con-
sidered in this assessment, it should be noted that the added 
value will become more pronounced if there is a signifi-
cant delay between data acquisition and public availability. 
We compared the weekly total ET from retrospective and 
real-time fusion modes for both Landsat-only and Land-
sat + ECOSTRESS +  VIIRSI/S2 fusion with measured ET 
at the six sites for year 2020 (Fig. 11). For both Landsat-only 
and Landsat + ECOSTRESS +  VIIRSI/S2 fusion approaches, 
the retrospective case exhibits a better performance than the 
real-time case for most of sites. In addition, for both real-
time and retrospective applications the Landsat + ECOS-
TRESS +  VIIRSI/S2 outperforms the Landsat-only fusion 
for all sites except USBi2—the regression line is closer to 
the one-to-one line with a lower RMSE. For all four vine-
yard sites (SLM001, SLM002, BAR012, and RIP760), the 
Landsat + ECOSTRESS +  VIIRSI/S2 fusion outperforms the 
Landsat-only fusion, reducing RMSE by 9.1%, 14.5%, 25.4% 
and 3.6% for the retrospective case and by 8.6%, 16.6%, 
27.2% and 5.8% for real-time application, respectively.

In addition to these overall statistics, we further use 
USBi1 site in 2019 to demonstrate the increased value of 
extra sampling in improving real-time ET estimates at both 

daily and weekly time steps (Fig. 12). Overall, the Land-
sat + ECOSTRESS +  VIIRSI/S2 fusion exhibits improved 
skill relative to Landsat-only fusion in capturing the tempo-
ral dynamics of measured ET for both retrospective and real-
time schemes (Fig. 12). During DOY 220–280, the Land-
sat-only fusion gives somewhat different assessments of ET 
temporal dynamics in retrospective and real-time mode, 
while timeseries using Landsat + ECOSTRESS +  VIIRSI/S2 
fusion are more similar, particularly at weekly timestep. For 
example, for the week ending on DOY 234 (DOY 228–234), 
Landsat-only fusion in real-time mode cannot project the 
reduction in ET during the cutting cycle because it is using 
only a pre-cutting retrieval from DOY 219 (see Pheno-
Cam photos in Fig. 12). This reduction is better captured 
in real-time with the multi-source timeseries. Similarly, the 
regrowth pattern for weeks ending on DOY 241 and 248 is 
poorly reconstructed in real-time with Landsat alone, but 
is better sampled with Landsat + ECOSTRESS +  VIIRSI/S2 
fusion in both modes.

Detection of vineyard water stress and changes 
in management

The growth, quality and productivity of vine grapes largely 
depend on the water status. Regulated deficit irrigation 
(RDI) is one of the strategies used to optimize the quality 

Fig. 10  Comparison between 
measured and modeled ET 
retrievals obtained from Dis-
ALEXI-Landsat, DisALEXI-
ECOSTRESS, and DisALEXI-
VIIRSI/S2 at RIP760 in 2018 
(top panel). Photographs in 
the bottom row are from a 
PhenoCam in the RIP760 site 
and show vineyard canopy 
conditions on dates highlighted 
in the top panel
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of vines by imposing some degree of water stress in the 
vineyards during specific growing periods (McCarthy 
et al. 2002). The moisture stress factor fRET describing the 
ratio of actual to reference ET is related to the crop man-
agement factor (defined as the ratio of actual water use to 
crop water requirement) often used in RDI to track the spa-
tial and seasonal patterns of vineyard water status in real 
time. Figure 13 shows a comparison between modeled and 
measured daily 30-m fRET timeseries over the SLM001 and 
SLM002 sites. The modeled actual ET is extracted from 
the Landsat + ECOSTRESS +  VIIRSI/S2 fusion results and 
the measured actual ET is computed from tower observa-
tions with closure. The modeled reference ET is calculated 
using regional meteorological data while the measured refer-
ence ET is computed using flux tower measured data. Also 
shown are the remote sensing LAI timeseries on both Land-
sat and S2 overpass dates over the two sites (middle row), 
indicating the phenological development of vine grapes. 
The USDM timeseries over the state of California and over 
Sacramento County where the two sites are located are also 
shown in Fig. 13 (bottom row), reflecting ambient moisture 
conditions.

For the two vineyard sites (SLM001 and SLM002), 
the modeled fRET time series from Landsat + ECOS-
TRESS +  VIIRSI/S2 fusion agree well with the tower meas-
urements (Fig. 12), suggesting that remote sensing can effec-
tively supplement in situ observations used to track stress 
and inform vineyard irrigation. We note some negative bias 
in modeled fRET in the second half of 2020 as the vines in 
both blocks start to regrow after grafting (see the LAI time-
series). Lower actual ET observed in these blocks in 2020 is 
due in large part to reduced biomass post-grafting, but may 
have been exacerbated by severe ambient drought conditions 
as reported in the USDM for Sacramento County (Fig. 13). 
The influence of both management practices and drought 
conditions is reflected in the modeled fRET during the grow-
ing season, approximately 0.6–0.7 for 2020 and 0.8–1.0 
(close to target level) for 2018–2019.

Maps of water use and stress over this three-year inter-
val (Figs. 14, 15, 16) give spatial context for the temporal 
behavior described in Fig. 13. Figure 14 shows the monthly 
ET over a 3 × 3  km2 area surrounding the SLM001 and 
SLM002 vineyard site. The seasonal trends in water use are 
relatively consistent between 2018 and 2019: ET increases in 
the irrigated vineyards starting in the bud break and flower-
ing stages in May, reaches peak values in June and July when 

the vines and fruit are growing rapidly, declines gradually 
after August in the veraison and post-veraison stage, then 
drops rapidly after harvest in early September with very lit-
tle evaporation occurring in October (Kustas et al. 2018). In 
2020, most blocks show a similar pattern to 2018–2019 but 
relatively lower ET values perhaps related to the drought. 
The reduced ET in the SLM blocks due to the grafting is 
readily apparent in 2020.

In comparison with actual ET, fRET is a better indicator 
of water stress since it reduces the dependence on seasonal 
atmospheric variations and radiation load and more focuses 
on variations in surface moisture conditions and plant status. 
Spatiotemporal patterns of monthly fRET at 30-m resolution 
(Fig. 15) also reflect the impact of management practices. 
In contrast to 2018–2019, for 2020 fRET in the two vineyard 
blocks remains below approximately 0.5 before August, 
reflecting the lower biomass and transpiration flux after 
grafting. Higher overall levels of fRET in 2019 in April–July 
compared to 2018 and 2020 may be related to drought relief 
in that year.

These temporal differences in moisture and plant status 
are highlighted in monthly fRET anomaly (ΔfRET) maps com-
puted relative to the 3-year monthly means (Fig. 16). From 
April to August in 2020, the reduced water use in the grafted 
SLM blocks is clearly indicated by significant negative 
anomalies. Negative anomalies were also found in surround-
ing fields in 2020, indicating water stress likely related to the 
regional drought conditions. In addition to crop management 
practices, ΔfRET also represents changes associated with land 
cover/ land use. For example, the negative anomalies in the 
alfalfa field south of the SLM002 vineyard in June and July 
2018 change to positive in 2019 when a major land cover 
change is from alfalfa to winter wheat. Drier than normal 
conditions in the south-west corner in most period of 2018 
growing season also becomes positive in 2019–2020 as the 
dominate crop type changes from winter wheat to alfalfa.

In summary, spatial maps of monthly ET, fRET and ΔfRET 
at 30-m scale can help to monitor changes in local and 
regional water use, crop management practices and land 
use, providing valuable spatial and temporal information for 
decision makers to assess conditions and develop short- and 
long-term management strategies.

Discussion

Limitations and opportunities in multi‑source ET 
mapping

ET estimates with high resolution both spatially and tempo-
rally have demonstrated value for operational agricultural 
water management, including guiding precision irriga-
tion at sub-field scale (Knipper et al. 2019b). In “Results”, 

Fig. 11  Scatter plots of measured and modeled weekly ET in 2020 
from both Landsat-only (LS) and Landsat + ECOSTRESS +  VIIRSI/
S2 (LS + ECO + VIIRS/S2) fusion for both retrospective (-retro) 
and real-time (-RT) modeling schemes over the six flux tower 
sites. The red and green lines indicate linear regression for LS and 
LS + ECO + VIIRS/S2 fusion, respectively. The intercept of the 
regression is forced to zero

◂
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we have demonstrated the added value of extra temporal 
samples from ECOSTRESS and  VIIRSI/S2 for improved 
reconstruction of ET temporal dynamics over irrigated and 
intensively managed landscapes, confirming the applicabil-
ity of the proposed multi-source fusion. However, the rela-
tively low spatial contrast found in some VIIRS native and 
sharpened LST images might impact the accuracy of  VIIRSI/
S2 ET retrievals (Bellvert et al. 2020; Guzinski and Nieto 
2019; Xue et al. 2021). Future studies targeting improved 
regression tree algorithms used in DMS may consider add-
ing other bands (e.g., red-edge bands of S2) or incorporating 
microwave SAR data. The temporal discrepancy between 
HLS SR and ECOSTRESS LST data is also a challenge 
because inconsistencies between these inputs may impact 
both LST sharpening and ET retrievals (Anderson et al. 
2021; Hoffmann et al. 2016), especially over landscapes 
with rapidly changing phenology or moisture status. Future 
studies targeting daily SR data based on fusion approach 
may effectively reduce temporal discrepancies and therefore 
improve ECOSTRESS ET estimates. In addition, differences 
in pixel footprints from different sensors at varying view 
angles can also affect LST sharpening, ET disaggregation, 
data fusion and the consistency of ET time series at fine 

spatial resolution. This is a challenging issue for all multi-
sensor data fusion and applications, especially at field to 
sub-field scales.

Although multi-source data fusion can partially com-
pensate for the current lack of satellite TIR data with the 
required resolution, additional direct high-resolution TIR 
observations to complement the existing capabilities of 
current satellites are still desirable. A few on-going and 
future satellite missions with TIR sensors at sub-field reso-
lution, including the Surface Biology and Geology (SBG; 
Cawse-Nicholson et al. 2021), Land Surface Temperature 
Monitoring (LSTM; Koetz et al. 2018) and Thermal infra-
red Imaging Satellite for High-resolution Natural resource 
Assessment (TRISHNA; Lagouarde et al. 2018) missions 
will provide new data sources for advancing ET monitoring 
for agricultural water management. There are also spectral-
based approaches using shortwave-infrared bands on Senti-
nel-2 that have a 5-day return interval and potential to con-
tribute to increased frequency of daily ET (D’Urso et al. 
2021). Consistency and compatibility of ET retrievals from 
different data sources are important for the multi-source ET 
modeling system. In ALEXI/DisALEXI, these issues are 
addressed in part by constraining each 30-m ET retrieval 

Fig. 12  Daily (upper-left panel) and weekly total (bottom-left 
panel) ET timeseries in both retrospective and operational modeling 
schemes at the USBi1 tower site during DOY 200–300 in 2019. Pho-

tographs (right panel) from a PhenoCam at USBi1 site showing the 
temporal evolution of alfalfa canopy biomass on some key days
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by a common dataset of ALEXI ET at a coarser scale. For 
other modeling platforms, a data harmonization approach or 
data screening scheme may be needed before using multiple 
sources in a data fusion system.

Impact of sampling frequency

In this study, the value of multi-source integration was 
investigated over agricultural target sites in California, 

Fig. 13  Timeseries of 30-m daily fRET obtained from both flux tower 
observations (black dots) and fused ET datacube (red line) over 
SLM001 (top left panel) and SLM002 site (top right panel) during 
2018–2020, along with daily rainfall (mm; green bars). LAI time-

series on both Landsat and S2 overpass dates for the two sites (middle 
row). Timeseries of percent area in USDM categories for California 
state (bottom left panel) and Sacramento County (bottom right panel), 
respectively (colour figure online)

Fig. 14  Spatial maps of monthly ET (mm/month) over a 3 × 3   km2 
area surrounding the SLM001 and SLM002 vineyards for the grow-
ing season during 2018–2020. Black boxes indicate the two vineyard 

blocks (north: SLM001; south: SLM002). The red stars indicate the 
locations of flux tower sites
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many of which have relatively low levels of cloud cover and 
optimal clear-sky acquisition frequency. Future work will 
assess the proposed framework over diverse sites sampling 
a broader range of cloud cover climatology, including the 
more humid Central and Eastern United States where there 
is even stronger demand for extra sampling to complement 
Landsat (Sun et al. 2017; Yang et al. 2018). These sites may 
show a more marked statistical improvement in ET time-
series retrieval with multi-source fusion.

With several new and proposed medium-resolution 
thermal imaging missions on the horizon, the question of 

sufficient collective revisit frequency for applications includ-
ing agricultural water management must be addressed. Pre-
vious studies suggested that revisit period of four (Anderson 
et al. 2012; Guillevic et al. 2019) or five (Alfieri et al. 2017; 
Mercury et al. 2012) days would be sufficient for accurate 
ET estimation. Using the high-frequency set of multi-source 
California ET retrievals developed in this study as a base-
line, we conducted a similar test on the revisit frequency 
impact on the accuracy of the fused daily ET.

We started with a 4-day time interval, and randomly 
selected one 30-m ET sample for each 4-day period if it 

Fig. 15  Spatial maps of monthly fRET over a 3 × 3  km2 area surrounding the SLM001 and SLM002 vineyards for the growing season during 
2018–2020

Fig. 16  Spatial maps of monthly fRET anomaly (ΔfRET) over a 3 × 3  km2 area surrounding the SLM001 and SLM002 vineyards for the growing 
season during 2018–2020
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is available. The selected samples were then interpolated 
using 500-m  VIIRSM ET as a scaling flux to produce daily 
ET timeseries. In this exercise, we used linear interpolation 
rather than STARFM fusion for computational efficiency, 
interpolating the ratio of 30-m ET to 500-m  VIIRSM ET 
between selected overpasses and then multiplying by daily 
500-m to synthesize a daily 30-m timeseries. To ensure 
robust results, we computed average RMSE with respect to 
observations from six randomly generated timeseries. Then 
we repeated this process assuming 7-day, 14-day, and 28-day 
intervals between overpasses.

This experiment was conducted over the RIP760 site 
for 2020 (Fig. 17). It can be clearly seen that the RMSE 
increases with respect to the revisit frequency. The results 
are consistent with Guillevic et al. (2019) who found that 
a four-day revisit provides a significant improvement over 
a 16-day revisit for ET monitoring and that the ability to 
capture rapid changes in ET was significantly reduced for 
revisit frequency lower than eight days. As pointed out by 
Lagouarde et al. (2013), only a one-day return interval can 
provide one cloud-free observation every five days on aver-
age in Europe. Overall, satellite TIR observations with high 
spatiotemporal resolution are highly desired in many agri-
cultural applications.

Conclusion

In this study, we evaluated the capability of combining 
multi-source remote sensing data for mapping daily ET 
at 30-m resolution over six flux tower sites in the Central 
Valley of California and Northern Coast for 2018–2020 
to investigate the utility for informing agricultural water 
management practices and detecting crop stress. We first 
compared the performance of 500-m daily ET timeseries 

generated using  VIIRSM and MODIS LST and SR inputs, 
and found comparable or improved accuracy, suggest-
ing that  VIIRSM can effectively replace MODIS as the 
fusion backbone of the multi-source ET modeling system 
as MODIS approaches end of life. The utility of ECOS-
TRESS and VIIRS I-5 band LST data together with the 
HLS SR dataset in generating 30-m ET was explored and 
the results demonstrated that these sources provide com-
parable accuracy to Landsat ET based on both qualitative 
and quantitative measures, in comparison with flux tower 
measurements.

With additional temporal sampling from DisALEXI-
ECOSTRESS and DisALEXI-VIIRSI/S2, the daily 30-m ET 
estimates obtained from Landsat + ECOSTRESS +  VIIRSI/
S2 fusion generally outperformed the Landsat-only fusion 
for most of the sites, especially over an alfalfa site that exhib-
its significant temporal variability in ET over the growing 
season. Fused timeseries based on the three thermal data 
sources combined better captured temporal dynamics in ET 
over multiple growing seasons in comparison with Landsat-
only fusion. The added value from extra sampling becomes 
larger in real-time applications, which could be further 
amplified when the data latency is considered.

We also demonstrated the utility of multi-source fused 
daily ET timeseries for remotely detecting water stress sig-
nals used to manage regulated deficit irrigation in vineyards. 
Anomalous water use in two vineyard blocks in 2020 relative 
to 2018–2019 due to changes in vine management practices 
as well as drought is well represented by the fused monthly 
ET and fRET anomalies. The changes in moisture conditions 
associated with land cover changes over surrounding fields 
were also revealed by the fRET products. Improved detection 
of anomalous water use and stress could help the managers 
to adapt irrigation applications in real time and therefore 
improve the quality and yield in grape production.
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