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Abstract This paper develops a non-linear programming

optimization model with an integrated soil water balance,

to determine the optimal reservoir release policies, the

irrigation allocation to multiple crops and the optimal

cropping pattern in irrigated agriculture. Decision variables

are the cultivated area and the water allocated to each crop.

The objective function of the model maximizes the total

farm income, which is based on crop–water production

functions, production cost and crop prices. The proposed

model is solved using the simulated annealing (SA) global

optimization stochastic search algorithm in combination

with the stochastic gradient descent algorithm. The rainfall,

evapotranspiration and inflow are considered to be sto-

chastic and the model is run for expected values of the

above parameters corresponding to different probability of

exceedence. By combining various probability levels of

rainfall, evapotranspiration and inflow, four weather con-

ditions are distinguished. The model takes into account an

irrigation time interval in each growth stage and gives the

optimal distribution of area, the water to each crop and the

total farm income. The outputs of this model were com-

pared with the results obtained from the model in which the

only decision variables are cultivated areas. The model was

applied on data from a planned reservoir on the Havrias

River in Northern Greece, is sufficiently general and has

great potential to be applicable as a decision support tool

for cropping patterns of an irrigated area and irrigation

scheduling.

Introduction

The objective of the present study is to develop a non-

linear programming optimization model with an integrated

soil water balance, to determine the optimal reservoir

release policies, the irrigation allocation to multiple crops

and the optimal cropping pattern in irrigated agriculture.

Water release from the reservoir is utilized by the crops in

the form of evapotranspiration. In determining the amount

of release from a reservoir, it is therefore necessary to

consider the crop water requirements in relation to the crop

growth and its yield (Vedula and Mujumdar 1992; Vedula

and Kumar 1996; Ghahraman and Sepaskhah 2002, 2004).

A large body of the literature dealing with crop–water

production functions focuses on the impact of water scar-

city at different times of growing season to the crop yield.

The most widely used relationships are Jensens (1968) and

Doorenbos and Kassams (1979).

Earlier models developed for optimal reservoir opera-

tion for irrigation dealt with different aspects of the

problem and with varying degrees of complexity (Vedula

and Mujumdar 1992; Vedula and Kumar 1996; Ghahraman

and Sepaskhah 2002). In all these papers the cropped areas

are assumed to be fixed.

Also, in the literature, papers have been presented,

which deal with the optimal irrigation allocation under

conditions of full and deficit irrigation. The deficit irriga-

tion is the distribution of limited amounts of irrigation

water to satisfy essential water needs of plants. The water

supply is reduced in less critical periods of water demand
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by the crop and supply of full amount of water during

stress-sensitive periods. Deficit irrigation has been sug-

gested as a way to increase system benefits, at the cost of

individual benefits, by decreasing the crop water allocation

and increasing the total irrigated land (Ganji et al. 2006).

Deficit irrigation model limited to field level have been

formulated mostly as a dynamic programming problem

(Rao et al. 1990; Shangguan et al. 2002) but with the

restriction of pre-specified crop areas, and under the

assumption that the volume of water available for the entire

irrigation season is fixed, and given at the beginning of this

period. Wardlaw and Barnes (1999) also used pre-specified

crop areas, and also assumed that the ratio of actual to

maximum crop evapotranspiration is the same as the ratio

of irrigation supply to demand. Sabu et al. (2000) proposed

a model based on both stochastic dynamic programming

and deterministic dynamic programming for computing the

optimal cropping pattern and irrigation schedule. In their

work the water availability depends on canal releases.

Kipkorir et al. (2002) developed a dynamic programming

optimization model to aid the decision making for optimal

crop–area distribution and irrigation in a region where the

water availability for the entire irrigation season is fixed,

and given at the beginning of this period.

In the presented paper the objective function maximizes

the total farm income and the decision variables are

cropped areas and water releases from the reservoir to meet

the corresponding crop water requirements. The initial

reservoir storage is determined by inflows from the end of

the previous irrigation season until the beginning of the

current one. All subsequent inflow during the irrigation

season is regulated and used for the irrigation. In

determining the reservoir release policy for irrigation, the

crop-growing season has often been used as the decision

interval. In this paper instead of the crop growing season

the irrigation interval is used, because the irrigation release

decisions have to be made in a much shorter time interval.

To solve most of these problems in the field of reservoir

operation linear, non-linear and dynamic programmings

have been used (Yeh 1985; Labadie 2004). Classical

optimization techniques can be useful tools for solving

many of the reservoir operation problems. However the

computational requirements are intractable in many

instances. The computational burden and representation of

the problem within an optimization solver have been con-

sistent hurdles in solving many complex reservoir

operation problems characterized by large number of

decision variables (Teegavarapu and Simonovic 2002).

Stochastic search techniques were used in the past in many

instances for developing models for operation of water

resources systems (Yeh 1985). Simulated annealing is one

such stochastic search method that has proved to be use-

ful in obtaining solutions for optimization problems

(Kirkpatrick et al. 1983; Azencott 1992; Vougioukas 1999;

Webster 2001; Winston 2003). The optimization method

developed in the present study is based on this technique.

Recent applications of the simulated annealing technique in

the area of water resources can be found in the works of

Dougherty and Marryott (1991), Kuo et al. (1992), Rizzo

and Dougherty (1996), Pardo-Iguzquiza (1998), Cunha and

Sousa (1999), Teegavarapu and Simonovic (2002) and

Georgiou et al. (2006).

In this paper, the optimization is performed in two

stages. During the first stage the simulated annealing (SA)

global optimization stochastic search algorithm is used. In

the second stage the solution reached by the first stage is

refined by a stochastic gradient descent algorithm, which

does not make use of analytically or numerically computed

gradient information.

Deterministic approaches based on observed climatic or

hydrological sequences are generally appropriate for water

systems with seasonal regulation and short planning hori-

zon relative to the lengths of historical records. They are

not appropriate in assessments of yield, reliability or

operation when the lengths of reliable, concurrent climatic

and hydrological records are short relative to the planning

horizon. Stochastic approaches make uncertainty explicit

and allow investigation of system response against the

possible range of system input and output sequences.

Consequently, the rainfall, evapotranspiration and inflow

which have a great amount of uncertainty are considered to

be stochastic in the optimization model and synthetic series

are used as an alternative to historical records.

Rainfall is the weather variable which has received the

most attention from researchers interested in the stochastic

interpolation and extrapolation of temporal data (Arnold

and Elliot 1996; Young and Gowing 1996; Hanson et al.

1997; Nelson 2002). In this paper, rainfall generation is a

two stage process whereby rainfall occurrence (i.e. wet or

dry day) is based upon a first order two state Markov chain

and rainfall amount is sampled from the gamma distribu-

tion. The stochastic generation of evapotranspiration has

been obtained from evapotranspiration data (Tsakiris 1988;

Kotsopoulos and Svehlik 1989) or meteorological data

(Nicks and Harp 1980; Richardson 1981; Young 2002). In

this paper meteorological data are used. Finally, the syn-

thetic monthly inflows were generated by using an

autoregressive moving average exogenous variables

(ARMAX) model (Kuo et al. 1990; Bras and Rodriguez-

Iturbe 1993; Hipel and McLeod 1994; Makridakis et al.

1998) which represents the relationship between inflow and

precipitation.

The model is run for expected values of the above

parameters corresponding to different probability of

exceedence. By combining various probability levels of

rainfall, evapotranspiration and inflow, four weather
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conditions are distinguished for which an irrigation advice

will be formulated.

Except for the case where the decision variables are

cropped areas and reservoir releases, there is the problem

in which the only decision variables are the cropped areas.

In this case, the reservoir releases are forced to be equal to

the full irrigation water requirements over the entire crop

period and the relative yield is fixed to unity. The objective

function is linear and the nonlinearity of the problem is due

to the constraint of reservoir surface evaporation. The

outputs of the developed model were compared with the

results obtained from a simple model in which the only

decision variables are the optimal allocation of cropped

areas.

Model formulation

The problem may be considered to be one of maximizing

the utilization of the available water supply when conflicts

between supply and demand occur during each time

interval in the irrigation season. The reservoir storage

constitutes the systems state variable, whereas the system

inputs—commonly referred to as decision variables—are

the cultivated areas, and the water releases by the reservoir

for each crop in each time interval to satisfy irrigation

requirements. The reservoir inflow and the effective rain-

fall at each time interval are treated as uncontrolled system

disturbances, and the crop water requirements and limited

reservoir capacity lead to state dependent constraints for

the system input.

Objective function

For application in planning, design and operation of an

irrigation reservoir, it is possible to analyze the effect of

water supply on crop yields. The relationships between

crop yield and water supply can be determined when crop

water requirements and crop water deficits, on the one

hand, and maximum and actual crop yield on the other can

be quantified. Water deficits in crops, and the resulting

water stress on the plant, have an effect on crop evapo-

transpiration and crop yield. The relations which include

the effects of both timing and quantities of irrigation water

are called dated water production functions (Rao et al.

1988). These relationships are complex, as they must

include the effects of crop water-stress in different growth

stage. In the literature the most widely used relations are

those that were proposed by Jensen (1968) and Doorenbos

and Kassam (1979). On the basis of the production function

given by Jensen (1968), the following objective function

which maximizes the total farm income is considered for

the optimal operation of a reservoir to irrigate n crops at

any time interval j during the irrigation season (Georgiou

et al. 2006):

Z� ¼ max
Ai;Ri ;j

Xn

i¼1

Pi Yað Þi � Bi þ Cið Þ
� �

Ai

¼ max
Ai;Ri;j

Xn

i¼1

PiðYmÞi
Yk

j¼1

ETað Þi;j
ðETmÞi;j

 !ki;j

� Bi þ Cið Þ

2

4

3

5Ai

ð1Þ

where Z* = total farm income (€), P = product price

(€ k g-1), Ri,j = reservoir release to cropped area i in time

interval j, B = fixed cost (€ ha-1), C = variable cost

(€ ha-1), A = cropped area (ha), Ya = actual yield (kg ha-1),

Ym = maximum crop yield under given management

conditions that can be obtained when water is non-

limiting (kg ha-1), ETa = actual evapotranspiration (mm),

ETm = maximum evapotranspiration (mm), k = sensitiv-

ity index of crop to water stress, n = number of cultivation

crops, k = number of time intervals, i = cultivation crop

and j = time interval.

Jensens model has the advantage (Kipkorir and Raes

2002; Raes 2002) that the model can be used at time steps

smaller than a growth stage, for example an irrigation

interval. Doorenbos and Kassam (1979) utilized Stewart

and Hagans (1974) and Stewarts et al. (1975, 1977) model

and developed a methodology to quantify yield of 26 crops

using crop, climatic and soil data. They derived yield

response factors (ky) for individual growth stages (i.e.

establishment, vegetative, flowering, yield formation and

ripening) and also for the total growing period. The sen-

sitivity indexes of Jensens model are related to Doorenbos

and Kassam (1979) yield response factors (ky) by the

polynomial function (Georgiou 2004; Georgiou et al.

2006). For the purposes of reservoir operation and irriga-

tion scheduling the crop sensitivity during irrigation

interval is much more important than during a particular

stage of growth. Tsakiris (1982) provides a calculation

procedure for estimating crop sensitivity to water defi-

ciency at given time intervals, using Jensens crop water

production function.

The fixed cost term (B) includes the land cost, and the

variable cost term (C) is the summation of all other costs

such as seed, fertilizer, pesticides, machinery, harvesting,

marketing, drying, unexpected costs, etc. This variable cost

(C) is independent of the quantity of irrigation water

applied because currently this is the standard policy in

Greek agriculture. However, this decision does not affect in

anyway our optimization methodology. One can simply

introduce a water depended term in the variable cost and

use the same optimization methodology.

For the problem in which the only decision variables are

the optimal allocation of cropped areas the actual yield is
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taken to be equal to the maximum yield, and the Eq. (1)

may be written as:

Z� ¼ max
Ai

Xn

i¼1

Pi Yað Þi � Bi þ Cið Þ
� �

Ai

¼ max
Ai

Xn

i¼1

PiðYmÞi � Bi þ Cið Þ
� �

Ai ð2Þ

Constraints

State equation of the reservoir

The reservoir water balance is governed by the reservoir

storage continuity equation:

Sjþ1 ¼ Sj þ Qj �
Xn

i¼1

10AiRi;j � 0:001Ejf Sj

� �
� SPj

þ RAINj ð3Þ

where S = reservoir storage at the beginning of the time

interval (m3), Q = reservoir inflow during the time interval

(m3), A = cropped area (ha), R = reservoir release (for

irrigation) in the time interval (mm), E = reservoir surface

area evaporation, which is computed from the de Bruin

equation (de Bruin 1978) (mm), f(S) = reservoir surface

area (m2) which is computed from the function of reservoir

surface area versus reservoir storage, 0.001 = coefficient

of transformation from mm to m, SP = overflow loss from

spillway during the time interval (m3), RAIN = rain on the

reservoir in the time interval (m3), i = cultivation crop and

j = time interval. The rain on the reservoir area is negli-

gible and for this reason in this study it has not been

included in the model.

The de Bruin equation (de Bruin 1978) calculates

evaporation as a function of wind speed and saturation

vapour pressure deficit and is defined by the equation:

E ¼ a
a� 1

c
Dþ c

� �
f ðuÞ es � eað Þ ð4Þ

where E = reservoir evaporation (mm), a = Priestley–

Taylor constant and its value is usually set to 1.26

(Priestley and Taylor 1972; de Bruin 1978; Vardavas and

Fountoulakis 1996), c = psychrometric constant (kPa/�C),

D = derivative of the water vapour saturation pressure

with respect to air temperature (kPa/�C), f(u) = 0.27(1 +

0.864u) where u = wind speed (m/s), es = saturation

vapour pressure at temperature T (mbar) and ea = actual

vapour pressure at temperature T (mbar). The suitability of

the de Bruin equation for determining time interval reser-

voir surface area evaporation was evaluated by using the

Priestley–Taylor equation (Priestley and Taylor 1972). The

results indicated that there is good agreement between the

evaporation estimates computed using the de Bruin equa-

tion with a = 1.26 and that using the Priestley–Taylor

equation.

The reservoir storage at any time interval is bounded

between an upper limit (full reservoir-Smax) and a lower

limit (dead storage-Smin). Hence, it is possible to remove

the overflow variable SPj from Eq. (3) and rewrite it as a

state Eq. (5), where the reservoir storage is the state.

Sjþ1¼min Smax;SjþQj�
Xn

i¼1

10AiRi;j�0:001�Ej� f Sj

� �
 !

ð5Þ

The state Eq. (5) is nonlinear and time varying, because of

limited capacity and water evaporation from the reservoir,

respectively.

Soil moisture balance

In the beginning of the irrigation season, soil moisture is

assumed to be known. Here, it is assumed to be at field

capacity for all soils and crops. Soil water balance

equation for a given crop i and time interval j are given

by Vedula and Mujumdar (1992), Ghahraman and Sep-

askhah (2004), Vedula et al. (2005) and Georgiou et al.

(2006):

SMinð Þi;jþ1 ¼ SMinð Þi;j þ ERAINi;j þ IRi;j � ETað Þi;j
þ ðTAWi;jþ1 � TAWi;jÞ ð6Þ

where SMin = initial soil moisture level (mm),

ERAIN = effective rainfall (mm) which is computed by

the procedure described from USDA (1993) and Bos

et al. (1996), IR = irrigation water allocated (mm),

ETa = actual evapotranspiration (mm), TAW = total

available soil water (mm), i = cultivation crop and

j = time interval.

The total available soil water (TAW) is an important soil

physical characteristic that needs to be determined when

formulating irrigation guidelines. TAW refers to the total

amount of water available in the root zone that can be

utilized by the crop. The soil water content at field capacity

(FC) and permanent wilting point (PWP) are respectively

the upper and lower limits of TAW. Field capacity is the

quantity of water that a well-drained soil would hold

against the gravitational forces. Permanent wilting point is

the soil water content at which plants stop extracting water

and will permanently wilt. The readily available soil water

(RAW) is the amount of water that crops can extract from

the root zone without experiencing any water stress

(RAW). It is a fraction (p) of TAW. Allen et al. (1998)

present indicative values for the soil water depletion frac-

tion for no stress (p).

A sine function (Borg and Grimes 1986) was adopted

for assessing time pattern of root growth. At the beginning

of every time interval, any water added to (ERAIN and IR)

is computed as if it was done instantaneously.
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The maximum releases of the reservoir are given by

Georgiou et al. (2006):

Rmaxð Þi;j ¼
IRmaxð Þi;j

ME

¼
1� pi;j

� �
TAWi;jþ ETmð Þi;j� SMinð Þi;j�ERAINi;j

ME

ð7Þ

where Rmax = maximum release from reservoir to meet

irrigation requirements (mm), IRmax = maximum irriga-

tion requirements (mm), p = soil moisture depletion factor

for no stress (expressed as a fraction), which depends on

specific crop and maximum evapotranspiration ETm (Allen

et al. 1998), TAW = total available soil water (mm),

SMin = the initial soil moisture level (mm), ETm = max-

imum evapotranspiration (mm), ERAIN = effective

rainfall (mm), ME = mean efficiency included application

efficiency and conveyance efficiency, i = cultivation crop

and j = time interval.

Applying suitable mean efficiency (ME) made a con-

version of irrigation requirements to the total amount of

reservoir release to meet irrigation requirements.

Crop evapotranspiration

Maximum evapotranspiration The maximum evapo-

transpiration ETm coincides with crop evapotranspiration,

which is the product of a crop factor Kc and the reference

evapotranspiration which is computed from the FAO

Penman–Monteith equation (Allen et al. 1998).

Actual evapotranspiration In the present model the actual

rate of maximum evapotranspiration (ETa) is given by

Doorenbos and Kassam (1979), Georgiou et al. (2006):

ETa x; tð Þ ¼ � dx

dt
¼ f ðxÞETm tð Þ ð8Þ

where ETa = actual evapotranspiration, x = level of

soil moisture in the root zone, t = time interval, f(x) = soil

water depletion function and ETm = maximum evapo

transpiration. In this study the soil water depletion function

is formed as follows:

f xð Þ ¼ 1 ð1� pÞTAW\x� TAW
x= ð1� pÞTAW½ � 0\x�ð1� pÞTAW

�
ð9Þ

where x = level of soil moisture in the root zone,

TAW = total available soil water and p = soil moisture

depletion factor for no stress.

Bounds

In the foregoing the decision variables are the cropped

areas and the irrigation releases and the state variable is

storage. Some social economic, management and market

considerations restrict the model variables, such as the

maximum and/or minimum areas cultivated with specific

crops. The lower and upper limits for these variables are

the following:

Amin�Ai�Amax; 0�Ri;j�Rmax
i;j ; and Smin� Sj� Smax

ð10Þ

where A = cropped area, R = reservoir release and

S = reservoir storage.

In this study for the formulation of the optimization

model, the relative yield (Ya/Ym) should be bound so that

the social economic constraints which require a minimum

production for each crop should be valid. For the problem

in which the only decision variables are the cropped areas,

the reservoir releases Ri,j are taken to be equal to the

maximum releases Rmax
i;j .

Stochastic generation

In optimal reservoir operation the historical data are not

available for the length of operation life of reservoir. For

this reason, it is necessary to simulate the historical data

with mathematical models which extracting the statistical

properties of historical data and using these, in combination

with random numbers generators, produce synthetic series

of data with the same statistical properties as that which

was input.

By applying these models to the historical data, syn-

thetic series of 50 years duration (operation life of

reservoir) for rainfall, evapotranspiration and inflow were

generated. Finally, 100 synthetic series of each variable

were generated from which expected values corresponding

to different probability of exceedence were computed with

frequency analysis.

Rainfall

Rainfall is the weather variable which has received the

most attention from researchers interested in the stochastic

interpolation and extrapolation of temporal data (Arnold

and Elliot 1996; Young and Gowing 1996; Hanson et al.

1997; Nelson 2002). As a result of this, the methodology is

now fairly well established and a number of reliable sim-

ulation techniques are available.

In this paper rainfall generation is a two-stage process

whereby rainfall occurrence (i.e. wet or dry day) is based

upon a first order two state Markov chain and rainfall

amount is sampled from the gamma distribution.

Rainfall occurrence is modelled using a first-order

Markov chain approach whereby each day can be either

Irrig Sci (2008) 26:487–504 491
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wet (W) or dry (D). The transitional probability matrix is

given in Eq. (11) below:

PðtÞ ¼ pDD pDW

pWD pWW

� 	
ð11Þ

where pDD = conditional probability that a dry day is

followed by a dry day, pDW = conditional probability that

a wet day is followed by a dry day, pWD = conditional

probability that a dry day is followed by a wet day,

pWW = conditional probability that a wet day is followed

by a wet day.

However, by definition, pWD = 1 - pDD and pDW =

1 - pWW and thus, only two probabilities need be calcu-

lated from historical data, the other two being calculated

from these:

pWD ið Þ ¼

Pp¼n

p¼1

X iþ 1ð Þ ¼ W=X ið Þ ¼ Df g

Pp¼n

p¼1

X ið Þ ¼ Df g
ð12Þ

pWW ið Þ ¼

Pp¼n

p¼1

X iþ 1ð Þ ¼ W=X ið Þ ¼ Wf g

Pp¼n

p¼1

X ið Þ ¼ Wf g
ð13Þ

where pWD(i) = the probability that if day, i is dry, then

day i + 1 will be wet.

To fully characterize the system, therefore, a number

of years of data required in which every day of the year

have at least one instance of the two transitions. In many

cases, the required quantity data will not be available.

Even, if it is, the resulting time series of each probability

will often be spiky. To account for this, the probabili-

ties need to be smoothed and interpolated. Richardson

(1981) used Fourier series, Young (2002) and Georgiou

(2004) used a simple five-day moving average to achieve

this.

These probabilities, in combination with a random

number generator from uniform distribution, are then used

to generate series of wet and dry days. Given the state of

the preceding day (W or D), a random number of uniform

distribution is generated and compared with the appropriate

probability (pWD if preceding day D and pWW if preceding

day W). If the number generated is greater than the prob-

ability, then the day is recorded as wet, otherwise, it is dry.

The process is continued until the end of the year, the last

day of one year becoming the preceding day for the start of

the next.

Given that a day is wet, rainfall amounts are calculated

by sampling from the gamma distribution which is

assumed to represent the frequency distribution of daily

rainfall amounts (Hutchinson and Ungani 1991; Young

and Gowing 1996; Young 2002; Georgiou 2004). It has

two parameters which have to fitted, the shape and the

scale parameters. The probability density function (pdf) of

the gamma distribution is:

fxðxÞ ¼
ba

CðaÞ x
a�1e�bx 0\x\1 ð14Þ

where a = the shape parameter (a[ 0) and b = the scale

parameter (b[ 0).

The great advantage of the gamma distribution over

others reported in the literature for rainfall amount gener-

ation (Bogardi et al. 1988; Young and Gowing 1996;

Young 2002) is that when a = 1, the distribution is

exponential in nature and that for values of 5 and above

(a [ 5), it approaches the normal distribution. This means

that it can be fitted to data with radically different fre-

quency distributions using the same procedure.

The simplest way to use this equation, in combination

with random numbers to generate rainfall amounts is to

integrate the pdf [to give the cumulative density function

(cdf)] and invert the equation to make 9 the dependent

variable. Unfortunately, an analytical integration is not

possible and therefore other methods have to be used. In

this paper, two methods are used depending upon the value

of a. If a\ 1 then the t distribution method is used and if

a[ 1 then a switching algorithm is used (Dagpunar 1988).

In the unlikely event that a = 1, the exponential distribu-

tion is used. Both of the methods are based upon the

concept of envelope rejection (Dagpunar 1988).

Reference evapotranspiration

The reference evapotranspiration is computed from the

FAO Penman–Monteith equation (Allen et al. 1998). In the

literature the stochastic generation of evapotranspiration is

achieved by using evapotranspiration data (Tsakiris 1988;

Kotsopoulos and Svehlik 1989) or meteorological data

(Nicks and Harp 1980; Richardson 1981; Young 2002). In

the FAO Penman–Monteith equation, the basic meteoro-

logical parameters are the mean temperature, radiation,

relative humidity and wind speed. The mean temperature

and radiation are generated simultaneously and relative

humidity and wind speed independently.

Mean temperature and radiation

The method used for generating mean temperature and

radiation is based upon that given by Richardson (1981)

and Young (2002). The approach considers mean temper-

ature and radiation to be a continuous multivariate

stochastic process, with means and standard deviations

conditioned upon the wet or dry status of the day. These

are two stages to the procedure, parameterisation and

generation.

492 Irrig Sci (2008) 26:487–504

123



In parameterisation there are also two stages. The two

series of data are first reduced to residual elements and

then various correlations are calculated both between and

within the resultant residual series. The process involves

reducing the time-series for each variable to a series of

residual elements by removing previously smoothed

means and standard deviations of dry and wet day

according to:

xp;iðjÞ ¼
Xp;iðjÞ � Xi

0ðjÞ
s0

i ðjÞ
Yp;i ¼ 0 ð15Þ

xp;iðjÞ ¼
Xp;iðjÞ � Xi

1ðjÞ
s1

i ðjÞ
Yp;i [ 0 ð16Þ

where xp,i(j) = residual component of variable j, on day i

year p, xp,i(j) = variable j, on day i year p, Xi
0ðjÞ= mean of

variable j on dry day i, si
0(j) = standard deviation of vari-

able j on dry day i, Xi
1ðjÞ= mean of variable j on wet day i,

si
1(j) = standard deviation of variable j on wet day i and

Yp,i = rainfall amount.

Richardson (1981) used Fourier series to smooth the

means and standard deviations; Young (2002) used 5-day

moving average with Lagrange interpolation. In this study

was used the procedure by Richardson (1981). The two

series of residuals are mutually dependent. Thus, the lag 1

serial correlation and lag 0 and 1 cross-correlation coeffi-

cient are used to describe the time dependence and the

independence of the two variables.

In the generation, for the given status of day (wet or

dry), the procedure consists of generating new residuals,

multiplying these by the appropriate standard deviation

(according to wet/dry status and time of year) and adding

the product to the appropriate mean.

The model used by Richardson (1981) is based upon

that proposed by Matalas (1967). This is a weakly sta-

tionary generating process which assumes that the

residuals of mean temperature and radiation are normally

distributed (mean = 0, standard deviation = 1) and can

be described by a first-order linear autoregressive model.

It is given by:

x!p;iðjÞ ¼ Að Þ x!p;i�1ðjÞ þ Bep;iðjÞ ð17Þ

where x!p;iðjÞ= (2 9 1) matrix for day i, year p whose

elements are residuals of mean temperature (j = 1) and

radiation (j = 2), ep,i(j) = (2 9 1) matrix of independent

random numbers that are normally distributed (mean = 0,

variance = 1). Generation of these is based upon an

envelope rejection method given in Dagpunar (1988). The

matrices A and B are defined such that the generated

residuals have the observed serial- and cross-correlation

coefficients and are given by Richardson (1981), Young

(2002) and Georgiou (2004).

Relative humidity

The generation of relative humidity has received very little

attention in the literature. The process used for generation

and parameterisation is the same as that given in rainfall

amount that two gamma distributions are used, one for wet

and one for dry days. Thus, parameterisation involves the

calculation two values of a and two values of b for each day.

Wind speed

Like rainfall amount, wind speed is sampled from a gamma

distribution whose parameters are calculated on a daily

basis. Unlike rainfall, this sampling occurs on every day of

the year regardless of whether the day is wet or dry.

Inflow

Several streamflow models have been developed in the

literature like SARIMA, Thomas-Fiering, etc. (Thomas and

Fiering 1962; Box and Jenkins 1976; Papamichail and

Georgiou 2001). Some of the forecast models are statistical

models with which streamflow is estimated by equations

and parameters derived from statistical characteristics of

precipitation and stream flow records. In this paper, the

synthetic monthly inflows were generated by using an

ARMAX model (Kuo et al. 1990; Bras and Rodriguez-

Iturbe 1993; Hipel and McLeod 1994; Makridakis et al.

1998) which represents the relationship between inflow and

precipitation and is written as:

/ðBÞyt ¼ xðBÞxt þ hðBÞet ð18Þ

where t = discrete time, yt = inflow time series,

xt = precipitation time series, et = normally independently

distributed white noise residual with mean zero and vari-

ance re
2, u(B) = 1 - u1B - u2B

2-_-upBp nonseasonal

autoregressive (AR) operator of order p, h(B) = 1 - h1

B - h2B
2-_-hpBq nonseasonal moving average (MA)

operator of order q and x(B) = x0 - x1B - x2B
2-_-

xrB
r operator of order r in the numerator of the transfer

function, B = backward shift operator defined by

Byt = yt-1.

The notation (p,q,r) is used to represent the ARMAX

model. The application of the ARMAX models requires

stationarity of time series data obtained by different

transformations. In this paper the standardized transfor-

mation was used. The construction of ARMAX models

involves various stages (Hipel and McLeod 1994; Makri-

dakis et al. 1998) which are the identification, the

estimation and the diagnostic checking. The purpose of the

identification stage is to determine the differencing

required to produce stationarity. The identification is

examined by the cross correlation function. The estimation

Irrig Sci (2008) 26:487–504 493

123



stage involves the estimation of the time series model

parameters. This estimation is obtained by the residuals

squares minimization using the Marquardt algorithm (Press

et al. 1992). Finally, the diagnostic checking involves

examination of the residuals fitted model and this can or

cannot prove the model inadequancy and it can as well

inform about the model improvement. Using the identified

ARMAX model with the synthetically generating precipi-

tation and the normally independently distributed white-

noise residuals, the synthetic monthly inflows have been

obtained.

Model solution

The optimization of the objective function given in Eq. (1)

is a problem of non-linear programming without analytical

solution and with multiple local optimums (Floudas et al.

1999). Simulated annealing is a stochastic global minimi-

zation technique especially suited for this kind of problem.

Simulated annealing (SA) is motivated by an analogy to

physical annealing in solids, inspired from Monte Carlo

methods in statistical mechanics (Kirkpatrick et al. 1983;

Azencott 1992; Vougioukas 1999; Webster 2001; Winston

2003; Monem and Namdarian 2005). Kirkpatrick et al.

(1983) took the idea of annealing from Metropolis algo-

rithm and applied to combinatorial problems, e.g., the

traveling salesman problem. Annealing refers to the pro-

cess in which a solid material is first melted and then

allowed to cool by slowly reducing the temperature. The

particles of the material attempt to arrange themselves in a

low energy state during the cooling process. The collective

energy state of the ensemble of particles can be considered

the ‘‘configuration’’ of the material. The probability that a

particle is at any energy level can be calculated by use of

the Boltzman distribution. As the temperature of the

material decrease, the Boltzman distribution tends toward

the particle configuration that has the lowest energy.

Metropolis et al. (1953) first realized that the thermal

equilibrium process could be simulated for a fixed tem-

perature by Monte Carlo methods to generate sequences of

energy state. This technique is well suited for several

decision variables with different natures (discrete, contin-

uous, real, integer) that are mostly encountered in

engineering system. This method has no limitation in terms

of number of decision variables, constraints and objective

function, which are major limitations to classical optimi-

zation methods known as the ‘‘curse of dimensionality’’.

A very important parameter in the implementation of SA

is the initial temperature and the stopping criterion. In

theory, one should let the temperature fall to zero. How-

ever, this would require a huge number of iterations. In

some implementations of the SA algorithm the final

temperature is determined by fixing the total number of

solutions to be generated, or simply the maximum number

of steps. Another approach is to stop when no more pro-

gress is being made. An important realization is that at a

temperature which is near zero the SA behaves essentially

like a standard minimization procedure, since it only

accepts solutions of lower energy. For this reason the

optimization is performed in two stages. During the first

stage the SA global optimization stochastic search algo-

rithm is used and after the SA terminates at some nonzero

temperature, we refine the solution reached by the SA in a

second stage, using a stochastic gradient descent (SGD)

algorithm. This algorithm assumes that no analytical

expression exists for the constrained gradient of the cost

function. The SA and stochastic gradient descent algorithm

is given in Fig. 1.

In this study, both optimization stages (simulated

annealing and stochastic gradient descent) have been

implemented in the Matlab language (Release 6.5.1)

(Mathworks 2003). After some experimentation, the initial

temperature parameter for the SA was set to 30. This value

was high enough to avoid getting stuck to local minima and

to allow the initial exploration of the solution space without

generating excessive numbers of infeasible candidate

states. The termination criterion used was a simple one,

i.e., a maximum number of iterations K. The value used

was 4,000 iterations, and it was very conservative, in the

sense that in all executions, well before this number, the

SA would not discover any significantly better solutions.

Because the optimization algorithm is stochastic, the

computed optimal solution would differ slightly from

execution to execution. The globally optimal solution was

achieved after mutiple executions of the optimization

procedure for the same initial conditions and parameters.

The term ‘‘globally optimal’’ refers to the best solution

discovered among all executions.

Case study

Study region and data

The Chalkidiki region in Northern Greece was used as a

case study for the optimization model. The main source of

irrigation water in the region is from a planned reservoir on

the Havrias river. Water availability in the reservoir at the

start of irrigation season varies as a function of the winter

rain and the inflow. The optimization model was used to

compute the optimal cropping pattern and irrigation

scheduling for six crops (corn, cotton, tomato, watermelon,

olive and apricot). Determination of the optimal cropping

pattern and reservoir releases to meet irrigation require-

ments for the region requires a good knowledge of the
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availability of the water in the reservoir during the irriga-

tion season, meteorological conditions for the region and

crops characteristics.

The main parameters required for the optimization

procedure and some critical data for the indicated crops are

given in Table 1 for the annual crops (corn, cotton, tomato

and watermelon) and in Table 2 for olive and apricot. The

yield response factors (ky) were extracted from Doorenbos

and Kassam (1979). The sensitivity indexes (k) for Jensens

model, for all growing stages were computed from a

polynomial function (Georgiou 2004; Georgiou et al. 2006)

by using the yield response factors (ky) (Doorenbos and

Kassam 1979) and for the time intervals by using Tsakiris

(1982) procedure. Growth stage durations for different

crops were chosen based on local observations. In the cost

calculations, it was assumed that farmers own the land,

thus fixed cost (B) is equaled zero. The variable cost (C) for

each crop was computed from data supplied by the Region

of Central Macedonia, Greece (Region of Central Mace-

donia 2002). This variable cost (C) is independent of the

quantity of irrigation water applied because currently this is

the standard policy in Greek agriculture.

Tables 1 and 2 show that the irrigation season starts in

April and ends in September. The year is divided into 36

periods with each month consisting of three periods. The

first two periods in each month have ten days each, whereas

the third period comprises the remaining days of month.

For convenience, however, all the 36 periods in a year are

Input data, Initial temperature (To), random walks (j=1,2,…,M), iterations (i=1,2,…,K), time intervals (k=1,2,…,L) 

i= 1 

Generate vector of cultivated area from normal distribution (SA) or 
 Uniform random numbers (stochastic gradient descent) 

Generation reservoir releases, application of soil moisture balance, computation of reservoir 
storage continuity equation and various constraints 

Did random  
walk completed? 

N Y 

j=j+1, Ei+1, ∆Ε= Ei+1-Ei

k=1 

k=k+1 

Accept this state and store it 

Uniform random number R, 
h(∆E)=1/(1+exp(∆Ε/Τ i)

    h(∆E)>R 
Ti= To/log(i) 

Y

j= 1 

k<L 

N

∆E<0
Y

j>M

N

N

Y N

i=i+1      i>K
N

Y

Y

Termination 
criterion of SA 
and SGD 
satisfied 

Y STOPNTotal farm income = 
optimal solution from SA 

i=1 

Fig. 1 Flow chart of the

proposed model which is solved

using the simulated annealing

(SA) in combination with the

stochastic gradient descent

algorithm
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referred to as ten-day period or time interval. The time

interval is less or equal to the irrigation interval for the six

crops and the first time interval of irrigation season cor-

responds to third ten-day period of April.

Although the proposed optimization model can handle

heterogeneous soil, the considered soil under study was

homogenous. It consists of one layer characterized as

clay loam (CL) with FC = 0.27 cm3/cm3 and PWP =

0.15 cm3/cm3. Due to higher rainfall during the non-

irrigation season, it is assumed that soil water content at the

beginning of the irrigation season is at FC and for this

reason the values of ky in the establishment stage are

Table 1 Some characteristics

of the annual crops under study

in the Chalkidiki region

ky Yield response factor, k
Sensitivity index of crop to

water stress, d Growth stage

(days)
a Doorenbos and Kassam

(1979)
b Local observations
c Region of Central Macedonia,

Greece

Growth stage Parameter Crop

Corn Cotton Tomato Watermelon

Establishment ky
a 0.00 0.00 0.00 0.00

k 0.00 0.00 0.00 0.00

db 25 15 25 15

Vegetative ky 0.40 0.20 0.40 0.45

k 0.3480 0.1664 0.3480 0.3944

d 40 30 20 25

Flowering ky 1.50 0.50 1.10 0.80

k 1.8202 0.4415 1.1312 0.7501

d 25 60 25 20

Yield formation ky 0.50 0.40 0.80 0.80

k 0.4415 0.3480 0.7501 0.7501

d 45 30 25 30

Ripening ky 0.20 0.25 0.40 0.30

k 0.1664 0.2116 0.3480 0.2568

d 15 20 20 20

Planting dayb 21 April 21 April 26 April 21 April

Product price P(€ kg-1)c 0.14 0.79 0.32 0.13

Maximum yield Ym (kg ha-1)c 14,500 3,900 66,600 80,000

Profit = P 9 Ym (€ ha-1) 2,030 3,081 21,312 10,400

Variable cost C (€ ha-1)c 1,043 1,565 11,316 3,658

Net profit for maximum

yield = P 9 Ym - C (€ ha-1)

987 1,516 9,996 6,742

Table 2 Some characteristics

of the olive and apricot crops in

the Chalkidiki region

ky Yield response factor, k
Sensitivity index of crop to

water stress
a Doorenbos and Kassam

(1979)
c Region of Central Macedonia,

Greece

Month of irrigation season Parameter Crop

Olive Apricot

May ky
a 0.20 0.10

k 0.1664 0.0754

June ky 0.30 0.35

k 0.2568 0.3022

July ky 0.50 0.60

k 0.4415 0.5387

August ky 0.50 0.40

k 0.4415 0.3480

September ky 0.40 0.10

k 0.3480 0.0754

Product price P (€ kg-1)c 1.29 1.00

Maximum yield Ym (kg ha-1)c 7,540 10,000

Profit = P 9 Ym (€ ha-1) 9,727 10,000

Variable cost C (€ ha-1)c 3,724 4,706

Net profit for maximum yield = P 9 Ym - C (€ ha-1) 6,003 5,294
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assumed to be equal zero as also proposed by Tsakiris

(1982) and Kotsopoulos (1989).

The reference crop evapotranspiration was derived from

daily climatic data (mean temperature, radiation, relative

humidity and wind speed) at Agios Mamas meteorological

station (latitude 40�160N longitude 23�200E) by the FAO

Penman–Monteith equation (Allen et al. 1998). Effective

rainfall was computed from the procedure which is

described by USDA (1993) where the rainfall in each time

interval came from daily rainfall data. Monthly inflow was

computed from a simple rainfall—runoff model which is

described from Steenhuis and VanDerMolen (1986). The

ten-day inflows derived by dividing the monthly inflows by

three.

The mean efficiency for drip irrigation method and

pressurized irrigation system is assumed to be equal 0.85.

Some social economic, management and market consid-

erations restrict the maximum and minimum areas

cultivated with specific crops and the total available area.

The useful reservoir capacity is planned to be 26 hm3

and the dead capacity 4.3 hm3. Reservoir surface area

evaporation is computed from de Bruin equation (de Bruin

1978) and the reservoir surface area f(S) in Eq. (3) is

computed by the relationship:

f ðSÞ ¼ 7:485� S0:7152 ð19Þ

where S = reservoir storage.

Generation of synthetic data

The available historical data of rainfall, evapotranspiration

and inflow at the dam site cover a 21-year period (1977–

1997). By applying the models which were described in

‘‘Stochastic generation’’ to the historical data, synthetic

series of 50 years duration (operation life of reservoir) for

rainfall, evapotranspiration and inflow were generated.

Finally, 100 synthetic series of each variable were gener-

ated from which one mean synthetic series was resulted.

Figure 2 shows the comparison between the monthly

means and the monthly standard deviations of the mea-

sured rainfall (1977–1997) with that as averages of 100

replicates of the generated rainfall time series (50 years

each) of synthetic daily rainfall. It can be seen that the

monthly means and the monthly standard deviations of the

generated synthetic rainfall are close to that of the mea-

sured rainfall. This confirms the fact that the process in

which the rainfall occurrence is based upon a first order

two state Markov chain and rainfall amount is sampled

from gamma distribution is suitable for generating syn-

thetic rainfall.

Figure 3 shows the comparison between the monthly

means and the monthly standard deviations of the computed

reference evapotranspiration from the FAO Penman–

Monteith equation by using daily historical meteorological

data (1977–1997) with that as averages of 100 replicates of

the generated reference evapotranspiration time series

(50 years each) by using generated synthetic daily mean

temperature, radiation, relative humidity and wind speed.

It can be seen that the monthly means and the monthly

standard deviations of the generated synthetic evapotrans-

piration are close to that of the computed evapotranspiration.

This confirms the fact that the process to generate meteo-

rological parameters is suitable for generating synthetic

reference evapotranspiration.

Figure 4 shows the comparison between the monthly

means and the monthly standard deviations of the mea-

sured inflow (1977–1997) with that as averages of 100

replicates of the generated inflow time series (50 years

each) of synthetic monthly inflow. It can be seen that the
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monthly means and the monthly standard deviations of the

generated synthetic inflow are close to that of the measured

inflow. This confirms the fact that the selected ARMAX

model is suitable for generating synthetic monthly inflow.

Generated values of rainfall, evapotranspiration and

inflow are used to calculate frequency curves from which

expected values corresponding to different probability of

exceedence were received.

Since the objective of the irrigation scheduling is to give

farmers guidelines for the adjustment of their irrigation

calendars to the actual weather conditions, the develop-

ment of the irrigation scheduling requires information on

rainfall and evapotranspiration levels that can be expected

with various probabilities. The probability of rainfall

coincides with the probability of inflow. By combining the

various probability levels of rainfall, evapotranspiration

and inflow, four weather conditions are distinguished (Raes

et al. 2000); hot and dry, dry, normal and wet weather

conditions with the probability levels of exceedence of

rainfall, evapotranspiration and inflow and are given in

Table 3.

By taking to account the above probabilities, with

the help of frequency curves the ten day rainfall and

evapotranspiration levels are shown in Fig. 5 and the ten

day inflow levels are shown in Fig. 6.

Results and discussion

The presented optimization model (with areas and reservoir

releases as decision variables) was used to compute the

optimal cropping pattern and irrigation scheduling for the

six crops (corn, cotton, tomato, watermelon, olive and

apricot) with data from all weather conditions. The time

interval used was equal to 10 days for all six crops.

For the hot and dry weather condition no feasible

solution existed. The reason was that the initial reservoir

storage and the inflow during the irrigation season were not

enough to irrigate the crops given the imposed constraints

of minimum desired area (Amin) and minimum desired

relative yield (Ya/Ym). In this study social economic con-

straints required a minimum production and the relative

yield (Ya/Ym) for all crops was taken to be equal 0.70.

The optimization model was run for expected values of

rainfall, evapotranspiration and inflow corresponding to

different probability of exceedence (dry, normal and wet

weather condition) to allocate cropped area and irrigation

water to crops. The relative yield for the three weather

conditions are given in Table 4 and the allocation of irri-

gation water from reservoir and cropped area are given in

Table 5.

The allocation of irrigation water and the cropped area

for each crop depend upon factors such as net profit per

unit yield (price), maximum yield obtainable per unit area,

profit, cost, net profit for maximum yield (Tables 1, 2),

water application needed for getting the maximum yield

and the total irrigation water. The net profit per unit yield

(price) of cotton is very high compared to all other annual

crops and the maximum yield per unit area of cropped is

less than other annual crops. The net profit for maximum

yield of Olive, Watermelon and Tomato is very high

compared to all other crops and the Corn and Cotton is very

low. According to these results the relative yields are near

maximum (Table 4) for Olive, Watermelon and Tomato

and the areas are greater than other crops (Table 5). Also,

Corn and Cotton are allocated with the minimum relative

yield and minimum areas (Tables 4, 5).

Reducing total irrigation water would impose water

stress on crops. In this case, there is not only competition

for water through the time intervals, but there is also

competition among the crops in any time interval resulting

at different relative yields (Table 4).

As the risk factor increase, the expected value of total

area increase and thus the total allocation of water from

reservoir also increase. At normal weather condition, the

total cropped area is 7,367 ha and the corresponding water
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Table 3 The four distinguished weather conditions

Weather

condition

Probability level of exceedence

Evapotranspiration

(%)

Rainfall (%) Inflow

(%)

Hot and dry 20 100 (no rain) 100

Dry 40 80 80

Normal 50 50 50

Wet 60 20 20
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from reservoir is 26.13 hm3. At wet weather condition, the

total cropped area is 12,526 ha and the corresponding

water from reservoir is 27.24 hm3. The difference in the

total cropped area is 70% and in the corresponding water

from reservoir is 4.3%. This is owed in the fact that an

important part of crop water requirement is covered by the

effective rainfall. This also it appears also in the Cotton

where while the cropped area is same in the three cases of

weather conditions (Table 5) the water from reservoir is

decreased as long as we go from dry to the wet weather

condition.

In Fig. 7 as an example are shown the input data

[effective rainfall (ERAIN) and maximum evapotranspi-

ration (ETm)] and the outputs from developed optimization

model [reservoir release to meet irrigation requirements (R)

and actual evapotranspiration (ETa)] for Cotton, Tomato

and Apricot crops for each time interval during the normal

and wet weather condition.

Figure 7 clearly demonstrates that the preference of the

optimization model would be more pronounced with con-

ditions of reduced full irrigation water requirements (deficit

irrigation). Under these conditions the actual evapotrans-

piration ETa fell below the maximum evapotranspiration

ETm. This was due to insufficient water being applied to

meet ETm for producing a full yield (Ym). Temporal dis-

tributions of ETa as compared with ETm are presented for

the three crops and two weather conditions in Fig. 7. As

water reduction increased, ETa decreased and fell below

the ETm values. But these declines were not the same at

different time intervals, due to unequal yield sensitivity

indexes (k, Tables 1, 2). Note that for the time intervals in

which the effective rainfall is non-zero, the corresponding

release is adequately small or even null, as expected

(Fig. 7).

Because the soil moisture is assumed to be at the field

capacity (FC) of the first time interval, there will not nor-

mally be any irrigation requirement during this time

interval, whereas irrigation may be required in subsequent

time intervals, as shown in Fig. 7. The amount of the

releases at each time interval depends on the level of soil
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Table 4 Relative yield (Ya/Ym) of crops under study in the Chalkidiki

region for various weather conditions

Crop Relative yield (Ya/Ym)

Dry Normal Wet

Corn 0.71 0.71 0.70

Cotton 0.71 0.72 0.70

Olive 0.93 0.99 0.99

Tomato 0.99 1.00 0.99

Watermelon 0.93 0.95 0.88

Apricot 0.84 0.86 0.91
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moisture in the root zone as determined by the soil

moisture balance, the irrigation requirements and the

availability of reservoir storage (S).

Therefore, the objective function (Eq. 1) dictated the

true water allocation to the model. A complex mixture of

crop sensitivity to water reduction, area of cropped, and

crop gross benefit and cost caused a non-uniform effect of

water shortage on crop yield, as is governed by such an

integrated optimization model.

Given the irrigation water allocated and the irrigation

time interval, the irrigation scheduling can subsequently be

derived by plotting the root zone depletion along the time

Table 5 Allocation of water

from reservoir and cultivation

area to crops for various

weather conditions

Crop Dry Normal Wet

Water (hm3) Area (ha) Water (hm3) Area (ha) Water (hm3) Area (ha)

Corn 0.167 50 0.159 50 0.151 90

Cotton 0.144 50 0.129 50 0.056 50

Olive 0.196 50 20.211 5,492 23.769 10,611

Tomato 3.305 879 3.882 1,135 2.384 1,135

Watermelon 0.151 50 1.552 590 0.738 590

Apricot 0.200 50 0.195 50 0.142 50

TOTAL 4.163 1,129 26.128 7,367 27.240 12,526
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Fig. 7 Effective rainfall

(ERAIN), maximum

evapotranspiration (ETm),

reservoir release to meet

irrigation requirements (R), and

actual evapotranspiration (ETa)

for the normal and wet weather

conditions for the three crops

(cotton, tomato and apricot)

under study
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axis for any crop in any weather condition with the help of

soil moisture balance model. In Fig. 8, as an example, is

shown the simulated root zone soil moisture at the end of

each time interval in normal weather condition for the

tomato and corn. To avoid crop water stress, the root zone

depletion should not exceed the threshold value for no

stress (lower limit). If so, the depletion will be larger than

RAW (RAW = p 9 TAW) which referred as threshold in

Fig. 8 and the crop will experience water stress. The

resulting yield decrease depends on the severity of the

stress and the sensitivity of the crop at the particular time

interval. Figure 8 shows that in the crop of Tomato with

relative yield equals to 1 (Table 4) the soil moisture

depletion in the root zone at the end of each time interval is

always above the threshold for no water stress. On the other

hand, to avoid water losses, the soil water content in the

root zone after an irrigation event should not exceed field

capacity (upper limit).

The problem in which the only decision variables are the

cropped areas is very simple as mentioned in ‘‘Model

formulation’’ and may be solved by LINGO (Lindo Sys-

tems 2003). In this problem, the releases are forced to be

equal to the full irrigation water requirements over the

entire crop period and the relative yield is fixed to unity.

This problem corresponds to full supply irrigation strategy

and the reservoir releases are not variables but input data.

The total farm income and total cropped areas for the full

irrigation were computed by the LINGO for all weather

conditions and are given in Table 6. Also, for the hot and

dry weather condition no feasible solution existed. The

reason was that the initial reservoir storage and the inflow

during the irrigation season were not enough to irrigate the

crops given the imposed constraints of minimum desired

area (Amin) and maximum release from reservoir to meet

irrigation requirements (Rmax).

The initial problem, with areas and reservoir releases as

decision variables, corresponds to deficit irrigation,

because the relative yield of some crops is less than one. It

is interesting to compare the results for the two approaches,

namely, the full irrigation and the deficit irrigation. Table 6

indicates that the total farm income and the total cropped

area in deficit irrigation are greater than those in full irri-

gation for all weather conditions. The differences in the

total farm income vary from 2.2 to 8.2% and in the total

cropped area vary from 7.8 to 10.7% (dry weather condi-

tion). With given reservoir conditions (reservoir storage in

the beginning of the irrigation season and inflow during

this period) the total farm income can be increased by

extending the total cropped area, resulting to deficit irri-

gation for some crops compared to full irrigation.

For the investigation of effect of reservoir storage in the

beginning of the irrigation season to the total farm income

and total cropped area, for all weather conditions, the

initial problem with areas and reservoir releases as decision

variables was applied (deficit irrigation) as well as the

problem in which the only decision variables are the

cropped areas (full irrigation). The available reservoir

storage in the beginning of the irrigation season varied

from 4.3 to 25.6 (maximum capacity) million m3. The total

farm income and total cropped areas for the full and deficit

irrigation for various reservoir storage in the beginning of

the irrigation season are given in Table 7.

With a given reservoir storage, it is possible to increase

the total farm income by extending the cropped area

resulting to deficit irrigation in some crops compared to full

supply to all crops (Table 7). As an example an increase of

1,047,610 € (i.e. 44,306,000–43,258,390) can be achieved

by extending the area by 277 ha (i.e. 6,786–6,509) if

25.6 million m3 of initial reservoir storage for normal

weather condition is available. Also, in certain cases where

no feasible solution existed concerning the problem of full

irrigation, the initial problem (deficit irrigation) gave fea-

sible solution.

Conclusions

This paper distinguishes two approaches to the optimal

irrigation reservoir operation for water allocation and crop

planning for the various crops in any given irrigation
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Fig. 8 Simulated root zone soil moisture at the end of each time

interval in normal weather condition for the tomato and corn
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season for known initial storage, inflow and initial soil

moisture in the cropped area. The impact of water deficit

on crop yield, the effect of soil moisture dynamics on crop

water requirements and competition for water among the

crops in an irrigation season are taken into account. In the

first approach a multi-crop irrigation model for a single

reservoir operating under water scarcity constraints (deficit

irrigation) has been optimized, using the simulated

annealing (SA) global optimization stochastic search

algorithm in combination with the stochastic gradient

descent algorithm. In the second approach a multicrop

irrigation model for a single reservoir, operating under full

irrigation conditions, has been optimized using LINGO

with only decision variables the cropped areas. The rain-

fall, evapotranspiration and inflow are considered to be

stochastic and the model is run for expected values of the

above parameters corresponding to different probability of

exceedence. By combining the various probability levels of

rainfall, evapotranspiration and inflow, four weather con-

ditions are distinguished (hot and dry, dry, normal and

Table 6 Total farm income and total cropped area for various weather conditions for both full and deficit irrigation

Weather condition Total farm income (€) Total cropped area (ha)

Deficit irrigation Full irrigation Deficit irrigation Full irrigation

Dry 9,443,000 8,730,000 1,129 1,020

Normal 47,473,000 46,470,000 7,367 6,508

Wet 76,942,000 74,180,000 12,526 11,614

Table 7 Total farm income and

total cropped area for various

weather conditions and various

initial reservoir storages for

both full and deficit irrigation

Initial reservoir

storage (m3)

Total farm income (€) Total cropped area (ha)

Deficit irrigation Full irrigation Deficit irrigation Full irrigation

Hot and dry

4,300,000 – – – –

6,100,000 1,425,000 – 300 –

6,500,000 1,732,000 1,629,183 326 300

10,000,000 9,316,200 8,389,120 1,129 986

12,300,000 13,375,000 12,697,880 1,626 1,433

18,300,000 20,128,000 19,677,220 2,768 2,535

25,600,000 27,656,000 27,234,830 4,017 3,794

Dry

4,300,000 – – – –

5,100,000 1,317,000 – 300 –

5,300,000 1,620,000 1,560,474 341 303

6,300,000 4,238,300 3,647,606 609 512

12,300,000 15,899,000 15,223,970 1,925 1,808

18,300,000 22,940,000 22,473,100 3,151 3,001

25,600,000 31,672,000 31,072,040 4,683 4,434

Normal

4,300,000 16,359,000 15,625,560 1,997 1,867

6,300,000 18,933,000 18,328,220 2,520 2,310

12,300,000 26,752,000 26,146,590 3,777 3,613

18,300,000 34,664,000 33,981,280 5,148 4,918

25,600,000 44,306,000 43,258,390 6,786 6,509

Wet

4,300,000 34,958,000 33,602,110 5,012 4,855

6,300,000 39,457,000 37,878,820 6,057 5,567

12,300,000 52,408,000 50,729,100 8,163 7,708

18,300,000 65,324,000 63,600,900 10,288 9,852

25,600,000 76,762,000 74,180,240 12,265 11,615
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wet). The models were then applied to Chalkidiki region in

Northern Greece where the source of irrigation water was

the water from a planned reservoir on the Havrias river.

The two approaches applied in this study under the four

weather conditions give satisfactory results for deficit and

full irrigation. A significant increase in a cropped area and

total farm income from the irrigation system is shown to be

possible when the deficit irrigation approach is adopted. In

certain cases of the hot and dry weather conditions where

no feasible solution existed concerning the problem of full

irrigation, the initial problem (deficit irrigation) gave a

feasible solution. The net profit for maximum yield of

Olive, Watermelon and Tomato is very high compared to

all other crops and the Corn and Cotton is very low. This

resulted to relative yields being near maximum for Olive,

Watermelon and Tomato and the areas being greater than

other crops. Also, Corn and Cotton are allocated with the

minimum relative yield and minimum areas. The results

obtained from this case study suggest that the proposed

optimization approach is general and can be adopted as a

tool for globally optimal water allocation and crop plan-

ning of any irrigation reservoir, under various constraints

and weather conditions.
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