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Abstract
The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes 
from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration 
(T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, 
as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors 
become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. 
To better understand these effects, very high spatial resolution remote-sensing data from an unmanned aerial vehicle were 
collected over vineyards in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration 
eXperiment and used in four different TSEB approaches to estimate the component soil and canopy temperatures, and ET 
partitioning between soil and canopy. Two approaches rely on the use of composite T

rad
 , and assume initially that the canopy 

transpires at the Priestley–Taylor potential rate. The other two algorithms are based on the contextual relationship between 
optical and thermal imagery partition T

rad
 into soil and canopy component temperatures, which are then used to drive the 

TSEB without requiring a priori assumptions regarding initial canopy transpiration rate. The results showed that a simple 
contextual algorithm based on the inverse relationship of a vegetation index and T

rad
 to derive soil and canopy temperatures 

yielded the closest agreement with flux tower measurements. The utility in very high-resolution remote-sensing data for 
estimating ET and E and T partitioning at the canopy level is also discussed.

Introduction

The use of unmanned aerial vehicles (UAVs) for estimat-
ing water use and crop stress has been gaining much inter-
est in recent years. This is due in part to a tremendous 
increase in the availability of UAVs and advancement in 
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sensor technology that supports UAV platforms. The very 
high-resolution data obtained with UAVs can provide esti-
mates of both leaf canopy temperatures and background 
soil/ground cover temperatures. Methods are under devel-
opment to apply very high-resolution UAV imagery for 
precision ET monitoring (e.g., Zipper and Loheide 2014; 
Hoffmann et al. 2016; Ortega-Farías et al. 2016). Others 
are using high-resolution thermal imagery in a crop water 
stress index (CWSI) approach for estimating leaf water 
potential for irrigation scheduling (Bellvert et al. 2016).

Few models have had the capability to compute robust 
fluxes over a variety of surface conditions and at the 
same time partition fluxes from the vegetated canopy 
and underlying soil/substrate layer. One such modeling 
approach is the Two-Source Energy Balance (TSEB) land 
surface scheme that contains a level of complexity that 
makes it robust for many different landscapes (Kustas and 
Anderson 2009). The TSEB land surface scheme has been 
integrated into a multi-scale model operating at regional 
scales (Anderson et al. 2011) and recently implemented in 
a data fusion scheme allowing for daily ET estimates at 30 
m resolution (Cammalleri et al. 2013, 2014), much more 
useful for agricultural water management.

However, for certain high-valued crops, such as vine-
yards as well as orchards, information needs to be at plant 
or irrigation sector level to identify levels of plant stress 
and how it varies at the vine/tree level over a field. Water 
deficit, nutrient deficiencies, or disease/pest infestation 
which all lead to plant stress can be detected from ele-
vated plant temperatures that deviate from the surround-
ing observed plant temperatures. This allows for variable 
rate application of water, nutrients, or fungicide/pesticide 
within a field. For irrigation management in vineyards, 
knowing the water use of the inter-row (consisting of a 
cover crop or bare soil) and vine crop is important, since 
it relates to water availability in the root zone. Thus, 
having thermal and visible/near-infrared imagery that is 
fine enough resolution to discriminate between interrow 
and vine will provide the means to properly partition the 
energy fluxes and ET between the two sources. In addition, 
compared to moderate-resolution data from Landsat, for 
example, the finer resolution imagery can more accurately 
identifying features in a vineyard affecting overall water 
use (Xia et al. 2016).

TSEB partitions the surface energy fluxes between 
nominal soil and canopy sources using estimates of soil 
( TS ) and canopy temperatures ( TC ). Because direct meas-
urements of canopy temperatures are rarely available, in 
most applications, these component temperatures have 
been derived from a measurement of the bulk composite 
surface radiometric temperature Trad . When only a single 
observation of composite Trad is available (i.e., measure-
ment at a single angle), the estimation of TC or TS requires 

some assumptions. One approach developed for TSEB 
(Norman et al. 1995) starts with an initial estimate of TC 
that assumes plants are transpiring at a potential rate, as 
defined by the Priestley and Taylor (1972) formulation, 
and thus requires a reasonable estimate of the energy used 
for transpiration. The green fraction of vegetation ( fg ) has 
become an important parameter within this approach, since 
it acts as a scaling factor for the potential transpiration, by 
taking into account the phenological development of the 
vegetation. For example, Guzinski et al. (2013) showed 
an improvement of TSEB accuracy by adjusting the mag-
nitude of fg in forested ecosystems and in crops during 
senescence. In alternate forms of the TSEB model, direct 
estimates of soil and canopy temperatures obtained with-
out employing any assumptions based on the canopy tran-
spiration have been used (Chehbouni et al. 2001; Kustas 
and Norman 1997; Morillas et al. 2013; Song et al. 2015). 
Several approaches for such retrieval have been proposed 
by measuring soil and canopy temperatures separately 
(Morillas et al. 2013) or by analytically solving Eq. 1 with 
observations of Trad at two different viewing angles (Kustas 
and Norman 1997).

In this paper, the TSEB land surface scheme is applied 
to UAV high-resolution data collected during Intensive 
Observation Periods (IOPs) for the Grape Remote sensing 
and Atmospheric Profile and Evapotranspiration eXperi-
ment (GRAPEX). Our hypothesis is that using high enough 
spatial resolution imagery, both TS and TC can be estimated 
directly without the need for an initial assumption of poten-
tial transpiration or greenness status, and hence compute 
better estimates of turbulent fluxes than using coarser scale 
composite Trad . However, because of the much finer resolu-
tion of the UAV data, associated with this is an increase in 
complexity of modeling of key processes which include the 
radiation transmission and wind attenuation through the vine 
canopy, which has non-uniform vertical leaf area distribu-
tion (e.g., often most of the LAI is concentrated in the upper 
half of the vine canopy). In addition, the original TSEB for-
mulations were developed to be applied at the micromete-
orological scale with variables for aerodynamic resistance 
terms relating to scales on the order of 102 m and radiation 
and radiometric temperatures at resolutions that contain a 
mixture of canopy and soil/substrate contributions (Xia et al. 
2016). Therefore, it is of interest to evaluate TSEB (or any 
other resistance energy-based model) at finer scales which 
are required in precision irrigation (Bellvert et al. 2016).

Materials

The UAV imagery was collected over two Pinot noir blocks 
located within the Borden vineyard near Lodi, CA (38.29 N 
121.12 W), in Sacramento County as part of the GRAPEX 
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project. The two adjacent vineyards differ in the age and 
maturity of the vines, with the north and south vineyards 
being planted in 2005 and 2008, respectively. The manage-
ment of the two vineyards, which include the timing and 
amount of irrigation, pruning activities, cover crop manage-
ment, and application of agrochemicals, also differed from 
season to season and between the blocks due to variation in 
weather and climate conditions.

In both fields, the configuration of the trellising system 
and interrow is the same. The vine trellises are 3.35 m 
apart and run east–west. There is an individual vine planted 
every 1.52 m, with the two main vine stems attached to the 
first cordon at a height of 1.45 m above ground level (agl). 
There is a second cordon at 1.9 m agl, where vine shoots are 
managed. Typically, the vines reach a maximum height of 
between 2.0 and 2.5 m agl during the growing season with 
the vine biomass concentrated in the upper half of the total 
canopy height. The typical vine canopy width is nominally 
1 m mid-season. Pruning of the vines is mainly performed to 
remove shoots growing significantly into the interrow. How-
ever, the amount and timing of pruning have varied between 
growing seasons, so that leaf area and its vertical distribution 
were not the same in each growing season. Finally, a crop 
covering the interrow is present in spring; then, it is usually 
mowed between May and June and cured in summer becom-
ing dead stubble.

Three-to-four Intensive Observation Periods (IOPs) were 
conducted every year since 2014 (typically in April June, 
July, and/or August) coinciding with different grapevine phe-
nological stages. However, due to the UAV system availabil-
ity as well as budget constraints, not all years had the same 
number of IOPs or had UAV imagery collected. For this 
study, UAV imagery was collected in 2014 during the early 
August IOP, in 2015 during the early June IOP as well as in 
the late July IOP, and in 2016 during the early May IOP (see 
Table 1). The times of acquisition were approximately 1–2 
h after local sunrise (07:00–08:00 PDT), during the Landsat 
7/8 overpass time (nominally 11:45 PDT) and in the after-
noon near peak atmospheric demand (between 15:00 and 
16:00 PDT). The UAV system flew at 450 m agl, resulting in 
0.15 m pixel resolution in the visible and near-infrared bands 

and 0.60 m resolution in the thermal infrared. The visible 
and near-infrared sensors wavebands are similar to the Land-
sat blue, green, red, and near-infrared channels, while the 
thermal-infrared spans the 8–14 micrometer wavelengths, 
with a Field of View of 49° and a reported accuracy of 1 K. 
Before the flight, the thermal camera onboard the UAV was 
calibrated by comparing its values with a NIST traceable 
blackbody. Later, during the flight, in situ blackbody tem-
peratures were acquired over homogeneous warm and cold 
reference targets using a second thermal camera, to evaluate 
the atmospheric contribution at the UAV mounted camera. 
Finally, an assessment of temperature was also performed 
using both Trad derived from pyrgeometers on the EC sys-
tem and concomitant Landsat Trad . More details about the a 
vicarious calibration/validation of the atmospheric effects 
on the UAV thermal camera is described by Torres-Rua 
(2017). Finally, the structure from motion approach used 
for the image ortho-rectification and mosaicking allowed 
the generation of a photogrammetric 3D point cloud that 
was also used in this study.

The eddy covariance/energy balance systems were 
located approximately 20 m inside the vineyard at the east 
edge to have an adequate fetch for the prevailing winds from 
the west. A detailed description of the measurements and 
their post-processing is described by Alfieri et al. (2018). 
Briefly, the tower at each site is instrumented with an infra-
red gas analyzer (EC150, Campbell Scientific,1 Logan, Utah) 
and a sonic anemometer (CSAT3, Campbell Scientific) co-
located at 5 m agl to measure the concentrations of water 
and carbon dioxide and wind velocity, respectively. The full 
radiation budget was measured using a four-component net 
radiometer (CNR-1, Kipp and Zonen, Delft, The Nether-
lands) mounted at 6 m agl. Air temperature and water vapor 
pressure at 5 m agl were measured using a Gill-shielded tem-
perature and humidity probe (HMP45C, Vaisala, Helsinki, 

Table 1  Dates and times (launch and landing) of AggieAir GRAPEX flights

All times are expressed in Pacific Daylight-Saving Time zone

Date IOP Morning flight Landsat flight Afternoon flight

Launch Landing Launch Landing Launch Landing time

August 09, 2014 4 7:10 AM 7:30 AM 11:30 AM 11:50 AM No flight planned
June 02, 2015 2 6:51 AM 7:32 AM 11:21 AM 12:06 PM 2:54 PM 3:20 PM
July 11, 2015 3 6:37 AM 7:11 AM 11:26 AM 12:00 PM 2:58 PM 3:31 PM
May 02, 2016 1 8:13 AM 8:35 AM 12:53 PM 1:17 PM 3:52 PM 4:16 PM
May 03, 2016 1 8:40 AM 9:06 AM No flight due to clouds 1:35 PM 2:00 PM

1 The use of trade, firm, or corporation names in this article is for the 
information and convenience of the reader. Such use does not consti-
tute official endorsement or approval by the US Department of Agri-
culture or the Agricultural Research Service of any product or service 
to the exclusion of others that may be suitable
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Finland). Subsurface measurements include the soil heat flux 
measured via a cross-row transect of five plates (HFT-3, 
Radiation Energy Balance Systems, Bellevue, Washington) 
buried at a depth of 8 cm, soil temperature measured via 
thermocouples buried at a depth of 2 cm and 6 cm, and 
soil moisture content measured via a soil moisture probe 
(HydraProbe, Stevens Water Monitoring Systems, Portland, 
OR) buried at a depth of 5 cm. Overall closure error of both 
EC system during the 3 year study period is around 85%. 
When looking at the individual closure errors during the 
UAV acquisitions, a larger variability in the energy balance 
closure is observed, with the largest closure error occurring 
for the afternoon flight on May 2nd 2016 (66%). For the rest 
of overpasses in Table 1, the closure is above 80%.

Methodology

The TSEB land surface energy balance scheme was devel-
oped to explicitly account for the differences in aerodynamic 
coupling between the soil/substrate, the canopy layer (Nor-
man et al. 1995), and the surface layer above the canopy. 
Figure 1 illustrates the basic set of equations used in TSEB 
to solve for the energy balance of both the soil/substrate 
and vegetation canopy layers, assuming that canopy and 
soil resistances to heat and water transport are in “series”. 
The TSEB “series” version was chosen over the Norman 
et al. (1995) “parallel” version based on two main reasons: 
(i) overall the “series” version has shown larger robustness 
than the “parallel” version in a wide range of environments 
and conditions (Guzinski et al. 2014; Kustas et al. 2016; Li 
et al. 2005) and (ii) we expect that the turbulence created 

by the row-interrow system will enhance the heat and water 
exchange between soil and canopy, i.e., the hotter and drier 
bare soil will add extra heat to the canopy–air interface, 
which is explicitly (and mathematically) represented by a 
resistance system in series. Key inputs are the surface radio-
metric temperature ( Trad ) at a view angle ( � ) and the canopy 
cover fraction ( fC ) which is related to the leaf area index 
(LAI). The system of equations for the energy balance of the 
soil/substrate and canopy is constrained through the effec-
tive soil ( TS ) and canopy ( TC ) temperatures estimated from 
radiometric temperature balance equation in Fig. 1 and con-
strained by the soil ( Rs ) and canopy ( Rx ) aerodynamic resist-
ances to sensible (H) heat fluxes from the soil and canopy 
surfaces. These combine to yield the total sensible heat flux 
determined by the temperature difference between the can-
opy air space TAC and the surface layer TA and associated sur-
face layer aerodynamic resistance ( RA ). The soil and canopy 
temperatures constrain the sensible heat fluxes, net radiation 
( Rn ), and soil heat flux (G) with the added initial estimate 
of canopy latent heat flux ( �EC ) or transpiration based on 
either the Priestley–Taylor (PT), Penman–Monteith (PM), or 
light-use efficiency (LUE) parameterization (see Kustas and 
Norman 1999; Colaizzi et al. 2014; Anderson et al. 2008). 
Finally, the latent heat flux from the soil, �ES , is computed 
as the residual flux. Although a crop cover is present, and 
photosynthetically active in sprint, for this study, this layer is 
considered together with the underlying soil as an ensemble 
source of heat and water exchange, i.e., TC corresponds to 
the grapevine temperature, whereas TS represents the back-
ground/interrow (soil+cover crop) temperature.

Fig. 1  Schematic representation 
of the two-source energy bal-
ance model
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Retrieval of canopy and soil temperatures

We evaluated two TSEB approaches that make use of com-
posite radiometric temperature, namely, TSEB-PT (PT for 
Priestley–Taylor) and DTD (Dual-Temperature Difference) 
along with two other approaches that exploit fine-scale spa-
tial imagery, thermal infrared, and multispectral, to derive 
estimates of canopy and soil temperature.

Priestley–Taylor iterative retrieval, TSEB‑PT

Given the difficulty of obtaining pure component tempera-
tures, Norman et al. (1995) found a solution to retrieve TS 
and TC using a single observation of the directional radio-
metric temperature Trad(�) . Assuming that a composite Trad 
containing temperature contributions from the plant canopy 
and soil/substrate is what is typically provided by a radiom-
eter, Eq. 1 decomposes the composite Trad(�) temperature 
between its components TS and TC:

with fC(�) being the fraction of vegetation observed by the 
sensor. Since Eq. 1 consists of two unknowns and only one 
equation, an iterative process to find HS , TS , HC , and TC 
is defined based upon an initial guess of potential canopy 
transpiration, and under the assumption that during daytime 
hours, condensation should not occur. The canopy sensi-
ble heat flux is estimated based on the Priestley and Taylor 
(1972) potential transpiration (Eq. 2):

where �PT is the Priestley–Taylor coefficient, initially set to 
1.26, fg is the fraction of vegetation that is green and hence 
capable of transpiring, � is the slope of the saturation vapor 
pressure vs. temperature, and � is the psychrometric con-
stant. TC is then computed by inverting the equation for tur-
bulent transport of heat (see Norman et al. (1995)) between 
the surface and the reference height above the surface. With 
a first estimate of TC , soil temperature is computed from 
Eq. 1, and then, soil sensible and latent heat fluxes are esti-
mated. At this stage, if the soil latent heat flux is non-neg-
ative, a solution is found; otherwise, canopy transpiration 
is reduced via an incremental decrease in �PT which effec-
tively increases TC and reduces TS until a realistic solution is 
found (no condensation-negative values of �E occurring on 
either the soil or the canopy). For more details, the reader 
is referred to Norman et al. (1995) and Kustas and Norman 
(1999).

(1)�T4
rad
(�) = fC(�)� T4

C
+
[
1 − fC(�)

]
� T4

S

(2)�EC = �PT fg
�

� + �
Rn,C,

Dual‑time‑difference TSEB, DTD

The DTD model described in Norman et al. (2000) is a fur-
ther development of the TSEB-PT modeling scheme. DTD 
similarly divides the observed composite Trad into TC and TS 
and computes surface energy balance components following 
virtually the same procedure. However, DTD uses two Trad 
observations, one nominally 1.5 h after sunrise ( Trad,0 ) and 
another during the daytime ( Trad,1 ) with the TSEB formu-
lation to reduce errors in deriving an atmospherically and 
emissivity-corrected Trad and availability of local air tem-
perature observations. Using both tower-based and satellite 
observations, the utility of DTD has been evaluated over a 
variety landscapes showing advantages in reducing errors 
compared to applying TSEB when there is uncertainty in 
local air temperature observations (Kustas et al. 2012; Guz-
inski et al. 2013). In the more recent “series” implemen-
tation of DTD (Guzinski et al. 2014, 2015), the sensible 
heat flux at these two times, assuming that H after sunrise is 
minimal, is expressed as in Eq. 3:

Similar to TSEB-PT, Eq. 3 requires an a priori value of can-
opy latent or sensible heat flux ( HC,i ). Therefore, the same 
iterative process based on a first guess of potential Priest-
ley–Taylor transpiration is needed in DTD.

In the application of TSEB with composite radiometric 
temperature, Trad for TSEB-PT and DTD is derived by taking 
the original 0.6 m thermal UAV images and aggregating the 
0.6 m pixels to 3.6 m using average of the 0.6 m blackbody 
radiances. The value of 3.6 m corresponds to the minimum 
pixel size from the original 0.6 m that incorporates radiative 
temperature contributions from both the vine and interrow 
sources existing within the 3.35 m row width dimension.

Contextual TSEB for component temperature estimation, 
TSEB‑2T

If the soil and canopy temperatures can be derived from the 
LST imagery collected at high enough resolution, then the 
energy fluxes can be derived directly from the component 
temperatures without the need for a separate parametrization 
for the canopy transpiration (Norman et al. 1995). In this 
case, we obtained canopy and soil temperatures by search-
ing for pure vegetation and soil pixels in a contextual spatial 
domain (Fig. 2). That is, in a 3.6 × 3.6 m grid, we assign 
for each of these cells the canopy and soil temperatures 

(3)
H1 = �cp

(Trad,1(�1) − Trad,0(�0)) − (TA,1 − TA,0)

(1 − f (�1))RS,1 + RA,1

+
HC,1[(1 − f (�1))RS,1 − f (�1)Rx,1]

(1 − f (�1))RS,1 + RA,1

.
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corresponding to the average temperature for the 0.6 m pix-
els that are considered, respectively, bare soil/cover crop 
stubble and pure vegetation. The selection criterion for 
detecting pure soil NDVIsoil is based on the empirical rela-
tionship between NDVI and in situ LAI, with NDVIsoil is 
the extrapolation of that curve for LAI = 0 . On the other 
hand, pure vegetation NDVI (NDVIveg ) is the mean value 
of pixels classified as pure vegetation using a support vec-
tor machine binary supervised classification of the 0.15 m 
multispectral imagery. However, it may be the case that no 
pure pixels at the native resolution (0.6 m) are found in a 3.6 
m spatial domain, either due to very dense vegetation (e.g., 
lack of bare soil/substrate pixels) or very sparse vegetation 
(e.g., lack of pure vegetation pixels). If that is the case, and 
assuming that there is a linear relationship between NDVI 
and Trad , we extrapolate to the pure vegetation or soil NDVI 
value the linear fit of the NDVI-Trad pairs within the 3.6 m 
mixed-pixel to estimate the Trad extrapolated value for the 
pure vegetation (or soil) within the 3.6 m aggregated pixel 
resolution.

Data‑mining sharpening of temperature, TSEB‑2T‑DMS

We made use of a data-mining fusion algorithm (Gao et al. 
2012) to sharpen the original LST imagery (0.60 m) and to 
match the finer spatial resolution of the (VIS/NIR) UAV 
images (0.1 5 m). This was performed under the assumption 
that sharpened temperature would allow a better discrimina-
tion between soil and canopy temperatures. Once Trad was 
produced at 0.15 m, soil and canopy temperatures were then 

derived at 3.6 m using the same approach described above 
and summarized in Fig. 2.

TSEB submodels

There have been additional modifications and refinements 
suggested to algorithms of TSEB for row crops related to 
radiation partitioning (Colaizzi et al. 2012a, c) and soil heat 
flux (Colaizzi et al. 2014). A description of the refinements 
made for application to vineyards is described below. One 
pertains to the radiation modeling similar to Colaizzi et al. 
(2012a), while another incorporates a new within canopy 
wind profile formulation that accounts for non-uniform 
vertical profile of leaf area (Massman et al. 2017). Finally, 
the aerodynamic soil-resistance term uses new coefficients 
based on results from Kustas et al. (2016) over rough soil 
surfaces.

Radiation formulation partitioning for row crop submodel

We developed a simplified method to derive the clumping 
index in row crops such as vineyards. The new clumping 
index is based on the geometric model by Colaizzi et al. 
(2012a, c), but instead of considering the crops as elliptical 
hedgerows, we assumed a rectangular canopy shape, which 
simplifies the trigonometric calculations. A comparison of a 
different radiation models with ground truth radiation meas-
urements described by Parry et al. (2018) supports the use 
of this modified radiation scheme. The clumping index is 
defined as the factor that modifies the leaf area index (LAI) 
of a real canopy (F) in a fictitious homogeneous canopy with 
LAIeff = �F such as its gap fraction is the same as the gap 
fraction of the actual canopy ( G(�,�) ). This effective LAI 
is then used as input in the Campbell and Norman (1998) 
canopy radiative transfer model to estimate soil and canopy 
net radiation. The inputs needed in the revised radiation 
model are described in Fig. 3.

Wind profile attenuation formulation submodel

The new canopy wind profile model proposed by Mass-
man et al. (2017) eliminates the assumptions of uniform 
vertical distribution of leaf area and wind attenuation with 
depth throughout the canopy layer. Therefore, this model 
provides a more physically realistic method for calculating 
wind speed attenuation for canopies with arbitrary foliage 
distribution and leaf area. An additional input compared to 
previously used canopy wind profiles, such as Goudriaan 
(1977) used in the TSEB formulation to date, is the rela-
tive canopy foliage distribution. In our study site, with an 
overstory comprised of grapevines clumped due to the 
trellis system, we estimated our canopy foliage distribu-
tion using the histogram of height fields obtained from the 

Fig. 2  Example of contextual NDVI-T
rad

 scatterplot used for find-
ing canopy and soil temperatures for a 3.6 m grid. Each point corre-
sponds to a 0.6 m pixel NDVI-T

rad
 pair within a 3.6 m spatial domain. 

Canopy (soil) temperatures are retrieved first by averaging the T
rad

 
values above (below) a pure vegetation (soil) NDVI threshold, which 
corresponds to the greyed areas in the plot. If no pure pixels are found 
in those areas, the canopy (soil) temperature is found by extrapolating 
the linear fit between all NDVI-T

rad
 pairs in the domain to the pure 

vegetation (soil) NDVI threshold
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photogrammetric dense cloud points. Such foliage distribu-
tion could also be estimated using full-waveform LiDAR 
data (Mallet and Bretar 2009) or by fitting the foliage density 
from discrete-return LiDAR systems (Coops et al. 2007). 
Nieto et al. (2018) found that when Massman et al. (2017) 
wind attenuation model is embedded within TSEB using 
2015 in situ tower-based land surface temperature data, there 
is an improvement in the agreement with measured H fluxes, 
specially early in the growing season when canopy grape-
vine in not fully developed.

Soil‑resistance parametrization

Kustas et al. (2016) showed that in the case of sparse and 
heavily clumped vegetation and/or when the soil surface is 
very rough, the values for the coefficients in the soil and can-
opy ( Rx ) aerodynamic resistance parameters for heat trans-
port (see Fig. 1) are likely to deviate from the typical values 
proposed in Kustas and Norman (1999) and Norman et al. 
(1995). For these vineyards, the soil aerodynamic resistance 
is assumed to be affected by the presence of a grass layer 
which turns to senescent grass stubble in June. Therefore, 
we used in the estimation for RS the value for a rough soil 
surface suggested in Kondo and Ishida (1997) and supported 
by the results in Kustas et al. (2016) for a rocky soil surface.

Soil heat flux

Some of the UAV images were acquired later in the after-
noon when the assumption of a constant ratio between G and 
Rn,S is less reliable (Santanello and Friedl 2003; Colaizzi 
et al. 2012b). Agam et al. (2018) showed the uncertainties 
and challenges in modeling soil heat flux in this type of 
open canopy surface. Nevertheless, based on comparisons 

between the measured soil heat flux and the estimated Rn,S 
in Nieto et al. (2018), a modified G vs. Rn,S formulation was 
adopted that takes into account the daily temporal behaviour 
of the G∕Rn,S ratio. We found that a double asymmetric sig-
moid function better fits the observations than the sinusoidal 
function proposed by Santanello and Friedl (2003) (Fig. 4).

Estimation of ancillary inputs with UAV data

All spatial distributed inputs (i.e., temperatures and canopy 
properties) used in TSEB were provided at 3.6 m spatial res-
olution. This magnitude was chosen as the closest multiple 
of the 0.6 m TIR resolution that covers the width between 
grapevine rows (3.35 m). Furthermore, we assume that this 
spatial resolution is compatible to the micrometeorologi-
cal length scales appropriate for application of the aerody-
namic and radiation formulations developed for TSEB (Xia 
et al. 2016). Therefore, it is assumed the calculation of the 
resistances to heat transport, radiation, and wind attenua-
tion within the canopy layer follow the TSEB procedure in 
partitioning of fluxes and temperatures between interrow and 
vine canopy sources.

Leaf Area Index and fractional cover

Multiple linear regression between in situ LAI measured 
with a LiCOR plant canopy analyzer at multiple locations 
(including southeast to northwest transects of both north and 
south vineyards (Kustas et al. in press)) and metrics derived 
from the UAV imagery (Pope and Treitz 2013; Zhao and 
Popescu 2009) were used to derive spatial maps of LAI. 
The most significant metric was the NDVI computed from 
the multispectral imagery, but other covariates derived from 
the 3D point cloud were also included in these empirical 
models. These other 3D structural metrics were especially 
relevant in the flights in May 2016, in which a significant 

Fig. 3  Canopy structure model for estimating the clumping index for 
incident radiation. hc and hb are the heights for the top and the base of 
the green canopy, respectively; wc is the canopy average width; F is 
the local leaf area index; L is the width between rows; and f

sc
 , is solar 

canopy view factor, i.e., the fraction of soil that is cast by shadows

Fig. 4  Empirical G∕R
n,S

 curve fit as a function of time of the day. 
Red line corresponds to the fitted Santanello and Friedl (2003), and 
blue line corresponds to the fitted curve used in this study. Following 
Colaizzi et al. (2012b), the regression curves were fitted only with the 
cases in which R

n,S
> 0
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amount of photosynthetically active cover crop in the inter-
row was present, and hence, NDVI by itself could not fully 
explain the variability in canopy LAI.

On the other hand, fractional cover was estimated as the 
proportion of grapevine/bare soil within each 3.6 m cell, 
based on a binary supervised classification of the 0.15 mul-
tispectral imagery. Canopy width, which is used as input 
for radiation transmission submodel (Fig. 3), was then com-
puted as 3.35fC , with 3.35 being the width between rows.

Canopy height and relative foliage density

Canopy height ( hC ), required for estimating radiation trans-
mission in row crops (Fig. 3) and the relative foliage density 
( fa

(
z∕hC

)
 ), required for the Massman et al. (2017) canopy 

wind attenuation model, were both estimated from the 3D 
UAV photogrammetric point cloud described by Aboutalebi 
et al. (2018). Estimates of hC were derived as the difference 
between the 99th and 1st percentile height of all point clouds 
within each 3.6 m cell. The relative foliage density, on the 

other hand, was computed as the frequency histogram of all 
point heights between the 99th and 1st percentile, and nor-
malized so fa

(
zfa,max∕hC

)
= 1 at the maximum frequency 

value. A percentile was used instead of absolute minimum 
and maximum heights to remove possible outliers in the 
photogrammetric point cloud.

Results

The UAV spatially distributed TSEB fluxes were evalu-
ated against the measured EC fluxes (Fig. 5) after pixel 
aggregation, considering the estimated pixel contribu-
tion from the EC footprint at the time of the flight over-
pass, which was estimated using the two-dimensional 
flux footprint developed by Detto et al. (2006). Although 
there are diverging arguments on which energy balance 
closure method is more robust, based on current and pre-
vious measurements observed in arid and more humid 

(a) TSEB-PT (b) DTD

(c) TSEB-2T (d) TSEB-2T-DMS

Fig. 5  Scatterplot of observed vs. predicted fluxes using the different TSEB model approaches. (a)TSEB-PT. (b)DTD. (c)TSEB-2T. (d)TSEB-
2T-DMS
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and advective environments, we consider that �E is not 
as reliably measured as H, see Li et al. (2005) for a more 
extensive discussion on this topic. Therefore, the lack of 
closure in the EC fluxes was compensated by adding the 
residual closure to the latent heat flux.

Table 2 lists the error statistics for the estimated tur-
bulent fluxes using the different proposed models, while 
Fig. 5 illustrates the agreement between the various TSEB 
model outputs and the EC measurements at the over-
pass time. Overall, the models that used the estimated 
the component temperatures soil/interrow and canopy 
temperatures (TSEB-2T and TSEB-2T-DMS) yielded a 
closer agreement with measured H as indicated by the 
lower RMSE values in H (50 and 58 vs. 70 and 78 Wm−2 
for TSEB2T and TSEB2T-DMS vs. DTD and TSEB-
PT, respectively). A similar result was obtained for �E , 
where RMSE in component temperature models yielded 
values lower than 65 Wm−2 , while composite-based mod-
els showed larger RMSE around 80 Wm−2 . In particular, 
TSEB2T with RMSE for H and �E on the order of 50 
Wm−2 , and correlation of 0.8 to 0.9 with observed fluxes, 
appears to outperform all other models. No significant dif-
ferences were found between models in estimating G and 
Rn , with only TSEB2T giving slightly lower RMSE and 
bias than the other three approaches.

Spatio‑temporal trends in evapotranspiration 
partitioning

In Fig.  6, the frequency histograms of evapotranspira-
tion partitioning (i.e., �EC∕�E ) between models for each 
flight and site are illustrated. Except for the flight in May 
2016, the distribution of �EC∕�E is considerably different 
between models. In general, TSEB2T and DTD usually com-
pute larger values of �EC∕�E compared to TSEB2T-DMS 
and TSEB-PT. Furthermore, the models compute a higher 
�EC∕�E for the flights in June and July 2015, for the south 
site.

Likewise, Fig. 7 shows the comparison of ET partitioning 
using the UAV imagery and the corresponding tower-based 
TSEB-PT used in Kustas et al. (2018) and Nieto et al. (2018) 
for the 4 flights illustrated in Fig. 6 with the output extracted 
from the flux tower footprint.

Discussion

The results of this study show a better agreement in turbulent 
flux partitioning when using the component temperatures as 
input to TSEB, particularly TSEB2T (see Table 2). Although 
this result was also shown in a recent study using satellite 

Table 2  Flux error assessment 
between the eddy covariance 
and the different TSEB 
approaches for estimating T

C
 

and T
S
 . Bias ( Wm−2 ) is the 

mean difference between the 
TSEB modelled flux and the 
EC. RMSE ( Wm−2 ) is the root 
mean square error, which is 
as well decomposed between 
its unsystematic ( RMSE

u
 ) 

and systematic ( RMSE
s
 ) 

parts (Willmott 1981). r is the 
correlation coefficient between 
the TSEB modelled flux and 
the EC, rounded to two decimal 
digits

Variable Model Bias RMSE RMSE
u

RMSE
s

r

H TSEB-PT −58 78 48 61 0.74
DTD −7 70 69 11 0.76
TSEB2T −27 52 37 37 0.78
TSEB2T-DMS −28 57 41 40 0.72

�E TSEB-PT 51 75 54 52 0.89
DTD −2 80 79 7 0.78
TSEB2T 22 49 44 23 0.91
TSEB2T-DMS 12 58 57 13 0.87

G TSEB-PT 30 50 36 34 0.72
DTD 31 51 36 35 0.72
TSEB2T 18 43 35 25 0.73
TSEB2T-DMS 35 62 46 42 0.57

R
n

TSEB-PT −8 17 12 12 1
DTD −8 17 12 12 1
TSEB2T −18 27 16 22 0.99
TSEB2T-DMS −14 23 15 17 0.99

R
n,sw

TSEB-PT TSEB-PT −21 23 5 23 1
DTD −21 23 5 23 1
TSEB2T −21 23 6 22 1
TSEB2T-DMS −21 23 6 22 1

R
n,lw

TSEB-PT 9 16 13 9 0.81
DTD 9 16 13 9 0.82
TSEB2T 3 16 15 5 0.86
TSEB2T_DMS 6 14 13 7 0.87
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Fig. 6  Frequency histograms 
for the modelled latent heat flux 
partitioning ( �EC∕�E ) with 
vertical dashed lines correspond 
to the average value of the 
distribution. Left panels cor-
respond to the mature grapevine 
site (north), and right panels 
show the young grapevine site 
(south). Figures are sorted by 
month instead of chronologi-
cally

(a) May 2, 2016, North site (b) May 2, 2016, South site

(c) June 2, 2015, North site (d) June 2, 2015, South site

(e) July 11, 2015, North site (f) July 11, 2015, South site

(g) August 09, 2014, North site (h) August 09, 2014, South site
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data (Song et al. 2016), this was not observed by Colaizzi 
et al. (2012b) using ground-based radiometric temperature 
observations. However, Colaizzi et al. (2012b) pointed out 
that one of the possible reasons of the poorer performance 
found using TSEB2T was the difficulty in measure TC dur-
ing the earlier stages of crop development (cotton in their 
case). With the methodology used in our study, it is possible 
to overcome this issue and retrieve TC in sparse canopies, 
by combining multispectral and thermal-infrared data in a 
contextual algorithm. Finally, since the error statistics for the 
other two fluxes ( Rn and G) did not show larger differences 
among models, one could assume that the use of component 
temperatures made an impact in better partitioning the avail-
able energy between sensible and latent heat fluxes. Actu-
ally, Ortega-Farías et al. (2016) used UAV thermal-infrared 
imagery an irrigated olive orchard to measure directly TC and 
TS and found similar errors to our study (56 and 50 Wm−2 for 
H and �E , respectively) with a patch (or parallel) resistance 
dual source energy balance model.

For GRAPEX, Xia et al. (2016) also tested TSEB-PT over 
the same site, in their case using manned airborne imagery 
collected in 2013. They obtained somewhat lower errors 
than those reported here, with 42 and 43 Wm−2 RMSE for 
H for the North and South sites, respectively)and 37 and 
51 Wm−2 for �E . One possible explanation might be due to 
the larger uncertainty in Trad when using miniaturized ther-
mal cameras onboard UAV systems, which usually require 
in situ calibration (Torres-Rua et al. 2018; Berni et al. 2009). 
Indeed, when applying TSEB with a time-difference temper-
ature to remove possible bias in Trad , there is an improvement 
in the estimates of H using DTD compared to TSEB-PT. 
This, together with the similar results shown by Hoffmann 
et al. (2016), seems to confirm the utility of using the morn-
ing temperature rise of temperatures instead of absolute 

temperatures, as pointed out in other studies (Norman et al. 
2000; Anderson et al. 2011; Guzinski et al. 2013). Finally, 
Fig. 5 shows that in this study, a larger range of conditions 
(e.g., Rn ranging from 200 to 700 Wm−2 ) is observed com-
pared to the data set of Xia et al. (2016), which might also 
be contributing generally larger RMSE in the current study.

Regarding evapotranspiration partitioning between grape-
vine transpiration and ground evaporation, one of the most 
noticeable issues shown in Fig. 6 is the large difference in 
distribution and average values between the north and south 
sites during the flights of June 2015 (Fig. 6c, d) and July 
2015 (Fig. 6e, f). Inspecting the observed UAV Trad images 
for these two flights (Fig. 8), one can observe a significant 
difference in temperatures between the north and the south 
vineyards. These differences are not as evident for the flights 
in May 2016 and August 2014, but for June and July, the 
differences are mostly likely due to warmer surface tempera-
tures in the interrow for the south vineyard. This is due to the 
combined effect of a lower vegetation cover and generally 
drier soil conditions in this younger vineyard which received 
less irrigation than the more mature north vineyard (Knipper 
et al. 2018). Both factors lead to a reduced soil evaporation 
and likely a more efficient irrigation.

Kustas et al. (this issue) applied the correlation-based 
flux partitioning method to the high-frequency eddy covar-
iance data to compare monthly values of �EC∕�E with 
TSEB estimates using tower-based T rad values derived 
from pyrgeometer upwelling and downwelling hemispheri-
cal longwave radiation. Monthly values for June and July 
2015 were 0.83 and 0.82 for the north vineyard, while 
the south vineyard yielded values of 0.84 and 0.9, respec-
tively. Pixels extracted from the tower footprint area using 
TSEB2T yielded values most similar values to the findings 
of Kustas et al. (this issue) (results not shown). However, 

(a) North site (b) South site

Fig. 7  Footprint average of ET ( �EC∕�E ) partitioning for the different models tested (colored points) compared to the tower-based TSEB-PT 
used in Kustas et al. (this issue), (black line). Left, north vineyard. Right, south vineyard
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Fig. 8  Measured radiometric 
temperatures with the UAV 
system for the flights corre-
sponding to Fig. 6. Two black 
outlines represent both vineyard 
limits, whereas the green stars 
show the location of the eddy 
covariance towers
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with only two dates and two sites, we cannot reach any 
definitive conclusion regarding partitioning performance. 
We can also see that the May 2016 acquisition tends to 
have lower �EC∕�E values than the June or July 2015 over-
passes, most significantly for TSEB2T. This likely due to 
higher soil moisture from winter rains, a photosyntheti-
cally active cover crop but a relatively low vine biomass. 
For June and July acquisitions, the cover crop has gone 
through senescence and has been mowed (grass stubble) 
with a dry soil in the interrow (except for a bare soil area 
under the grapevine canopies staying relatively wet from 
frequent irrigation) all of which would increase �EC∕�E . 
The decrease in �EC∕�E value in August is not easily 
understood, although both the tower-based TSEB output 
and the values derived from the UAV imagery are in agree-
ment regarding this trend. Ground and remote-sensing 
observations do indicate a decreasing in LAI from June to 
August, so this is contributing to the reduction in �EC∕�E . 
The monthly values of �EC∕�E from the correlation-based 
flux partitioning method with the high-frequency eddy 

covariance data for August 2015 does decrease from June 
and July, but not as markedly [see Kustas et al. (2018)]. 
That magnitude and trend in �EC∕�E observed by Kustas 
et al. (2018) seem to be in close agreement with TSEB2T 
for the north vineyard and closer to TSEB-PT for the south 
vineyard.

Figure 9 illustrates the histograms of TC and TS for the 
flights in July 2015 and August 2014 at the north site, where 
the differences in �EC∕�E between TSEB-PT and TSEB2T 
are significant (in July 2015) and are similar (August 2014), 
respectively. The temperature distributions in Fig. 9 con-
firm that the larger �EC∕�E values from TSEB2T shown in 
Fig. 6 are in agreement with a lower TC (i.e., higher �EC ) and 
higher TS (i.e., lower �ES ) in TSEB2T compared to TSEB-
PT. Similarly, the close agreement in �EC∕�E between 
TSEB2T and TSEB-PT for the August 2014 flight also 
agrees with the significant overlap in the TC and TS distribu-
tions, as illustrated in Fig. 9. Nevertheless, more independ-
ent measurements of �EC∕�E over the growing season are 
required to provide a thorough evaluation of the reliability of 

(a) TC , July 2015 (b) TS , July 2015

(c) TC , August 2014 (d) TS , August 2014

Fig. 9  Frequency histograms for the component temperatures ( T
C
 and T

S
 ) estimated in TSEB-PT (blue histogram) and TSEB2T (red histogram). 

Vertical dashed lines correspond to the average value of the distribution.
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the various TSEB approaches in estimating ET partitioning 
Kustas et al. (2018).

Conclusions

This study explored different approaches to estimate the 
component soil and canopy temperatures to be used in 
the Two-Source Energy Balance Model. In addition to the 
Priestley–Taylor TSEB described in Norman et al. (1995) 
and its time-differencing approach the Dual-Temperature 
Difference model (Norman et al. 2000), we proposed two 
novel methods to derive soil and canopy temperatures from 
very high spatial resolution imagery, only available from 
airborne manned or unmanned platforms. Results showed 
that the use of a simple contextual algorithm based on the 
correlation between NDVI and the radiometric temperature 
(TSEB2T) outperformed the other approaches when estimat-
ing the bulk turbulent fluxes (H and �E).

Due to the increasing interest in deriving crop stress and 
transpiration metrics for irrigation management, a qualita-
tive analysis was done as well to evaluate the robustness of 
the methods in estimating ET partitioning. The TSEB2T 
approach seemed to produce �EC∕�E estimates consistent 
with Kustas et al. (2018) running TSEB-PT using tower-
based Trad observations for the north vineyard, less so for 
the south vineyard. However, more independent measure-
ments are needed to confirm the utility of the various TSEB 
approaches in partitioning ET to T and E.

Surprisingly, using sharpening of temperatures (TSEB2T-
DMS) to achieve a more detailed map of temperatures (0.15 
m) did not provide any greater benefit in estimating �E , 
although yielded similar results to TSEB2T, but in many 
cases, computed �EC∕�E values tend to be much lower than 
the other TSEB approaches (Figs. 6 and 7). It is possible that 
the DMS-sharpening method adds noise to the original 0.6 
m thermal imagery making the retrieval of canopy and soil 
temperature more uncertainty and consequently less robust. 
Nevertheless, this method might still be useful for sharpen-
ing coarser imagery, for instance, when flying at higher alti-
tudes to reduce costs, or over crops with narrower canopies

It is worth noting as well that TSEB model assumes a 
layer of more or less photosynthetically active vegetation 
(controlled by parametrizing its green fraction, fg ), with a 
bare soil (or at least non-photosynthetic active) layer under-
neath. This issue presents a challenge in retrieving the soil 
and canopy temperatures and the �E partitioning when there 
is a photosynthetically active cover crop layer in the inter-
row. Such is the case in many managed vineyards in Califor-
nia, where they use a crop cover to deplete the soil moisture 
after the winter rains, or in natural environments such as 
wooded savannahs having a grass understory. This study 
assumed that the crop cover contribution to the water fluxes 

is negligible, and thus, the crop was included in an bulk 
layer together with the underlying soil. However, in more 
humid areas, the water flux rate from the crop cover could be 
larger, likely making TSEB flux estimates more uncertain. 
Therefore, future research is planned for implementation of 
a simplified three-source model for flux partitioning between 
grapevine, crop cover, and soil.

Finally, a question that still remains unanswered and thus 
is a topic for future research is the number of flights and 
dates for operational irrigation scheduling, which would 
depend as well on grapevine variety and irrigation man-
agement strategy (Bellvert et al. 2016). Nevertheless, we 
think that these measurements should be complemented in 
all cases by satellite data (see Knipper et al. 2018), and the 
application of the multi-scale data fusion system in vine-
yards has been shown to provide significant information 
about the spatial variability in ET at 30 m resolution on a 
daily basis which is critical for accurate water use account-
ing (Semmens et al. 2016; Knipper et al. 2018). Therefore, 
the potential synergy of the unique information that can be 
provided by satellite (daily ET) and by airborne systems 
(canopy level ET and E and T partitioning) needs to be thor-
oughly investigated to determine when there are situations, 
particularly for high-valued crops, that would greatly benefit 
crop yield and sustainability from combining information 
from both platforms.
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Appendix

A TSEB model

The basic equation of the energy balance at the surface can 
be expressed following Eq. 4: 

(4a)Rn ≈H + �E + G

(4b)Rn,S ≈HS + �ES + G

(4c)Rn,C ≈HC + �EC
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 with Rn being the net radiation, H is the sensible heat flux, 
�E is the latent heat flux or evapotranspiration, and G is the 
soil heat flux. “C” and “S” subscripts refer to canopy and soil 
layers, respectively. The symbol “ ≈ ” appears, since there are 
additional components of the energy balance that are usually 
neglected, such as heat advection, storage of energy in the 
canopy layer, or energy for the fixation of CO2 (Hillel 1998)

The key in TSEB models is the partition of sensible heat 
flux into the canopy and soil layers, which depends on the 
soil and canopy temperatures ( TS and TC , respectively). If we 
assume that there is an interaction between the fluxes of can-
opy and soil, due to an expected heating of the in-canopy air 
by heat transport coming from the soil, the resistances network 
in TSEB can be considered to be in series. In that case, H can 
be estimated as in Eq. 5 (Norman et al. 1995, Eqs. A1–A3):

where �air is the density of the air ( kghboxm−3 ), Cp is the heat 
capacity of the air at constant pressure ( Jkg−1K−1 ), and TAC 
is the air temperature at the canopy interface, equivalent to 
the aerodynamic temperature T0 , computed with Eq. 6 (Nor-
man et al. 1995, Eq. 4):

Here, Ra is the aerodynamic resistance to heat transport 
( sm−1 ), Rs is the resistance to heat flow in the boundary 
layer immediately above the soil surface ( sm−1 ), and Rx 
is the boundary layer resistance of the canopy of leaves 
( sm−1 ). The mathematical expressions of these resistances 
are detailed in Eq. 7 and in Norman et al. (1995) and Kustas 
and Norman (2000) and discussed in Kustas et al. (2016): 

 where u∗ is the friction velocity ( ms−1 ) computed as

(5)
H = HC + HS = �airCp

TAC − TA

Ra

= �airCp

[
TC − TAC

Rx

+
TS − TAC

Rs

]
,

(6)TAC =

TA

Ra

+
TC

Rx

+
TS

Rs

1

Ra

+
1

Rx

+
1

Rs

.

(7a)Ra =
ln
(

zT−d0

z0H

)
− �h

(
zT−d0

L

)
+ �h

(
z0H

L

)

�� u∗

(7b)Rs =
1

c
(
TS − TA

)1∕3
+ b us

(7c)Rx =
C�

LAI

(
lw

Ud0+z0M

)1∕2

,

In Eq. , zu and zT  are the measurement heights for wind 
speed u ( ms−1 ) and air temperature TA (K), respectively. 
d0 is the zero-plane displacement height, and z0M and z0H 
are the roughness length for momentum and heat transport, 
respectively (all those magnitudes expressed in m), with 
z0H = z0M exp

(
−kB−1

)
 . In the series version of TSEB, z0H 

is assumed equal to z0M , since the term Rx already accounts 
for the different efficiencies between heat and momentum 
transport (Norman et al. 1995), and therefore, kB−1 = 0 . The 
value of �� = 0.4 is the von Karman’s constant. The �m(�) 
terms in Eqs. 7a and are the adiabatic correction factors 
for momentum. The formulations of these two factors are 
described in Brutsaert (1999) and Brutsaert (2005). These 
corrections depend on the atmospheric stability, which is 
expressed using the Monin–Obukhov length L (m):

where H is the bulk sensible heat flux ( Wm−2 ), E is the rate 
of surface evaporation ( kgs−1 ), and g is the acceleration of 
gravity ( ms−2)

The coefficients b , c in Eq. 7b depend on turbulent length 
scale in the canopy, soil-surface roughness, and turbulence 
intensity in the canopy, which are discussed in Sauer et al. 
(1995), Kondo and Ishida (1997) and Kustas et al. (2016). 
C′ is assumed to be 90s1∕2 m−1 and lw is the average leaf 
width (m)

B Modifications to TSEB model for row crops

B.1 Radiation transmission in row crops

The clumping index for row crops is defined as the factor 
that modifies the leaf area index of a real canopy (F) in a 
fictitious homogeneous canopy with LAIeff = �F such as its 
gap fraction is the same as the gap fraction of the real-world 
canopy ( G(�,�)):

where �be(�) is the beam extinction coefficient through a 
plant with an ellipsoidal inclination distribution (Campbell 
1986, 1990), � is the zenith incidence angle, and � is the 
relative azimuth angle between the incidence beam and the 
row direction

(8)u∗ =
�� u[

ln
(

zu−d0

z0M

)
− �m

(
zu−d0

L

)
+ �m

(
z0M

L

)] .

(9)L =
−u3

∗
�air

k g
[
H∕(TACp) + 0.61E

] ,

(10)�(�,�) =
− log [G(�,�)]

�be(�)F
,
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Our modelled real canopy consists of a horizontally 
infinite long prism with a total height hc (i.e., the canopy 
height) and a width wc (i.e., canopy width) that is placed 
above the ground at hb (i.e., the height of the first living 
branch). This canopy contains finite-sized leaves randomly 
placed (no clumping within the canopy) oriented accord-
ing to a ellipsoidal leaf angle distribution function (Camp-
bell 1990) with a total leaf area index F (Fig. 3).

Then, the real canopy gap fraction consists of the sunlit 
part of the bare soil that is not shaded by the canopy plus 
the gaps caused by the solar beam passing through the crop 
canopy (Eq. 11):

The solar canopy view factor fsc(�,�) is the fraction of soil 
that is cast by shadows (Colaizzi et al. 2012a) and in our 
case is estimated as

where L is the row separation (m). For a vertical projection 
( � = 0 ), Eq. 12 reduces to wc∕L , the fractional cover.

B.2 Massman et al. (2017) wind attenuation profile

Compared to previously used canopy wind profiles such as 
Goudriaan (1977) or Massman (1987), the additional key 
input required in Massman et al. (2017) wind attenuation 
model is the relative canopy foliage distribution, computed 
as in Eq. 13:

where fa(�)

∫ 1

0
fa(�

�)d��
 is the relative canopy shape (i.e., 

∑ fa(�)

∫ 1

0
fa(�

�)d��
= 1 , and � = z∕hc ) and PAI is the plant 

(leaves+stems) area index. Massman et al. (2017) modelled 
fa(�) as a combination of asymmetric Gaussian curves, but 
fa(�) can also be estimated as a continuous curve obtained 
from canopy structure measurements or three-dimensional 
cloud points, such as in Nieto et al. (2018).

The canopy wind speed profile is then the product of 
two terms: one logarithmic profile ( Ub ) that is dominant 
near the ground and a second a hyperbolic cosine profile 
( Ut ) that dominates near the top of the canopy, where the 
canopy foliage distribution plays a major role. Ancillary 
input in Ut is the the drag coefficient of the individual 
foliage elements ( Cd ), which is usually considered equal 
to 0.2 (Massman et al. 2017; Goudriaan 1977). Massman 
et al. (2017) model has as well the ability to consider 

(11)G(�,�) = fsc(�,�) exp
[
−�be(�)F

]
+
[
1 − fsc(�,�)

]
.

(12)fsc(�,�) =
wc +

(
hc − hb

)
tan�| sin�|

L
,

(13)ha(�) = PAI
fa(�)

∫ 1

0
fa(�

�)d��
,

variations of the drag coefficient due to either wind shel-
tering between foliage elements, or vertical variations 
independently of wind blocking. This effect can usually 
be disregarded in most canopies (Massman et al. 2017), 
so was it in this study.
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