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Abstract Endovascular aneurysm repair (EVAR) is

considered to be the treatment of choice for abdominal

aortic aneurysms (AAA). Despite the initial technical

success, EVAR is amenable to early and late complica-

tions, among which the migration of the endograft (EG)

with subsequent proximal endoleak (Type Ia) leads to re-

pressurization of the AAA sac, exposure to excessive wall

stress, and, hence, to potential rupture. This article dis-

cusses the influence that certain geometrical factors, such

as neck angulation, iliac bifurcation, EG curvature, neck-

to-iliac diameter, and length ratios, as well as iliac limbs

configuration can exert on the hemodynamic behavior of

the EGs. The information provided could help both clini-

cians and EG manufacturers towards further development

and improvement of EG designs and better operational

planning.

Keywords Endovascular graft � Migration �
Displacement forces � Geometry � Abdominal aortic

aneurysm � Biomechanics

Introduction

Endovascular aneurysm repair (EVAR) is considered to be

the preferred treatment modality for abdominal aortic

aneurysms (AAA) for over a decade. EVAR aims at the

positioning of an endovascular graft (EVG) within the

AAA sac using an over-the-wire technique either via sur-

gical exposure of both common femoral arteries or totally

percutaneously. Reduced perioperative morbidity and

mortality comprise the major advantage of this minimally

invasive technique compared with conventional open

repair [1, 2]. However, despite the initial technical success

and early discharge of the patient, this technique is ame-

nable to early and late complications, such as EVG

migration, endoleaks, and material failure, which may lead

to reexposure of the AAA wall to pulsatile blood pressure

and excessive wall stress and, thus, to potential rupture.

This short review discusses the geometrical factors that

affect the hemodynamic behavior of the EVGs, providing

both clinicians and EVG manufacturers with useful infor-

mation for better planning of endovascular techniques and

developing of EVG designs. In order to facilitate the

understanding of the importance of geometric parameters,
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experimental data from our research group are displayed

along with their potential clinical applications.

Geometrical Factors Affecting EVG Migration

According to the EUROSTAR study, 3.5 % of patients

undergoing EVAR suffer from graft migration comprising

a C5-mm movement of the stent-graft from its initial

deployment site [3, 4]. Displacement of the EVG can cause

loss of proper sealing at its proximal or distal landing zone

(i.e., the aortic neck and the iliac sites, respectively),

leading to Type Ia and Ib endoleaks, respectively and

restoring the systemic pressure loading on the AAA sac,

thus regenerating the risk of AAA rupture despite the

preceded endovascular therapy. Many researchers have

investigated the major determinants of EVG migration,

depicting an association between the aortic-EVG geometric

features and the displacement forces acting on the latter.

Modern computational analytical/numerical methods can

estimate the displacement forces, the magnitude of which is

strongly influenced by the diameter and angulation of the

EVG neck or the angulation of iliac bifurcation [5–10]. The

computational sequence requires fundamentally three dis-

tinct work steps: (i) geometry reconstruction of the study

model from medical images, (ii) biomechanical simulation

(Finite-Element or Fluid–Structure Interaction computa-

tion), and (iii) interpretation of biomechanical properties [8].

Molony et al. [11] used fluid–structure interaction (FSI)

simulation for a group of patient-specific 3D reconstructed

EVGs to show that the antero-posterior neck angulation and

the large inlet-to-outlet area ratios were the greatest deter-

minants of the magnitude of drag forces. Furthermore, the

curvature of the iliac limbs can also create additional side-

ways forces that may predispose to displacement of the iliac

limbs and peripheral endoleaks (Type Ib) [8]. Interestingly,

the greatest part of the displacement forces seems to act on

the EVG bifurcation site compared to the proximal (neck)

and distal (iliac) counterparts [10].

It should be delineated that endovascular treatment of

AAA is not an instant fixation of an EVG in the aortic lumen,

but rather an ongoing process of conformational changes in

the aortic endograft during the post-EVAR shrinkage pro-

cess of the sac, changing its geometry and, thus, putting

increased axial strain and altering the distribution stress

patterns on the different components of an EVG [12–15].

Therefore, the importance of studying the aortic and EVGs

geometry is not limited solely to preoperative proper size

planning of the endovascular device but also may have

predictive role on the hemodynamic behavior and the

resultant adverse effects related to the EVG; furthermore, the

information drawn from such studies may effectively modify

the design of newer devices to improve their accommodation

on challenging AAA anatomies, thus improving their

hemodynamic performance. The significance of each geo-

metric parameter is summarized in Table 1.

Diameter of the Neck

The significant influence of the inlet-to-outlet (i.e., neck-to-

iliac limbs, d1/d2) diameter ratio has been recently studied

by our study group and is depicted in Fig. 1. We estimated

the maximum displacement forces over a cardiac cycle on

two reconstructed EG models in the standard (BifG,

Fig. 1A) or the cross-limbs (BalG, Fig. 1B) fashion using

FSI with the validated ANSYS software (ANSYS version

12.1; Ansys Inc.). The calculations took place for two

different inlet diameters, i.e., 36 and 24 mm, corresponding

to the maximum and minimum inlet diameters of the

commercially available aortic endografts respectively, with

d1/d2 ranging from 1.5 to 3.0. The increase in d1/d2 caused

a constant increase of the maximum total displacement

force ranging from 2.6 to 14 and 1.2 to 7.1 N for d1 of 36

and 24 mm, respectively (Fig. 2A, B).

Clinical Relevance

The aforementioned findings come in accordance with

previous studies, underscoring the role of inlet diameter as

a major determinant of the hemodynamic behavior of an

EVG, because their effect is coupled with an exponential

raise of the displacement forces acting on the endograft.

Compared with other geometrical parameters, such as the

AAA neck angle, the endograft curvature, or angulation of

the limb bifurcation, the neck diameter causes the most

profound effect on the magnitude of displacement forces

[12, 16]. Interestingly, these seem to confirm clinical

observations regarding AVG migration and loss of ade-

quate sealing, because proximal EVG fixation failure

seems to be determined to a greater degree by an aortic

Table 1 The influence of geometric factors of endografts on dis-

placement forces

Total

forces

Forces

on iliacs

Forces on

bifurcation

Inlet (neck) diameter ??? ?? ??

Neck angulation ??* ? ?

Endograft curvature ?? ?? ??

Iliac limbs bifurcation angle ? ? ?

Inlet to outlet diameter ratio ??? ?? ??

Main body-limbs length ratio ? ??? ??

Evaluation of the relative influence of the geometric factors on the

magnitude of displacement forces, from the lowest (?) to the highest

(???) influence, as displayed in the manuscript, based on data from

the literature

* Neck angulation [60�
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neck dilatation exceeding EVG oversizing (i.e., increase in

d1) rather than simple migration distance, according to

Litwinski et al. [17]. The importance of the (in)sufficient

AAA neck length also is questioned by Hager et al. [18],

who compared clinical performance of EVG with supra-

and infrarenal fixation in short but straight proximal necks

and reported equal and reported freedom intervals from

early and late type 1a endoleaks.

Taking into consideration that a cut-off value of AAA

neck diameter [28 mm is considered to represent a high

Fig. 1 Reconstructed models

used to computational fluid

dynamics. A Customary

bifurcated model (BifG). B,

C Cross-limbs model (BalG).

D Aortouniiliac model (UniG).

The a1, b, d1, and d2 in

B represent the lateral neck

angulation, the angle of

endograft limb bifurcation, and

the inlet and outlet diameter,

respectively. The main body

length up to the flow divider and

the iliac limb length are

depicted as L1 and L2,

respectively (C)
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risk for EVAR according to the Society for Vascular Sur-

gery/American Association for Vascular Surgery (SVS/

AAVS) [19], many researchers conducted studies com-

paring the clinical performance of EVGs in the treatment of

AAA with large and smaller neck diameters. Jim et al. [20]

reported a higher rate of major adverse effects within the

first year and higher migration rates at 5 years when

treating AAAs with large ([28 mm) versus smaller

(\28 mm) using the Talent device (a bimodular device

with suprarenal fixation), whereas Stanley et al. [21]

reported a migration incidence of 4.2 % in a series of 238

AAA treated with the Zenith device, identifying a neck

diameter [28 mm (p = 0.0024) as the sole determinant of

this complication. Generally, an oversizing of the EVG

central fixation segment by 10–25 % is suggested to ensure

an adequate radial force and proper sealing in AAA necks

of [28 mm, providing an acceptable low migration rate

and incidence of proximal endoleak (Type Ia) [22]. On the

other hand, the continuous radial force exerted by self-

expanding stent-grafts has been associated with progressive

dilatation of the aortic neck postoperatively, predisposing

to generation of higher displacement forces to migration

(i.e., increase of d1/d2) and loss of proximal sealing [23–

26]. Therefore, newer EVG aiming at proximal sealing

with alternative modes, such as polymer-filled sealing rings

merit greater attention [27–29].

Role of Diameter of Iliac Vessels

While clinical studies focus mainly on the geometrical

characteristics of the AAA and endograft neck diameter, a

computational evaluation of the influence of inlet diameter

Fig. 2 Increase in inlet-to-

outlet diameter ratio of an EVG

is associated with an increase of

the magnitude of total

displacement forces (A, B).

Ratio [2 predisposes to higher

mechanical loading at the

bifurcation site (C), whereas

high or low main body-to-iliac

length ratios enhance the

instability of iliac limbs,

creating greater forces exerted

at this segment (D)
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on the hemodynamic performance of an EVG unveils an

important role for the iliac (outlet) diameters, as well. The

computational estimation of the displacement forces acting

on the bifurcation of an EVG with large (36 mm) neck

diameter exemplifies this (Fig. 2C). As can be seen, an

inlet-to-outlet diameter ratio of 3 (i.e., iliac arteries of

12 mm) renders a higher bifurcation force compared with

an AAA of the same inlet diameter but with ectatic iliacs of

18 mm (ratio of 2). In such instances, adapting an

accommodation mode of a main body actually sitting on

the aortic bifurcation, such as the Powerlink XL EVG

system [30] or of a long mainbody available with the Cook

Zenith AAA EVG [31] renders the AAA-EVG conjugation

theoretically more stable.

Investigating the Role of EVG Limb Length

The iliac diameter can affect the displacement forces and

the stability of the peripheral fixation with respect to en-

doleaks Type Ib. A low bifurcation, as determined by the

presence of long EVG main body accommodating at the

aortoiliac bifurcation and/or short iliac limbs, renders the

EG less prone to proximal migration [32]. Indeed, Be-

nharash et al. [33] and Heikkinen et al. [34] underscored

the migration-preventive role of long iliac fixation, espe-

cially in cases of suboptimal or inadequate proximal fixa-

tion. This finding also was supported by Waasdorp et al.

[35], who suggested that the shorter the proximal fixation,

the longer the iliac fixation has to be to prevent migration.

In other words, an EVG of long proximal and short iliac

fixation could bear the same migration risk compared to an

EG of short proximal and long iliac fixation. The afore-

mentioned indicate that the hemodynamic effect of the

relative limb length with respect to the EVG main body

should not be considered negligible. While the relative

lengths influence the magnitude of the displacement forces

at different EVG parts, the stabilization provided by the

iliac fixation lengths contributes to resistance to migration.

Our computational example suggests that a high ratio of

main body-to-iliac limb length (i.e., either a long main

body or short limbs, both coinciding with a low bifurca-

tion) favors hemodynamically EVGs with low bifurcation,

such as the AFX� stent-graft (Endologix Inc., Irvine, CA,

USA), the COOK Zenith EVG (available in five different

lengths), or the Treovance� (Bolton Medical Inc., Sunrise,

FL, USA) [36] but may theoretically attenuate the iliac

limb stability (Fig. 2D). Indeed, while our model shows the

beneficial role of an iliac-limb length twice as long the

main-body, it seems that higher or lower length ratios

beyond that point lead to increased forces along the iliac

limbs, thereby reflecting a higher predisposition for the

development of Type III endoleaks, due to modular

Fig. 3 Computational

reconstruction of an endograft

model (grey color) used to treat

an AAA with iliacs (red color)

of excessive tortuosity. Because

the vertical z-axis is headed

caudally, the estimated negative

values of displacement forces

(shown in diagram)

corresponding to tendency for

upward instability can be

attributed to excessive iliac

tortuosity

Fig. 4 Aortouniiliac endograft configuration (dotted line) shows

predisposition for higher displacement forces compared to the

bifurcated accommodation (solid line)
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disconnection. To counteract this problem when the

patient’s individualized geometry leads to an endograft

configuration as previously described, certain mechanisms

have been evolved to enhance limb’s stability, such as the

unique Lock-stent mechanism of five rounded bards for

fixation within stent modules [37].

Influence of Iliac Configuration

Unfavourable iliac geometry comprises one of the com-

monest reasons that render AAA unsuitable for EVAR,

with extreme iliac tortuosity accounting for 10 % of the

exclusion criteria [38]. While iliac angulation and tortu-

osity have been implicated in endograft limb kinking and

thrombosis [39, 40], it is worth mentioning that excessive

iliac tortuosity (Fig. 3) may generate hemodynamic forces

with a cephalad direction leading to upward migration of

the endograft. Although EVG upward migration constitutes

a very rare entity with only few cases reported in the

immediate peri- or postoperative period, attributed either to

surgical manipulating errors or material failure [41–43],

there seems that iliac geometry may predispose to such

events in the long-term, as demonstrated above. In routine

practice, this tendency is counteracted by various proximal

fixation mechanisms (hooks, pins, and barbs) available in

newer generation endografts [44, 45].

Furthermore, one also should bear in mind that the

upward movement of an EVG associated with angulation/

tortuosity of the device’s iliac EVG limbs either following

the native iliac anatomy or secondarily caused by aneurysm

sac shrinkage can lead to disconnection of the EVG’s

components and consequent endoleak Type III [46]. This

complication occurs usually in the third to the sixth post-

operative year [47].

Comparison of the Bifurcated EVG with the ‘‘Crossed-

Limbs’’ and the Aortouniiliac Configuration

While the customary bifurcated EVG configuration lies in

the center of both clinical and computational studies, cli-

nicians may occasionally come along challenging anato-

mies or clinical circumstances where the successful sealing

of the AAA is accomplished by adapting the cross-limb

accommodation of the EVG or using an aortouniiliac

configuration [48, 49]. A comparison of the displacement

forces between the cross-limbs and customary bifurcated

EVG configurations was recently performed [16, 50–52]. It

has been shown recently that these configurations sustain

similar displacement forces, irrespective of any variability

in the EVG curvature, in the angulation or in the relative

lengths and diameters of the proximal and distal EVG

segments (Fig. 2A–D). Moreover, the similar oscillatory

shear index pattern (expressing the shear stress vector

deflection from blood flow’s predominant direction during

a cardiac cycle), expressed in both endograft configura-

tions, suggest that thrombosis may occur similarly between

the two configurations [52]. Indeed, the only-to-date clin-

ical study comparing the clinical performance between the

two configurations in terms 12 and 36 months freedom

from of migrations, any type of endoleak and need for

reintervention and limb thrombosis yielded similar clinical

outcomes, with no statistical significance [53].

The use of aortomonoiliac EVG facilitates the man-

agement of AAA in cases of narrow terminal aorta, tortu-

ous, kinked, small, calcified, or occluded contralateral iliac

artery, emergent treatment of ruptured AAAs or treatment

of endoleaks of previously implanted endoprostheses [45,

54, 55]. Therefore, limited data exist to compare directly

the performance and hemodynamic profile of aortomono-

iliac (Fig. 1D) versus bifurcated EVG (Fig. 1A). Our lab-

oratory results suggest higher displacement forces over the

entire EVG or, specifically, at the iliac area (Fig. 4) for the

aortouniiliac configuration, predisposing to higher migra-

tion rates. Therefore, this mode of AAA treatment should

be reserved only in selected cases with the aforementioned

indications, rather than as an alternative to bifurcated

endografts.

Thrombus Formation in Aortic Endografts

A frequent observation considering the endovascular repair

of an AAA is the deposition of thrombus inside the stent-

graft lumen (Fig. 5). Several studies have reported intra-

graft mural thrombus formation starting from the first

month after the operation up to nearly 5 months [56, 57].

Mestres et al. [56] estimated the postoperative progression

of intragraft thrombus using CT angiography and

Fig. 5 Thrombus apposition (arrow) detected at the anterior surface

of the main body of an endograft used for treatment of an AAA
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concluded that the presence of thrombus in the native aorta

and the presence of the aortouniiliac configuration were

independent predictive factors for the progression of EVG

mural thrombus. Additional evidence was provided by

Wegener et al. [57], who noted that more than one-fifth of

patients developed intraluminal deposits of thrombotic

material identifying; however, no potential risk factors

associated with thrombus formation. Noteworthy, there

was evidence that some of the thrombotic depositions

resolved completely without any specific therapy and

interestingly enough in these patients no episode of

thromboembolism was noticed. Consistent with previous

reports, intragraft thrombus deposition after postimplanta-

tion of endograft in EVAR patients was observed by Wu

et al. [58]. who further reported that the incidence of in-

traprosthetic thrombosis increased in endografts with

longer mainbody and in those with larger mainbody

diameter compared with the iliac graft diameter (i.e., d1/

d2), whereas no correlation was found between the pre-

operative presence of thrombus or the postoperative anti-

platelet/anticoagulant treatment and the deposition of

thrombus in the stent-graft. Finally, investigating the flow

patterns in a bifurcated stent-graft deployed in a AAA

model, Chong et al. reported that the geometry of the

arterial vessel and the configuration of the stentgraft could

have an impact on the formation of thrombus, with aortic

neck angulation, iliac tortuosity, and configuration of the

endograft identified as important parameters for the depo-

sition of intra-stent thrombus [8, 59, 60].

Flow Patterns in AAA

Local geometric factors play a role in the determination of

velocity values and flow patterns (recirculating zones, flow

separation, skewed flow) [60, 61]. Chong et al. [60]

described the flow patterns in several regions of a bifurcated,

nonplanar stented-AAA model under pulsatile blood flow

throughout the cardiac cycle and found a region of flow

separation and recirculation at the anterior wall of the

proximal stent, which increases with increasing angle and is

most predominant during the diastolic phase. As the anter-

oposterior neck angle increases, the flow patterns present

greater asymmetry with flow separation and recirculation

zones at the posterior region of the graft main trunk, while

most of the flow diverting towards the anterior wall. These

phenomena occur mainly in the late deceleration and early

systolic phase. Additionally, the flow patterns in the two

EVG iliac limbs present quite similar, with skewing of the

flow during the presystolic acceleration/peak systolic phase

and with subsequent flow separation at the outer wall surface

of the EVG limbs. Frauenfelder et al. [62] demonstrated a

reduction of turbulence after placement of a stent-graft, with

equal blood flow volume through both the stented iliac

arteries coupled with a reduction of wall pressure and wall

shear stress. They also concluded that high shear stress

values develop at the junction site between the stump (iliac

gate) of the main body and the contralateral limb (docking

area), predisposing to type III endoleak, as also supported by

Juchems et al. [63] and Kramer et al. [15].

Clilical Application of Hemodynamic Principles:

from Theory to Practice

Computational simulation provides useful data to under-

stand basic pathophysiological aspects and delineate the

behavior of AAA and EVG. The demonstration presented

above show that the combination of geometrical aspects

provides more information to predict the postimplantation

EVG performance rather than single geometric features.

The advantages and disadvantages associated with certain

conformational features of various EVGs show that there is

no ideal EVG that serves better than others the purpose of

AAA endovascular treatment; rather, each AAA possesses

a unique anatomy in which some EVGs accommodate

better than others, so that no single EVG pattern emerges

as the best [64].

Accordingly, identification of certain AAA geometrical

challenges, such as iliac tortuosity and severe angulation or

large diameter of the neck, led to development of enhanced

suprarenal fixation modes, supported iliac legs and modi-

fied stent designs. A recent study based on Finite Element

Analysis estimated the stresses on different designs of iliac

limb stents, showing differences between them, with spiral

and circular stents providing greater flexibility and lower

stress values than Z-stents [65]. This comes in accordance

with the hybrid concept of combining components (main

body, limb extensions) from different endografts, not only

in emergent but also in selective clinical setting, treating

challenging anatomies with components of different

mechanical properties [65–67].

Finally, computational data showed that the displace-

ment forces acting on an EVG are directed sideways rather

than downward [11, 13, 14]. These were confirmed by

clinical studies that identified a frequent late occurrence of

postimplantation EVG sideway movements (27–35 % Rafii

et al. [68] and Waasdorp et al. [69], respectively) [68–71].

Although interesting as computational simulations may

seem, it should be stressed out that reproducibility and

comparison between results of different studies should be

cautiously approached, because these models carry certain

limitations associated with pressure and flow parameters

(boundary conditions) applied to these models; therefore,

detailed information about preconditions and model

assumptions should always be provided. Admittedly, future
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clinical studies are needed to validate clinically of com-

putational results and expand further the practical appli-

cations of the latter.

In conclusion, this article discusses the influence that

certain geometrical factors can exert on the hemodynamic

behavior of the EVGs. No EVG design emerges as the best;

rather, every AAA has a unique anatomy served better by

some EVG than others and vice versa. The information

derived seems to be in accordance with clinical observa-

tions and comprises a useful adjunct for both clinicians and

manufacturers to further development and improvement of

EVG designs and better operational planning.
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