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Abstract The accuracy of a least square support vector

machine (LSSVM) in modeling of reference evapotranspi-

ration (ET0) was examined in this study. The daily weather

data, solar radiation, air temperature, relative humidity and

wind speed of two stations, Glendale and Oxnard, in southern

district of California, were used as inputs to the LSSVM

models to estimate ET0 obtained using the FAO-56 Penman–

Monteith equation. In the first part of the study, LSSVM

estimates were compared with those of the following

empirical models: Priestley–Taylor, Hargreaves and Ritchie

methods. The comparison results indicated that the LSSVM

performed better than the empirical models. In the second

part of the study, the LSSVM results were compared with

those of the conventional feed-forward artificial neural net-

works (ANN). It was found that the LSSVM models were

superior to the ANN in modeling ET0 process.

Introduction

Evapotranspiration is an important issue for the water balance

of an irrigated area. Irrigation engineers want to know how

much of the supplied irrigation water is consumed by the

crops; only then can they estimate, or calculate, the remaining

components of the water balance. On the other hand, agri-

culturists want to know the specific water requirements of a

crop, so that they can obtain a satisfactory yield. They also

want to know whether these specific water requirements are

being met under the prevailing irrigation practices (Kisi 2008).

As described by Brutsaert (1982) and Jensen et al.

(1990), numerous methods have been proposed for esti-

mating evapotranspiration. The combination of energy

balance/aerodynamic equations generally ‘‘provides the

most accurate results as a result of their foundation in

physics and basis on rational relationships’’ (Jensen et al.

1990). The Food and Agricultural Organization of the

United Nations (FAO) assumed the ET definition of Smith

et al. (1997) and accepted the FAO Penman–Monteith as

the standard equation for estimation of ET (Allen et al.

1998; Naoum and Tsanis 2003; Kisi 2007a).

In last decades, the application of artificial intelligence

techniques (e.g., artificial neural networks) in modeling

reference evapotranspiration (ET0) has received much

attention (Kumar et al. 2002, 2008, 2009, 2011; Sudheer

et al. 2003; Trajkovic et al. 2003; Trajkovic 2005; Kisi and

Yildirim 2005a, b; Kisi 2006a, b, 2007a, 2008, 2011a, b; Kisi

and Ozturk 2007; Kim and Kim 2008; Jain et al. 2008;

Khoob 2008a, b; Landeras et al. 2009; Marti et al. 2011a, b).

Kumar et al. (2002) used artificial neural networks (ANN)

for the estimation of ET0. Sudheer et al. (2003) developed

radial basis ANN for predicting ET0 using limited climatic

data. Trajkovic et al. (2003) developed a radial basis type

ANN in forecasting ET0. Trajkovic (2005) applied temper-

ature-based radial basis ANN for estimating FAO-56 PM

ET0. Kisi (2006a) estimated daily ET0 using ANN method

and compared ANN test results with those of the Penman

and Hargreaves empirical models. Kisi (2006b) modeled

ET0 using generalized regression neural network (GRNN)

models. Kisi (2007a) estimated daily ET0 using ANN

method and compared ANN results with those of the Pen-

man, Hargreaves and Turc models. He found that the ANN

model performed better than the empirical models. Kisi and

Ozturk (2007) modeled FAO-56 PM ET0 by neuro-fuzzy

and ANN models using the observed climatic variables. Kisi

Communicated by K. Stone.

O. Kisi (&)

Architecture and Engineering Faculty, Civil Engineering

Department, Canik Basari University, Samsun, Turkey

e-mail: ozgurkisi@hotmail.com

123

Irrig Sci (2013) 31:611–619

DOI 10.1007/s00271-012-0336-2



(2008) investigated the accuracy of different ANN methods

in modeling ET0. Kim and Kim (2008) estimated alfalfa ET0

by using GRNN model with genetic algorithm. Jain et al.

(2008) modeled the ET0 using ANN and suggested a pro-

cedure to evaluate the effects of input variables on the output

variable using the weight connections of ANN models.

Khoob (2008a) developed ANN model for estimating

monthly ET0 of Khuzestan plain, Iran, and compared with

Hargreaves method. The results indicated that the Har-

greaves method underestimates and overestimates the FAO-

56 PM monthly ET0 values by maximum of 20 and 37 %,

respectively. Khoob (2008b) estimated ET0 from pan

evaporation using ANN in a semi-arid environment and

reported that the Hargreaves method is poor for regional

estimation of ET0. Kumar et al. (2008) developed different

ANN models for estimating daily ET0 and compared with

conventional methods. They found that the ANN models

performed better than the respective conventional methods

in estimating FAO-56PM ET0. Kumar et al. (2009) used

ANN for predicting ET0 under the arid conditions. Landeras

et al. (2009) forecasted weekly FAO-56PM ET0 using ANN

and ARIMA models. Kisi (2011a) modeled daily ET0 using

wavelet regression model and compared with empirical

models. Kisi (2011b) used evolutionary feed-forward neural

networks for estimating ET0. Marti et al. (2011a) assessed

four-input ANN model for ET0 estimation through data set

scanning procedures. Marti et al. (2011b) estimated daily

FAO-56PM ET0 using ANN without local climatic data.

Kumar et al. (2011) reviewed the studies related with the

application of ANN in ET0 modeling. All these studies

revealed that the ANN models are superior in estimating ET0

than the conventional methods. In the present study, least

square support vector machine (LSSVM) was proposed as

an alternative to ANN model for estimating daily FAO-

56PM ET0. To the best knowledge of the author, there is not

any published work indicating the input–output mapping

capability of LSSVM technique in the modeling of daily

ET0.

The main purpose of this study is to investigate the

accuracy of LSSVM approach in the modeling of daily

ET0. The performance of the LSSVM models was com-

pared with those of the ANN and commonly used Priest-

ley–Taylor, Hargreaves and Ritchie empirical methods.

The presented study is the first application for modeling

daily ET0 using LSSVM models.

Methodology

Least square support vector machine (LSSVM)

The least square support vector machine (LSSVM), first

proposed by Suykens and Vandewalle (1999), was originated

from SVM (support vector machines) is a powerful method-

ology for solving problems in nonlinear classification, func-

tion estimation and density estimation (Kumar and Kar 2009).

Figure 1 illustrates the procedure of LSSVM regression

algorithm. The LSSVM changes the inequality constraints of a

SVM into a set of equality constraints and forces the sum of

squared error (SSE) loss function to become an experience

loss function of the training set. By this way, the problem has

become one of solving a linear programming problem (Zhao

et al. 2009; Xiaohui and Xiaoping 2010).

Consider given inputs xi (solar radiation, air tempera-

ture, relative humidity and wind speed) and output yi

(evapotranspiration) time series. According to the LSSVM

method, the nonlinear function can be represented as

f ðxÞ ¼ wTuðxÞ þ b ð1Þ

where f indicates the relationship between the climatic

variables and ET0, w is the m-dimensional weight vector, u is

the mapping function that maps x into the m-dimensional

feature vector, and b is the bias term (Shu-gang et al. 2008).

Considering the complexity of function a fitting error,

the regression problem can be given according to the

structural minimization principle as

min Jðw; eÞ ¼ 1

2
wT wþ c

2

Xm

i¼1

e2
i ð2Þ

that has the following constraints

yi ¼ wTuðxiÞ þ bþ ei i ¼ 1; 2; . . .;mð Þ ð3Þ

where c is the margin parameter and ei is the slack variable

for xi.

To solve the optimization problems given in Eq. (2), the

objective function can be obtained by changing the con-

straint problem into an unconstraint problem and intro-

ducing the Lagrange multipliers ai as

Lðw; b; e;/Þ ¼ J w; eð Þ �
Xm

i¼1

/i wTuðxiÞ þ bþ ei � yi

� �

ð4Þ
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Fig. 1 LSSVM model of evapotranspiration
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According to the Karush–Kuhn–Tucker (KKT), the optimal

conditions can be obtained by taking the partial derivatives of

Eq. (4) with respect to w, b, e and a, respectively, as

w ¼
Xm

i¼1
/i uðxiÞ

Xm

i¼1
/i¼ 0

/i¼ cei

wTuðxiÞ þ bþ ei � yi ¼ 0

8
>>>>><

>>>>>:

ð5Þ

Thus, the linear equations are obtained as

0 �YT

Y ZZT þ I=c

� �
b
/

� �
¼ 0

1

� �
ð6Þ

where Y ¼ y1; . . .; ym, Z ¼ uðx1ÞT y1; . . .; uðxmÞT ym,

I ¼ ½1; . . .; 1�, /¼ ½/1; . . .; /l�.
By defining kernel function Kðx; xiÞ ¼ uðxÞTuðxiÞ,

i = 1,…,m, the LSSVM regression becomes

f ðxÞ ¼
Xm

i¼1

/i Kðx; xiÞ þ b ð7Þ

The RBF kernel is common type of kernels in regression

problems. The RBF kernel function was used in this study.

It can be expressed as

Kðx; xiÞ ¼ expð�kx� xik2=2r2Þ ð8Þ

Case study

In this study, daily climatic data from two automated

weather stations, Glendale (Latitude 34�1105900N, Longi-

tude 118�1305600W) and Oxnard (Latitude 34�1400100N,

Longitude 119�1104900W) operated by the California

Irrigation Management Information System (CIMIS), were

used. The locations of the stations are shown in Fig. 2. The

Glendale Station is located in Los Angeles Basin Region

Los Angeles County. The Oxnard is located in Central

Coast Valleys Region Ventura County. The elevations are

1,111 and 48 ft for the Glendale and Oxnard stations,

respectively. The daily weather data used in the present

study are solar radiation, air temperature, relative humidity

and wind speed. The total incoming solar radiation is

measured using pyranometers at height of 2.0 m above the

ground. Air temperature is measured at a height of 1.5 m

above the ground using a thermistor. Relative humidity is

the ratio of the actual amount of water vapor in the

atmosphere to the amount the atmosphere can potentially

hold at the given air temperature. It is expressed as a

percentage. The relative humidity sensor is sheltered in the

same enclosure with the air temperature sensor at 1.5 m

above the ground. Wind speed is measured using three-cup

anemometers at 2.0 m above the ground (Kisi 2006b).

These measured daily climatic data were downloaded from

the CIMIS web server (http://wwwcimis.water.ca.gov/

cimis/data.jsp).

The data sample covers 12 (1997–2008) and 8 years

(2003–2010) of daily records of solar radiation (Rs), air

temperature (T), relative humidity (RH) and wind speed

(U2) for the Glendale and Oxnard stations, respectively.

For the Glendale Station, the first 6-year (1997–2002) data

are used to train the LSSVM models, the second three-year

(2003–2005) data were used for testing, and the remaining

data were used for validation. Daily mean temperature

records were obtained by calculating the average of the

daily maximum and minimum temperature records. A

linear variation between the daily minimum and maximum

Oxnard 
Station 

Glendale 
Station 

Sacramento 

San Francisco 

Santa Maria 

Los Angeles 

San Diego 

Fig. 2 The location of the

Glendale and Oxnard (CIMIS

No: 133) and Oakville (CIMIS

No: 156) stations in California
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temperatures were assumed. Missing data were removed

from the whole data set. The daily statistical parameters of

each data for the entire time series are given in Table 1. It

is seen from Table 1 that the statistical properties of the

data set are not similar for the Glendale and Oxnard sta-

tions. The author has intended to compare models for

different stations located in different climatic conditions. In

Table 1, the xmean, xmin, xmax Sx, Cv and Csx denote the

mean, minimum, maximum, standard deviation, variation

coefficient and skewness, respectively. The wind speed

shows a skewed distribution for each station (see Csx values

in Table 1). As can be seen from the correlation coeffi-

cients between the Rs and ET0 in Table 1, the solar radi-

ation is closely correlated with evapotranspiration for each

station. The air temperature seems to be the second best

parameter correlated with ET0.

Application and results

The first part of the study focused on comparison of

LSSVM models with the Priestley–Taylor, Hargreaves and

Ritchie empirical models. First, the ET0 values of the

Glendale and Oxnard stations were calculated using the

FAO-56 PM method as described in Allen et al. (1998)

ET0 ¼
0:408DðRn � GÞ þ c 900

Tþ273
U2ðea � edÞ

Dþ cð1þ 0:34U2Þ
ð9Þ

where ET0 = reference evapotranspiration (mm day-1),

D = slope of the saturation vapor pressure function (kPa

�C-1), Rn = net radiation (MJ m-2 day-1), G = soil heat

flux density (MJ m-2 day-1), c = psychometric constant

(kPa �C-1), T = mean air temperature (�C), U2 = average

24-h wind speed at 2 m height (m s-1), ea is the saturation

vapor pressure (kPa), and ed is the actual vapor pressure

(kPa).

Then, the inputs, Rs, T, RH and U2, and output ET0

values obtained using the FAO-56 PM method were used

for the calibration of LSSVM models. Root mean square

error (RMSE), mean absolute error (MAE) and correlation

coefficient (R) statistics were used for the evaluation of the

models. The RMSE, MAE and R2 are defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðxi � yiÞ2
vuut ð10Þ

MAE ¼ 1

N

Xn

i¼1

jxi � yij ð11Þ

R2 ¼
Pn

i¼1 ðxi � �xÞðyi � �yÞ
� �2

Pn
i¼1 ðxi � �xÞ2

Pn
i¼1 ðyi � �yÞ2

ð12Þ

in which N and bar, respectively, denote the number of data

and mean of the variable, and x and y are the predicted and

FAO-56 PM ET0 values, respectively.

In the study, two different LSSVM models were employed.

The LSSVM models having two inputs, T and Rs, were

developed for the valid comparison with two-parameter

Priestley–Taylor, Hargreaves and Ritchie models. Optimum

parameters of the LSSVM were determined by minimizing the

objective function (RMSE error between calculated and FAO-

56 PM ET0 values). The optimum parameters of the LSSVM

models for the Glendale and Oxnard stations are given in

Table 2. In this table, the LSSVM(100,10) model has the

regularization constant = 100 and width of the RBF

kernel = 10.

The LSSVM models were compared with the Priestley–

Taylor, Hargreaves and Ritchie models. The Priestley and

Taylor (1972) equation for computing ET0 value is

expressed as:

ET0 ¼
a
k

D
Dþ c

ðRn � GÞ ð13Þ

where ET0 = reference evapotranspiration (mm day-1),

a = 1.26, k = latent heat of the evaporation (MJ/Kg), and

the other applied parameters were introduced before

(Gibson et al. 1994).

Table 1 The daily statistical parameters of each data set for the entire time series

Station Variable xmean xmin xmax Sx Cv (Sx/xmean) Csx Correlation with ET0

Glendale Rs 15.8 0.00 37.8 6.62 0.42 -0.24 0.901

T 15.9 4.00 30.7 4.68 0.30 0.22 0.760

RH 65.2 0.00 100 21.0 0.32 -0.65 -0.467

U2 1.30 0.40 5.00 0.28 0.22 2.28 0.412

ET0 3.22 0.00 8.26 1.58 0.49 -0.13 1.000

Oxnard Rs 17.5 0.09 38.2 7.04 0.40 -0.09 0.825

T 15.3 5.80 26.0 3.06 0.20 -0.01 0.568

RH 74.8 8.00 99.0 17.2 0.23 -1.45 -0.374

U2 1.90 0.40 5.90 0.49 0.26 1.78 0.268

ET0 3.20 0.00 9.17 1.34 0.42 0.08 1.000
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The Hargreaves formula is one of the simplest equations

used for estimating ET0. It is expressed as (Hargreaves and

Samani 1985)

ET0 ¼ 0:0023Ra
Tmax þ Tmin

2
þ 17:8

	 

ðTmax � TminÞ0:5

ð14Þ

where ET0 = reference evapotranspiration (mm day-1),

Tmax and Tmin = maximum and minimum temperature

(�C), and Ra = extraterrestrial radiation (MJ m-2 day-1).

The Ritchie equation (Jones and Ritchie 1990) is:

ET0 ¼ a1 3:87� 10�3Rs 0:6Tmax þ 0:4Tmin þ 29ð Þ
� �

ð15Þ

where ET0 = reference evapotranspiration (mm day-1),

Tmax and Tmin = maximum and minimum temperature

(�C), and Rs = solar radiation (MJ m-2 day-1), when

5\Tmax� 35 �C a1 ¼ 1:1

Tmax [ 35 �C a1 ¼ 1:1þ 0:05ðTmax � 35Þ
Tmax\5 �C a1 ¼ 0:01: exp½0:18ðTmax þ 20Þ�

ð16Þ

The LSSVM models were also compared with the

conventional ANN models. The conventional feed-forward

ANN model was also employed for daily ET0 estimation.

For adjusting the weights of the ANN model, the conjugate

gradient algorithm was used because this technique is more

powerful and faster than the conventional gradient descent

technique (Kisi and Uncuoglu 2005; Kisi 2007b). The

sigmoid activation functions were used for the hidden and

output nodes. The optimum hidden layer node numbers of

the models were obtained after trying various network

structures because there is no theory yet to tell how many

hidden units are needed to approximate any given function.

The training of ANN networks was stopped after 250

iterations following the suggestion of Kisi and Uncuoglu

(2005) and Kisi (2007b). The optimum number of hidden

layer units was obtained after many trials for each station.

The optimal ANN models for the Glendale and Oxnard

stations are given in Table 2. In this table, the ANN1(4,5,1)

denotes an ANN model comprising 4 inputs, 5 hidden and

1 output nodes.

The LSSVM models are compared with the ANN,

Priestley–Taylor, Hargreaves and Ritchie methods in

respect of RMSE, MAE and R2 statistics for the Glendale

and Oxnard stations in Table 2. The each model’s inputs

are also given in this table. The LSSVM2, ANN2,

Priestley–Taylor, Hargreaves and Ritchie models use the

same input variables. It is clear from the Table 2 that the

LSSVM1 model outperformed all other models in terms

of RMSE, MAE and R2 performance criteria. The

LSSVM2, ANN2, Priestley–Taylor, Hargreaves and

Ritchie models are rather simple and consider only T and

Rs data. Compared with the two-parameter empirical

models, the LSSVM2 and ANN2 models have almost

same accuracy, and they performed better than the others.

A slight difference exists between the Hargreaves and

Ritchie models and both of them perform better than the

Priestley–Taylor model. These results come to an agree-

ment with the results of Karimaldini et al. (2012) and

Shiri et al. (2011). They also found that the Hargreaves

method provides better accuracy than the Priestley–Taylor

method.

The estimates of each model for the Glendale and

Oxnard stations are shown in Figs. 3 and 4 in the form of

Table 2 The performance

statistics of the models in

validation period

Models Model inputs RMSE (mm day-1) MAE (mm day-1) R2

Glendale Station

LSSVM1 (100,10) Rs, T, RH and U2 0.141 0.103 0.993

ANN1 (4,5,1) Rs, T, RH and U2 0.171 0.127 0.989

LSSVM2 (100,10) Rs and T 0.560 0.433 0.883

ANN2 (2,8,1) Rs and T 0.565 0.431 0.880

Priestley–Taylor Rs and T 1.273 1.038 0.796

Hargreaves Rs and T 0.610 0.483 0.865

Ritchie Rs and T 0.627 0.488 0.852

Oxnard Station

LSSVM1 (100,10) Rs, T, RH and U2 0.257 0.192 0.969

ANN1 (4,3,1) Rs, T, RH and U2 0.286 0.219 0.961

LSSVM2 (100,10) Rs and T 0.721 0.520 0.766

ANN2 (2,9,1) Rs and T 0.725 0.529 0.767

Priestley–Taylor Rs and T 1.164 0.874 0.663

Hargreaves Rs and T 0.783 0.636 0.734

Ritchie Rs and T 0.751 0.593 0.738

Irrig Sci (2013) 31:611–619 615

123



scatterplot. It is clear from the scatterplots that the four-

input LSSVM1 estimates are closer to the corresponding

FAO-56 PM ET0 values than those of the other models. Fit

line equations (assume that the equation is y = ax ? b)

and R2 values indicate that LSSVM1 model performs

better than the ANN1 model for both stations. The a and

b coefficients of the four-input LSSVM1 model are,

respectively, closer to the 1 and 0 with a higher R2 value

than those of the four-input ANN1 model. The LSSVM2

model also performs better than the other two-parameter

ANN2 and empirical models. Priestley–Taylor has the

worse accuracy for both Glendale and Oxnard stations.

This is also confirmed by the RMSE, MAE and R2 values

in Table 2.

The total ET0 estimation of each model was compared

in Table 3 because of its importance in irrigation man-

agement. For the Glendale Station, the LSSVM1 model

gave an estimate that was closest to the total FAO-56 PM

ET0 value. The ANN1 and Hargreaves had the same esti-

mate, and they were ranked as the second best. For the

Oxnard Station, the Ritchie model gave the closest estimate

of total FAO-56 PM ET0 value than the other models. The

LSSVM1 and ANN1 models had the same estimate, and

they were ranked as the second best.

For the Glendale Station, the LSSVM1 gave 980 esti-

mates lower than the 10 % relative error in the validation

period, while the ANN1, ANN2, LSSVM2, Priestley–Tay-

lor, Hargreaves and Ritchie had 930, 472, 457, 105, 372 and

361 estimates lower than the 10 % error, respectively. Fur-

thermore, the ANN1, ANN2, LSSVM2, Priestley–Taylor,

Hargreaves and Ritchie methods had 690, 241, 226, 45, 182

and 180 estimates lower than the 5 % relative error,

respectively, while the LSSVM1 had 768 estimates lower

than the 5 % error. For the Oxnard Station, the LSSVM1,

ANN1, LSSVM2, ANN2, Priestley–Taylor, Hargreaves and

Ritchie gave 618, 580, 320, 307, 193, 203 and 230 estimates

lower than the 10 % relative error in the validation period,

respectively. Furthermore, the LSSVM1, ANN1, LSSVM2,

ANN2, Priestley–Taylor, Hargreaves and Ritchie had 381,

322, 182, 176, 96, 111 and 119 estimates lower than 5 %

relative error, respectively. The LSSVM1 performs better

than the other models from the relative error viewpoint. Out

of the two-parameter models, the ANN2 and LSSVM2 per-

formed the best for the Glendale and Oxnard stations,
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Fig. 3 The FAO-56 PM and estimated ET0 values of the Glendale Station in the validation period
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respectively. For the both stations, the Priestley–Taylor

model provided worse estimates than the other models from

the relative error viewpoint.

Concluding remarks

The accuracy of LSSVM method for the estimation of

reference evapotranspiration using climatic variables was

investigated in the present study. LSSVM models were

tested and validated by applying daily climatic data of

Glendale and Oxnard stations to estimate ET0 obtained

using the FAO-56 Penman–Monteith equation. In the first

part of the study, the LSSVM models were compared with

the Priestley–Taylor, Hargreaves and Ritchie empirical

methods. The LSSVM1 model whose inputs are the Rs, T,

RH and U2 was found to perform better than the empirical

models in the estimation of FAO-56 PM ET0. LSSVM2

models containing only two inputs, Rs and T, were also

developed and compared with two-parameter Priestley–

Taylor, Hargreaves and Ritchie models because, in some

areas (e.g., developing countries), the available data may

be the solar radiation, Rs, and air temperature, T, due to the

difficulty in obtaining the data of other two parameters,

relative humidity and wind speed. The comparison results

revealed that the LSSVM2 models were superior to the

two-parameter empirical models. In total ET0 estimation,

the LSSVM1 model performed better than the Priestley–

Taylor, Hargreaves and Ritchie models for the Glendale

Station. For the Oxnard Station, however, the Ritchie

method gave the closest estimate of total FAO-56 PM ET0

value than the other models. The LSSVM1 model was

ranked as the second best for this station. The LSSVM2
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Fig. 4 The FAO-56 PM and

estimated ET0 values of the

Oxnard Station in the validation

period

Table 3 Total estimated evapotranspirations in validation period

Models Total evapotranspiration

(mm)

Relative error (%)

Glendale Oxnard Glendale Oxnard

Observed 3,572 2,592 – –

LSSVM1 3,540 2,652 -0.90 2.30

ANN1 3,525 2,651 -1.30 2.30

LSSVM2 3,502 2,375 -2.00 -8.40

ANN2 3,475 2,362 -2.70 -8.90

Priestley–Taylor 2,442 1,986 -31.6 -23.4

Hargreaves 3,524 2,663 -1.30 2.70

Ritchie 3,490 2,623 -2.30 1.20
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models can be used in the estimation of FAO-56 PM ET0

where there exist only the Rs and T data. Out of the two-

parameter empirical models, the Priestley–Taylor model

was found to perform worse than the Hargreaves and

Ritchie models. In the second part of the study, the LSSVM

models were compared with conventional feed-forward

ANN models. The comparison results revealed that the

LSSVM models were superior to the ANN in the estima-

tion of FAO-56 PM ET0. It should be noted that the

LSSVM models used in the present study is site-specific

because selected stations are located in southern district of

California. The researchers should base all calculations on

their local conditions.
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