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Abstract The time and temperature evolution of twin-
ning in cordierite is simulated using three computer mod-
els. The orientation of walls between twin domains in nat-
ural cordierite follows mainly the ferroelastic pattern
which minimises the strain energy of the walls between
twin-related domains. Such ferroelastic twinning is simu-
lated in an elastic three-states Potts model in which each
structural six-membered ring is represented by a three
state pseudo-spin. The resulting twin pattern in a sample
with 3169 structural rings shows sector trilling and fine
scale ferroelastic wall patterns which coarsen with in-
creasing annealing time. The poorly defined wall direc-
tions observed in cordierite were found to be related to
twin walls which do not minimise the strain energy. In-
stead, these walls are located along the corners of pseu-
do-hexagonal rings and appear as the consequence of lo-
cal rather than global interatomic interactions. Simula-
tions using two-dimensional (38028 atoms) and three-di-
mensional (408 228 atoms) structural models show a pre-
dominance of these topological walls over the strain walls
at early stages in the ordering process. The domain struc-
ture in the simulation is patchy rather than corresponding
to repeated stripe structures found in other ferroelastic and
co-elastic materials. In all models, a strong tendency for
sector trilling is observed. In kinetic tweed patterns a nov-
el 60ë tweed is found at atomic length scales while the
usual strain-mediated 90ë tweed appears at mesoscopic
length scales. An unusual surface tension effect in domain
formation and `writhing', fluid-like motion was found in
the three-dimensional structural model. This motion,
along with the existence of non strain-mediated walls
may contribute to cordierite's poorly defined domain wall
directions at the early stages of domain coarsening.
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1 Introduction

The fingerprint for the appearance of cordierite in petro-
logical thin sections is its characteristic `sector trilling'
as shown in Fig. 1a for a sample of volcanic origin. Clos-
er inspection of metamorphic and volcanic cordierite
samples often reveals a surprisingly complex microstruc-
ture which includes jagged twin walls, needle domains of
a rather broad, `patchy' nature and rather wiggly twin
walls which appear to bend and twist when viewed along
the pseudo-hexagonal c-axis (Venkatesh 1954; Müller
and Schreyer 1991). Such extreme bending of twin walls
is uncommon in minerals because it requires large anisot-
ropy energies and, in the case of thick walls, high bending
energies (Salje and Ishibashi 1996; Salje et al. 1998). A
typical example of the complex microstructure in cordie-
rite is shown in Fig. 1b with jagged and curved walls, and
needle domains clearly visible. The most surprising mi-
crostructural property of cordierite is its ability to form
twin walls which are not compatible with the condition
that two adjacent twins exert no stress on the wall. This
condition defines elastically `soft' planes. In all known
ferroelastic materials, besides cordierite, twin walls are
oriented along these soft planes.

In Fig. 1c an example of a cordierite sample is shown
which displays the usual ferroelastic `strain walls' and, in
addition, twin walls which are rotated away from these
elastic soft directions. These latter walls are not stress free
and, for reasons to become clear later, will be referred to
as `topological walls'.

Figure 2 shows the early stages of tweed formation for
synthetic cordierite analysed using TEM techniques. At
these much smaller length scales we can see that the
tweed pattern is extremely wiggly with very poorly de-
fined wall directions compared with alkaline feldspars
and YBCO (Putnis and Salje 1994). The domains also
seem to form into small, isolated patches rather than the
long, unbroken stripes observed in these other structures.

The question which is addressed relates to the origin of
these unusual microstructures in cordierite. An intuitive
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answer might be expected from the outset. Let us start
from the idea that the formation of twins in cordierite
can be envisaged as the result of a transition between a
hexagonal phase (P6/mcc) and an orthorhombic phase
(Cccm). The hexagonal phase may exist as an equilibrium
phase at temperatures above 1720 K (Müller and Schreyer
1991; Redfern et al. 1989; Schreyer 1986; Putnis et al.

1 2
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b

c

Fig. 1a±c Sector trilling in naturally occurring cordierite samples as
observed under an optical microscope. a Sector trilling structure
consisting only of strain-mediated domain walls. The optical axis di-
rections are shown in each domain as calculated from birefringence
analysis. These directions are discussed in Section 7. b Twinning
and needle domain formation. c Sector trilling but with additional
walls which are not strain mediated (marked 1 and 2)

Fig. 2 Time evolution of synthetically grown cordierite. Starting
from a hexagonal structure, tweed patterns form and then coarsen in-
to twin domains. The scale bar shown is 0.2 �m long, (after Putnis et
al. 1987)
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1987; Salje 1987; Daniels et al. 1992) or as a kinetic pre-
cursor phase which nucleates within the stability field of
the orthorhombic phase and subsequently undergoes a
non-equilibrium ferroelastic phase transition. The topolo-
gy of the crystal structure shows a (pseudo-) hexagonal
atomic arrangement with twin formation along the hexag-
onal basal axes (Putnis and Salje 1994; Nord 1994). This
process is in competition with the requirement that ferro-
elastic twin walls are perpendicular to each other, i.e. they
break the hexagonal symmetry. As a result of the compe-
tition between the requirements of the atomic structure
and the minimisation of the elastic strain energy one
might expect the simultaneous appearance of two types
of walls or a wall structure which represents some com-
promise between atomic and strain features.

The results of the study presented in this paper and the
experimental evidence points clearly to the first solution
of the two wall types with the additional observation that
strain walls dominate over topological walls at late stages
of the microstructural development.

Our analysis consists of computer simulations of three
models with increasing complexity approaching a rather
realistic cordierite structure. The process which leads to
the formation of twins is the atomic ordering of Al and
Si `ordering atoms' within a complex network of oxygen
tetrahedra.

Cordierite (Mg2Al4Si5O18) consists of two sublattices
of atoms which behave in quite different ways. The Al
and Si atoms are always located at the centres of oxygen
tetrahedra but are able to move from one tetrahedron to
another. The precise way in which they form into patterns
dictates the degree of order in the system. Therefore these
atoms are known as ordering atoms. The sublattice of Al
and Si atoms forms a binary alloy.

In contrast, the rest of the lattice (consisting of Mg and
O atoms) is known to be very rigid and these atoms can
only move short distances from their mean positions: they
never swap sites. The sublattice of Mg and O atoms is
called the host lattice.

Al atoms are physically larger than Si atoms and so tet-
rahedra containing Al atoms `swell up' and gain a greater
volume than those with Si at their centres (Gibbs 1966).
The four oxygen atoms at the vertices of these tetrahedra
are therefore pushed outwards and in turn apply forces on
neighbouring atoms. This knock-on effect causes a distor-
tion in the host lattice which propagates throughout the
crystal applying forces on other ordering atoms. Thus,
the ordering atoms interact with each other indirectly
via the host lattice which acts as an elastic background.
This interaction is known to be long-ranging and anisotro-
pic; its symmetry depends on that of the crystal structure
(Bratkovsky et al. 1994a).

Because of this strain mediated interaction between
ordering atoms, we would expect the types of domain
walls allowed to be determined by strain effects which
are independent on the precise atomic structure. This
has indeed been the case in the computer simulations of
other crystals studied in this way (Salje and Parlinkski
1991; Parlinski et al. 1993; Bratkovsky et al. 1994b,

1996; Tsatskis et al. 1994; Tsatskis and Salje 1996; Vul
and Salje 1995). However here we will show that these
strain mediated walls, while important are not the only al-
lowed walls. In addition, there are topological walls
formed due to local interactions between cordierites char-
acteristic six-membered tetrahedral rings.

2 Crystal structure and domain walls

The structure of cordierite is shown in Fig. 3 (Gibbs
1966). It consists of two types of oxygen tetrahedra called
T1 and T2. The T2 tetrahedra form layers of six-member-
ed rings. In each unit cell, there are two layers of T2 rings
with the rings in alternate layers rotated by 30ë with re-
spect to each other. The T1 tetrahedra form `ladders' con-
necting these T2 layers. Al or Si atoms are present in each
tetrahedron. There are also oxygen octahedra present with
Mg atoms at their centres.

Domain formation occurs when each T2 ring contains
2 Al and 4 Si atoms and the Al atoms are aligned on op-
posite sides of the ring. Figure 4 shows one way in which
this can happen. There are three ways of having this type
of order and so there are three types of domain. Each ring
has a domain type associated with it which we will denote
by a number 1, 2 or 3. We will call this number the ring
spin since it is analogous with spins found in ferromagnet-
ic materials. In using this nomenclature we reduce the
system to a three-state Potts model in three dimensions
(e.g. Eichhorn and Binder 1996; Binder 1981).

There is a tendency to exclude two Al from being pres-
ent in adjacent tetrahedra (Loewenstein's rule: Loewen-
stein, 1954) so that the `spin' of a ring indicates the con-
figuration of ordering atoms in that T2 ring and also in the
surrounding ring of T1 tetrahedra (see Fig. 4). Thus the
configuration of all ordering atoms in the crystal can be
specified by stating the ring spin configuration.

In the computer simulation we will use the ring spin
values shown in Fig. 5 to indicate the type of ordering
in each T2 ring. Notice how we expect the Al opposite
pairs in the two types of T2 rings to be aligned next to
each other such that the Al-bearing T2 sites on each side
of the ring are connected by T1 tetrahedra. The diagram
also indicates how T2 tetrahedra with Al present swell
up distorting the T2 ring into an elliptical shape.

The phase transition between hexagonal and orthorhom-
bic cordierite leads to a symmetry reduction which is illus-
trated in Fig. 5. The strain formed as a result is caused by
the opposite Al pair stretching the T2 ring out with a cor-
responding contraction in the perpendicular direction. This
stretching is then transmitted to neighbouring rings causing
a spontaneous strain of the form (Salje 1993):

e�
e 0 0
0 ÿe 0
0 0 0

0@ 1A �1�

with respect to the strain's principle axes in each of the
three domain types.
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When two domains come together the interface is
called a domain wall. If the wall is strain mediated its
orientation must be such that the strain a small distance
away from the wall in both adjacent domains is the same
(Sapriel 1975). Using this condition for a hexagonal/or-
thorhombic system, six walls of fixed direction perpen-
dicular to the T2 planes are obtained:

There are two mutually orthogonal walls between each
pair of domains. The angles shown are with respect to the
x-axis. These walls are shown schematically in the lower
part of Fig. 6. As required by strain interactions, there are
two mutually orthogonal walls for each domain pair.

Fig. 3 The structure of cordierite in the a-b plane and along the c
direction. T1 and T2 tetrahedra are shown (after Putnis 1992)

Fig. 4 Al/Si configuration in ordered cordierite. The dashed lines
show the high temperature hexagonal unit cell and the solid lines
show the orthorhombic unit cell which forms as a result of ordering
below Tc; (after Putnis 1992)

Domain pair Wall 1 angle Wall 2 angle

1±2 0 +90
1±3 +60 �30
2±3 �60 +30

Structurally, the strain wall directions are located half
way between the Al opposite pair orientations.

Three of the walls are formed by linking nearest neigh-
bour T2 rings and we will call these nn strain walls
whereas the other three link next-nearest neighbour T2
rings and will be referred to as nnn strain walls.

Also shown in Fig. 6 are six walls which are not strain
related but do appear in the computer simulations. They
are such that the Al pairs on one side of the wall are
aligned along the wall direction (the domain on the other
side being either of the other two types). We will call
these walls topological walls since they relate to the local
ring topology of cordierite rather than long ranging strain

Fig. 5 The numbering system used to indicate Al opposite pair con-
figurations in each ring. The axes shown are used throughout. The
two types of T2 rings per unit cell are shown as solid and dashed
lines and the Al positions are shown as black and white circles re-
spectively. Other tetrahedra have Si atoms at their centres
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interactions which give rise to the strain walls. Thus cor-
dierite displays 12 domain walls in total, 6 of which are
ferroelastic in nature.

3 Computer models

The problem of cordierite ordering turns out to be consid-
erably more complicated than that of any other material
previously studied in this way. In order to understand
the behaviour thoroughly and learn how different types
of behaviour are governed by different structural elements
we have carried out the simulation on three different lev-
els of complexity, which are discussed individually in the
following sections.

In all three models we use the following basic ideas.
We assume that the host atoms interact with each other
harmonically, i.e. that they are connected in a `balls and
springs' network. The exact strength and geometry of
these springs is not known so we use such spring topology
as to encapsulate our understanding of how cordierite be-
haves. Thus, the models are highly phenomenological:
they are not based on exact interatomic potentials (which
are irrelevant for large-scale microstructures) but on an
elastic response which encapsulates the essential mecha-
nisms for domain formation. It is technically impossible
to explore the full parameter space of a structure of the
complexity of cordierite, the best we can hope for is to

get reasonable domain patterns which give us a `feel'
for the ordering behaviour.

The ordering atoms interact with nearby host atoms via
constant `Kanzaki' forces depending on the spin value of
each T2 ring. We assume that the direct interaction be-
tween ordering atoms is comparatively weak and we ig-
nore it. Thus, the Hamiltonian can be written as:

H �Hhost�Hint �2�
where Hhost is the energy of the host atom-host atom inter-
actions and Hint is the energy of the ordering atom-host
atom interactions (Tsatskis and Salje 1996).

Because we are using simple spring bonds for the host
lattice, we can write Hhost as:

Hhost �
X
bonds

1
2

kbond d r� �2 �3�

where d r is the stretching of a bond and kbond is the spring
constant. The sum is over all bonds in the host lattice. Us-
ing the formalism of the dynamical matrix we can rewrite
this as

Hhost � 1
2

uTAu� 1
2

X
nm

X
ij

ui
nAij

nmuj
m �4�

with the first expression written in matrix format (the ma-
trices must be appropriately partitioned so as to include

Fig. 6 The six strain walls and
six topological walls observed
in the simulation. A T2 ring is
present at each line intersection
in the diagram. The double-
headed arrows indicate the di-
rection of alignment of the op-
posite pairs of Al in the rings. In
fact the actual Al positions are
rotated by �15ë with respect to
the arrow direction for the two
non-equivalent T2 layers shown
in Fig. 5. The arrow is drawn
half way between these two
orientations and also corre-
sponds to the strain direction.
The dashed lines indicate the
wall directions
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the indices n, m, i, j). ui
n is the ith displacement compo-

nent of atom n and Aij
nm represents the spring interaction

between the i and jth displacement components of atoms
n and m.

The force on each host atom, n, denoted f i
n (with i cor-

responding to the Cartesian component) is given by:

f i
n �
X

la
Fia

nl p
a
l �5�

where pa
l ; the occupation number indicates the presence

or absence of an ordering atom of type a at site l such that
p� 1 if the atom is present and p� 0 if the atom is absent.
In cordierite, for example, we could take p1

l � 1 to repres-
ent the presence of an Al at site l and p0

l � 1 to indicate a
Si. The matrix element Fia

nl represents the ith component
of force applied to atom n when an ordering atom of type
a is present at site l. The matrix F therefore gives the set
of Kanzaki forces.

Since the Kanzaki forces are constant, we can now
write the total Hamiltonian as:

H � 1
2

uT Auÿ uT F p

� 1
2

X
nm

X
ij

ui
nAij

nmuj
mÿ

X
nl

X
i

X
a

ui
nFia

nl p
a
l : �6�

The evolution of the ordering atom configuration is mod-
elled using the standard Metropolis algorithm of Monte
Carlo analysis, interchanges of ordering atoms are at-
tempted and the attempts accepted with probability

p DE� � � exp ÿDE=kBT� �
1� exp ÿDE=kBT� � : �7�

Thus the system performs a `random walk' from its initial
configuration. Making use of the ergodic nature of the
system, we can take the evolution of the system as it
`walks' to correspond to its time evolution. The number
of Monte Carlo steps, tMC is related to the real time
elapsed, t by:

t� tMC exp Ea=kBT� � �8�
where Ea is some characteristic activation energy of the
Monte Carlo interchange. Thus a sequence of spin config-
uration snapshots represents the time evolution of the sys-
tem.

In the computer simulation we are only interested in
the motion of the ordering atoms since these dictate do-
main formation. The host atoms are necessary only as
an elastic medium with the required stiffness and geome-
try to cause the correct interactions between ordering at-
oms. In order to express this interaction most clearly,
we allow the host lattice to relax to its minimum energy
configuration between interchanges of ordering atoms.
This also allows us to eliminate the host atom displace-
ments from Eq. 6 and hence reduce the model to a Potts
model.

Minimising Eq. 6 with respect to atomic displacements
gives:

@H
@ui

n

� AuÿF p� �in� 0 �9�

which leads to the matrix of relaxed displacements,

u0� �in� Aÿ1F p
ÿ �i

n: �10�
Substituting this back into Eq. 6 yields:

H0 � 1
2

pT V p �11�

with,

Vab
lk �ÿ FTAÿ1F

ÿ �ab
lk : �12�

This is the Hamiltonian used in the simulation. It is for-
mally the same as that of a Potts model with a highly
complex interaction term V. While in nearest-neighbour
Potts models most elements of V are zero none of the el-
ements are zero in our simulation. In fact, the interaction
can be shown to decrease as R3 where R is the distance
between ordering atoms so it is indeed long ranging as
we expect. The anisotropy of the interaction of the system
can also be derived from an analysis of Eq. 11 (Bratkov-
sky et al. 1994a).

One way to calculate the energy differences required
for the Metropolis algorithm would be to calculate the
tensor V from the springs and Kanzaki forces of the sys-
tem. However the number of atoms considered in these
simulations is very large (of order 105) and the size of
the dynamical matrix A is dN� �2 where d is the dimen-
sionality and N the number of host atoms. It is impractical
to attempt to invert such a large matrix and so Newtonian
molecular dynamics with damping is used to move the
host atoms to their lowest energy positions and minimise
the energy in Eq. 6.

The most straightforward way to proceed would be to
calculate the energy for a relaxed system (using molecular
dynamics), interchange ordering atoms, recalculate the
energy and subtract to get the energy change for Eq. 7.
However, the relaxation process for such a large number
of atoms is very computationally intensive and doing two
relaxations per interchange requires too long a computa-
tional time.

Instead of calculating DE directly, we calculate the
quantity

D~E�ÿu0FDp �13�
where u0 is the set of relaxed host atom displacements and
Dp is the difference in the ordering atom configuration
due to one Monte Carlo interchange. This quantity turns
out to be related to DE by

DE� D~E� d �14�
where d is the energy correction. It is a constant which
depends only on the structure of the model and can be cal-
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culated before running the simulation. This calculation
will be discussed in more detail in the later sections with
respect to each model in turn.

The computer algorithm then operates as follows: the
host lattice is relaxed, all Monte Carlo interchanges in
the lattice are attempted at once and the process is repeat-
ed. Thus all the ring spins can be changed for a single host
lattice relaxation.

We use free boundary conditions throughout rather
than the more usual periodic boundaries because the latter
tend to produce a spurious periodicity in the spin config-
urations generated by the simulation. Periodic boundaries
also prevent the formation of large-wavelength stretching
modes in the host lattice (such as an overall volume ex-
pansion) which we expect to observe.

All the simulations are carried out from an initial ran-
dom ring spin configuration and so correspond to a
quench from infinite temperature or the time evolution
from a hexagonal precursor phase.

The computer programs were run on the Hitachi S-
3600 vector computer, part of the Cambridge University
High Performance Computing Facility.

4 A 3-states strain-mediated Potts model

4.1 Methodology

The essential features of the hexagonal to orthorhombic phase tran-
sition and the elastic nature of the host lattice interactions are cap-
tured in a simple, `toy' model with only one atom per unit cell.
As the long ranging elastic interactions guarantee that the phase
transition follows mean field behaviour, the dimensionality of the
lattice becomes irrelevant d� 2� �: The simulation is done in the
least allowable dimension, namely d� 2:

Figure 7 shows a schematic diagram of the system. There is one
atom (representing the entire T2 ring) and one ring spin present at
each intersection in the diagram and the lines represent springs con-
necting nearest neighbour host atoms. The forces are applied such
that the host lattice stretches to produce the spontaneous strain ex-
pected when each type of ring spin is present at the corresponding
site.

We do not have anything corresponding directly to Al or Si or-
dering atoms in this simulation, instead the ring spins apply forces
directly. The occupation numbers in Eq. 5 now correspond to the
configuration of ring spins such that pa

l � 1 implies that a ring spin
of type a (1, 2 or 3) is present at site l.

Because this system is truly a three state model, it turns out that
the energy correction can only be expressed in terms of Aÿ1 which
as we have noted is hard to calculate. However, experience with
similar systems (with only one atom per unit cell) has shown that
the energy correction is rather small compared to typical values of
D~E encountered during the simulation. For the simple model, there-
fore we ignore this correction and use D~E to represent the energy
changes.

A 2D hexagonal sample was used with 32 atoms on a side of the
hexagon giving 3169 atoms and ring spins in total. The overall hex-
agonal shape of the total sample turns out to be necessary in order to
produce the correct symmetry above Tc:

4.2 Results and discussion

Figure 8 shows the `time' evolution of the ring spins in
the simple model at T � 0:2Tc (Tc was calculated by

plotting the average magnetisation of the sample as a
function of temperature). At this low temperature, the
simulation shows very rapid domain formation and
coarsening. The walls which form are the strain walls
described in Fig. 6, with no sign of any topological
walls. For example at t=60 Monte Carlo steps per ring
(MCSPR) we see all six strain walls in one plot. The
90ë angles between like strain walls are clearly visible
in this snapshot for example the 1±2 vertical wall going
upwards from coordinate (�30,0) and approaching its
horizontal counterpart at around y=210. On the right
hand side of the same figure, we can also see two 90ë an-
gles between three 1±3 walls.

In other similar simulations such as the square lattice
(Bratkovsky et al. 1994b, Salje and Parlinski 1991),
there is a strong tendency to form sets of parallel walls
with alternating domain types in between. This period-
icity is not observed here. Instead the domains tend to
form into isolated `islands'. The picture is fundamental-
ly patchy with the size of the patches increasing with
MC steps.

Coarsening continues rapidly with the larger domains
growing indefinitely at the expense of the smaller ones.
At t=300 MCSPR, we see only three large domains cov-
ering the whole sample.

The contrast between the periodic domains formed in
other structures and the patchy cordierite domains shown
here seems to correspond to experimental evidence from
TEM pictures (Putnis and Salje 1994). The most striking
effect of this is the formation of `trilling' patterns in cor-
dierite where domain growth increases into the macro-
scopic scale with sections of the material consisting of
3±6 domains each several millimetres across. Other mate-
rials such as alkali feldspar do not exhibit this effect and
continue to show periodic twin domains even after very
long annealing times.

Figure 9 shows the early formation of domains at the
same temperature. After only a few MCSPR, the domains
formed are very small and intersect each other in a com-
plex network. This picture corresponds to the kinetic

Fig. 7 The three states strain Potts model. Each intersection in the
diagram represents an atom and a `ring spin'. The lines shown are
the host lattice springs. The forces applied due to a spin of type three
being present at the point marked by the circle are shown as arrows.
Equivalent forces are applied by ring spin types 1 and 2 but rotated
by �60ë
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tweed structure, i.e. the tweed which is formed in the early
stages of annealing as the system is driven towards coars-
ening well below Tc:

The walls appearing in these diagrams seem to be the
nn strain walls rather than the nnn walls, which do not ap-
pear clearly until the later stages of domain evolution
such as in Fig. 8. The nn walls appear to be favoured
on the small length scales corresponding to the small do-
mains formed at this stage.

Fig. 8 Time evolution of the strain model from a random configu-
ration at T � 0:2Tc: The circles are type 1 ring spins, the crosses
type 2 and type 3 are not shown (white). The number of MC steps
per ring (MCSPR) is indicated for each snapshot. The x-y coordinate
axes shown are used throughout and correspond to those of previous
figures
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To analyse this tweed pattern more rigorously, the
structure factor was calculated. The structure factor is de-
fined as the Fourier transform of the ensemble average of
the spin correlation of the system (Tsatskis et al. 1994).
Here, we use occupation numbers similar to those of
Eq. 5 to specify the ring spin configuration such that

pa
l � 1 if a ring spin is of type a at site l and 0 otherwise.

A separate structure factor is then calculated for each ring
spin type:

Sa k� � � 1
. ����

N
p X

lÿl0
pa

l pa
l0


 �
exp k: rlÿ rl0� �� � �15�

where rl is the position of a ring spin and N is the total
number of rings. We can express this quantity in the fol-
lowing form:

Fig. 9 Early evolution in strain model (�=type 1; +=type 2; blank=
type 3)
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Sa k� � � pa k� �j j2
D E

�16�

which is easier to calculate on the computer.
Figure 10 shows the three structure factors. In our sim-

ulation, the Brillouin zone is a hexagon of diameter
0.8 ��1 so the plots show about half of k-space centered
at k� 0:

Looking at a� 1 first, we see there are two types of
soft direction at different length scales. At short distances,
further from k� 0 we see two soft directions which ap-
pear to be perpendicular to the 1±2 and 1±3 nn strain
walls in Fig. 6. Comparing this with the a� 2; 3 plots
we again see soft directions perpendicular to the nn strain
walls involving types 2 and 3 again at short length scales
far from k� 0: This seems to indicate that the fine tweed
(at short length scales) consists only of the nn strain walls
which is consistent with the appearance of Fig. 9.

As we move towards the origin and longer length
scales we see that the soft directions rotate until an or-
thogonal cross appears near the centre in each plot. This
rotation is such as to include the soft directions perpendic-
ular to the nnn strain walls.

For example, in the a� 1 plot, we see the effect of the
1±2 and 1±3 nnn strain walls causing rotation away from
+90ë and �30ë towards +60ë and 0ë. The near vertical di-
rection at this length scale includes the 1±2 nn and the 1±
3 nnn directions. The other direction refers to the 1±2 nnn
and 1±3 nn directions. Thus the central 90ë cross consists
of two pairs of mutually orthogonal directions corre-
sponding to all four walls associated with type 1 rings.
The orthogonal crosses in the other two pictures similarly
represent the four soft directions associated with ring spin
types 2 and 3. Thus we observe two types of tweed forma-
tion: 60ë tweed at short (atomic) length scales and more
usual 90ë tweed at longer length scales.

Figure 11 shows domain formation at T � 0:6Tc: At
this higher temperature, we see that thermal effects intro-

duce random fluctuations causing the domain walls to be-
come much less distinct than before. There are also ran-
dom patches of ring spins appearing within the domains
themselves. Increasing the temperature further causes
these fluctuations to increase until the spin distribution
becomes approximately random.

Strain walls appear in this simulation as before. For ex-
ample, we can see the 90ë angle between the two 2±3
strain walls in the t=300 MCSPR snapshot. However, oth-
er walls (such as the 1±3 walls at the top and bottom of
the same picture) are much less well defined: it appears
that the soft directions are starting to become indistinct
at this higher temperature.

Figure 12 shows the domain formation near Tc: Six dif-
ferent runs are shown from different, initial random con-
figurations after 20 MCSPR each. The local domain wall
directions have almost entirely broken down at this point.
Instead, a small number of very large though poorly de-
fined domains appear. Although we are at a very much
smaller length scales, these pictures seem to correspond
rather clearly to the trilling observed experimentally
(Fig. 1). In particular, runs 3, 5 and 6 show `sector trill-
ing' with the hexagonal sample divided into six triangles
and opposite triangles containing domains of the same
type. This pattern is very commonly observed at these
temperatures and seems to correspond to domains perco-
lating across the sample and interacting with the sample
edges.

As the temperature is very high in this case there are
strong fluctuations with 20% of ring spins being changed
at each step compared with Fig. 8 where the number of
spin changes approaches zero by t=300. However, the
overall shapes of the domains although poorly defined
do remain fairly constant. The domains co-exist in a dy-
namical equilibrium compared to the static equilibrium
established in Fig. 8.

The wall directions at these temperatures are very un-
clear and a structure factor plot such as Fig. 10 is domi-
nated by the large trilling domains corresponding to peaks
appearing near k� 0: So it appears that the tendency to
form domains survives at much higher temperatures than
the tendency to form repeating twin structures with clear

Fig. 10 Structure factor plots for the kinetic tweed structure of the
strain model taken with respect to the three spin types shown
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directionality. This is again suggestive of cordierite's pat-
chy, large-scale domain formation, and its rather weak
tendency to form walls perpendicular to elastically soft
directions.

5 A two dimensional structural model

5.1 Methodology

In this model, we set up a direct analogue of the cordierite
structure but in 2D. As strain interactions are rather well repro-
duced in two dimensions (Parlinski et al. 1993) it is now only
the local interactions which may be oversimplified in this repre-
sentation.

Fig. 11 Domain formation at T � 0:6Tc (ë=type 1; +=type 2;
blank=type 3)
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Returning to the full 3D structure defined in Fig. 5, we imagine
rotating the two types of T2 rings together and at the same time
compressing them into a 2D sheet as shown in Fig. 13. The T2 tet-
rahedra become triangles and the T1s become single lines connect-
ing T2 tetrahedra in neighbouring rings. We now wish to include
three pieces of physics into the system: the swelling of the `tetra-
hedra' (now triangles) in the presence of Al, the consequent distor-

tion of the T2 rings into ellipses and the interaction between distort-
ed rings which causes the strain and hence the ordering.

The tetrahedra encountered in all these structures are known to
be rather rigid and so the oxygen atoms at the vertices of the T2 tri-
angles are connected together using relatively strong springs
(k=100 rel. units). The line which is all that now remains of the
T1 ladders is also expressed as a spring (k=100 rel. units). In this
form, the T2 ring would be very floppy and we expect it to behave
as a fairly well-defined rigid unit so additional springs (k=50 rel.
units) are added inside and outside the ring to stabilise its structure.

Fig. 12 Six different runs each at T � Tc after 20 MCSPR each
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Finally, some additional springs are connected between rings to in-
crease the ring-ring interaction (k=200 rel. units). In particular, these
last set of springs encourage Al atoms to align next to each other in
neighbouring T2 rings so producing ferroelastic ordering with adja-
cent ring spins being of the same type. The resulting system is
shown in Fig. 13.

This simulation incorporates all the physical mechanisms we be-
lieve are important in cordierite ordering with the simplest possible
geometry. This simplified model not only saves computer time but
also exhibits the ordering behaviour most clearly without the `dis-
traction' of higher order 3D structures.

Returning to Eq. 5 we use the occupation numbers p to represent
the presence of either Al or Si in the centres of the T2 triangles. The
forces are such that when an Al is present in a triangle its oxygen
atoms are pushed outwards by Kanzaki forces drawn outwards from
the triangle's centre of mass. No forces are applied when Si atoms
are present.

The only ordering atom changes allowed during the system are
such that each ring configuration changes from one opposite-Al con-
figuration in Fig. 5 to another. Thus each Monte Carlo step involves
changing two Si into Al and two Al into Si i.e. rotating the Al pair
from one ring spin configuration to another. Previous attempts at us-
ing Kawasaki dynamics to interchange nearest neighbour pairs of or-
dering atoms failed to produce the ordering patterns described in
Fig. 5, so it appears that this restriction is computationally neces-
sary. The tendency of ordering atoms to form into patterns other
than those shown in Figs. 4 and 5 was identified by Thayaparam
et al. (1996) who considered such configurations to represent an in-
termediate phase between disorder and the order observed experi-
mentally in Fig. 1 and described in Fig. 5. Since we only wish to an-
alyse this latter type of ordering, we restrict the ordering atom con-
figurations as described.

Because the occupation numbers now refer to the two ordering
atoms rather than the three ring spins, it is possible to calculate
the self-energy correction from a sequence of lattice relaxations. If
we consider a particular ring at the centre of a hexagonal sample
and imagine that the rest of the lattice apart from this ring contains
no ordering atoms (and so no Kanzaki forces are applied to the at-
oms in other rings), then E0 is the relaxed energy of a single Al
placed at any of the six sites in this ring (all six sites are symmetri-
cally identical). E1 is the energy of two Als placed next to each other

in the ring; E2 is the energy of two Als placed next but one to each
other and Eopp is the energy of two Al placed opposite each other
(just like in an ordered system). The energy correction can then
be shown to be given by

d� 8E0� 2Eoppÿ 2E1ÿ 2E2 �17�
and this value was calculated before running the simulations. The
parameter, d was used to calculate DE for each ring rotation as de-
scribed in Eqs. 13 and 14.

A 2D hexagonal sample was used with 32 rings on each side of
the hexagon and 38028 atoms in total.

5.2 Results and discussion

Figure 14 shows the ring spin evolution below Tc for this 2D
model. From the start (at t=10 MCSPR) we see the forma-
tion of topological walls: type 1 spin domains tend to have
+60ë walls, type 2 �60ë and type 3 0ë. In each case, the walls
are parallel to the opposite Al pair direction corresponding
to topological walls. This is just as shown in Fig. 6.

As the simulation proceeds and the domains begin to
coarsen, we see the emergence of nnn strain walls such
as the vertical 1±2 wall in the t=2000 plot. However, to-
pological walls still seem to make an important contribu-
tion to the domain patterns even for these larger domains.
For example, in the t=150 snapshot, we see a +60ë 1±2 to-
pological wall on the right of the diagram and a �60ë 1±2
wall on the left. The t=2000 snapshot shows a 0ë 2±3 to-
pological wall.

The nn strain walls seem to be entirely absent from these
pictures and many other simulations (with the same struc-
ture but different initial random configurations) seem to
confirm this. It seems that the topological walls suppress
the formation of nn walls because they are along the same
directions. The nnn strain walls are along different direc-
tions from the topological walls and so continue to appear.

The coarsening process here is rather similar to that of
Fig. 8: patchy domains form with little evidence of
striped, repeating patterns. The large domains grow at
the expense of the smaller ones until the sample consists
of three large domains: one of each type.

The formation of these topological walls is not ob-
served in the simple model and so we conclude that these
walls are caused by the ring structure associated with each
unit cell. The mechanism of swelling tetrahedra and
stretching ellipses gives rise to an additional thermody-
namically favoured pathway: the formation of walls along
the Al pair directions, i.e. topological walls.

Whereas the strain interaction is very long ranging and in-
sensitive to the precise topology of the unit cell, these walls
seem to be caused by the direct `rubbing' together of nearby
elliptical rings. We conclude that the topological walls are a
direct result of the atomic ring structure of cordierite.

Figure 15 shows the atom positions for a topological
wall, an nn strain wall and an nnn strain wall as formed
in this simulation. The Al bearing T2 triangles are swollen
up whereas the Si bearing triangles are somewhat
crushed. The rings next to the walls show some further
distortion and there appears to be a tendency for oxygen

Fig. 13 The 2D structural model. The lines represent springs con-
necting oxygen atoms. This sample consists of a single type 3 do-
main and we can see that the T2 triangles containing Al are swollen
with a consequent distortion of the rings causing the crystal to lose
symmetry and become orthorhombic. The model used in the simu-
lations has 32 rings on a side of the hexagonal sample rather than
three shown here
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atoms near the wall to move towards it distorting the tri-
angles to which they belong.

Figure 16 shows the evolution at the higher tempera-
ture of 0:8Tc: We see that the domain walls are becoming
more ragged with random noise starting to decrease the

coherence of domains. Despite this, coarsening does con-
tinue as before with the larger domains growing at the ex-
pense of the smaller ones much like in the simple model.
The topological walls are again in evidence here, for ex-
ample the �60ë 1±2 walls at t=250 MCSPR.

As the temperature is further increased, thermal fluctu-
ations increase until the domain structure breaks down
and the ring spin configuration becomes disordered.

Fig. 14 Time evolution of 2D structural model at T � 0:01Tc
(ë=type 1; +=type 2; blank=type 3)
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6 Three dimensional structural model

6.1 Methodology

In the 3D structural model, we consider the entire cordierite struc-
ture as in Fig. 3. Again, the tetrahedra are considered to be very rigid
and so the four oxygen atoms within them are connected via strong
springs (k=100 rel. units). The T2 rings are also modelled as fairly
rigid units with additional springs being placed around the outside
and the inside of these rings much like in the 2D model.

As an additional piece of known physics we include extra
springs between neighbouring tetrahedra placed so as to exclude
nearest neighbour Al pairs by making such configurations have high
energies. This exclusion is called Loewenstein's rule (1954) and has
been observed experimentally in ordered cordierite as shown in
Fig. 4. Apart from the common oxygen, the oxygen atoms are con-
nected by springs from one tetrahedron to its neighbour in every
combination. When two Al are next to each other, these springs
stretch increasing the energy so the system tends to avoid these con-
figurations thus preserving Loewenstein's rule.

The oxygens in the octahedra are also connected by springs
though less rigidly than the tetrahedra (k=50 arb. units). Mg�O
bonds are expressed as relatively weak springs (k=10 arb. units).
Kanzaki forces are again applied so that when an Al is in the centre
of a tetrahedron, the oxygen atoms are pushed outwards. No forces
are applied by Si atoms. Again, we allow only Al pair rotations with-

in the rings during Monte Carlo steps so that the two Al per ring al-
ways remain on opposite sides of their rings as shown in Fig. 5. The
energy corrections are again calculated using Eq. 17.

Because the model is now three dimensional, we are free to
choose any shape for the overall sample to be simulated. However
since we are primarily interested in the domain formation within
the T2 planes, a thin slab geometry is used parallel to these planes.
The number of unit cells in the c direction is chosen so as to be large
enough to avoid serious edge effects and allow interactions between
layers to be expressed without making the simulation impossibly
time consuming (this 3D model is very computationally intensive).
A reasonable compromise between these factors turns out to be a
hexagonal slab with 32 unit cells on a side in the a-b (T2) plane
and 3 unit cells along the c direction. This gives 6 T2 ring layers in-
terspersed with 7 T1-octahedra layers. The total number of atoms
simulated is 408228.

6.2 Results and discussion

In each simulation presented, the domain patterns in all
six T2 ring layers were almost exactly the same but with
some deterioration of the domain structure in the layers
near the surfaces. Therefore, the domain walls are always
perpendicular to the T2 layers as expected. In the follow-

Fig. 15 The relaxed oxygen at-
om positions corresponding to
the presence of a topological
wall and the two types of strain
wall. The lines show springs
connecting oxygens in their tri-
angles (other springs have been
omitted for clarity). The larger,
swollen triangles contain Al.
The walls shown here corre-
spond to the idealised case
where they are perfectly thin
and flat
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ing figures, only the spins from the central T2 ring layer
are shown.

Figure 17 shows the ring spin evolution for the 3D
simulation below Tc: Domain formation and coarsening
again proceed rapidly and again the domains consist of

patches rather than the alternating stripes common in oth-
er structures. The domain walls are almost all topological
walls. For example, looking at the t=60 MCSPR snapshot,
we see a triangular type 1 domain at co-ordinate (0,300).
The walls surrounding this domain are �60ë 1±2 walls and
also 0ë 1±3 walls all of which are along the Al�Al pair di-
rection on one side of the wall. A little further down on
the same picture, we observe 0ë and +60ë 2±3 topological
walls.

Fig. 16 Time evolution of the 2D structural model at around
T � 0:8Tc; (ë=type 1; +=type 2, blank=type 3)
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Continuing the time evolution in Fig. 18, we see some
more domain growth but there is another, rather curious
type of motion. In the previous two simulations, the do-
mains were very static: they simply formed and then
grew in a particular part of the sample with larger do-

mains growing at the expense of the smaller ones until
only a few (usually three) domains survived. Here, how-
ever, the domains appear to be `writhing' around: con-
stantly changing their position and shape. For example,
the large type 1 domain at the top right of the sample
at t=110 MCSPR extrudes a large blob near the centre
of the sample with then migrates towards the centre.
The blob then unites with other type 1 domains at the
bottom left of the sample giving rise to a very different

Fig. 17 The evolution of the central plane of T2 rings below Tc for
the 3D model (ë=type 1; +=type 2; blank=type 3)
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type 1 distribution in t=160 MCSPR than in
t=110 MCSPR. Similarly, the type 3 domain at top of
the sample in t=110 MCSPR is rapidly superseded by
the advancing type 2 domains coming upwards from
the centre.

There is a very strong tendency for nearby domains of
the same type to connect to each other and this is often
done by forming finger-shaped extrusions which move to-
wards each other and connect. The domains then rapidly
flow together to form a single domain. For example, the
type 3 domain at the top of the sample in t=110 MCSPR
is bridged by t=160 MCSPR by two fingers of type 2
coming from the left and right. The leftmost of these
two domains also links to the small type 2 patch emerging

Fig. 18 Continuing the domain evolution from the previous diagram
(ë=type 1; +=type 2; blank=type 3)
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at the top of the sample. The type 3 domain at (0,320) in
t=110 MCSPR is also bridged by type two fingers split-
ting it into two domains.

This effect is very similar to the way in which two
nearby drops of water tend to link and then flow into each

other: i.e. the domains exhibit surface tension effects.
This surface tension causes the domain walls to be much
more rounded than in the previous two simulations mak-
ing wall directions less clear. However we can continue to
identify the topological walls and, to a limited extent,
some nnn strain walls. For example, there is a +30ë 2±
3 nnn strain wall near the centre left of the t=110 sample.

Figure 19 shows the continued domain evolution for
this simulation. The snapshot interval is 100 MCSPR

Fig. 19 Continuing the domain evolution from the previous diagram
(ë=type 1; +=type 2; blank=type 3)
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and the patterns in consecutive snapshots are totally dif-
ferent. As we go from one pattern to the other the three
types of domain constantly advance upon each other just
as described in Fig. 18 with no clear static domain posi-
tions or shapes being established.

We can again see the nnn strain and topological walls
here but there is no sign of the nn strain walls which, as in
the simplified, 2D model seem to be suppressed by the topo-
logical walls. For example, the �30ë nnn strain walls be-
tween 1±3 and 2±3 are present in the left of the
t=220 MCSPR diagram and the +90ë nnn strain wall is a lit-
tle further up. Where t=320 MCSPR shows a network of
�60ë 1±2 topological walls and there is a large 0ë 1±3 topo-
logical wall to the centre left of the t=420 MCSPR snapshot.

Fig. 20 Continuing the domain evolution from the previous diagram
but at a much lower temperature (ë=type 1; +=type 2; blank=type 3)
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The fluctuations in these plots are, of course, driven by
thermal effects. At lower temperatures, the domains do in-
deed settle down to form increasingly large fixed do-
mains. Figure 20 which continues from Fig. 19 shows
this. At this lower temperature, we see dominance of to-
pological walls very clearly. For example there is a
well-defined type 2 parallelogram at t=300 formed entire-
ly of topological walls.

7 Discussion

We are now in a position to return to the experimentally
observed domain structures shown in Figs. 1 and 2 and
comment on their characteristics based on the results of
the computer simulations.

Looking first at Fig. 2, which shows the strain modula-
tion of twinned and tweeded cordierite, we recall our pre-
vious observation that the domain structure is very patchy
with poorly defined wall directions. This observation is in
striking contrast with the appearance of tweed in YBCO
and feldspar (Putnis and Salje 1994) which show much
more constrained modulations. This effect can now be ex-
plained in the light of our computer simulations. In the
strain-mediated Potts model, there is only one atom per
unit cell and so the only motion available to the simula-
tion is strain which corresponds directly to the two acous-
tic modes of vibration that the structure possesses. This
model therefore produces only strain-mediated walls in
accordance with Sapriel's condition. However, the un-
characteristic patchiness is already apparent in this model
simply because of cordierite's large number of strain
walls (namely 6) compared to the two observed in struc-
tures with only two domain types. Because there are so
many walls to choose from it is unlikely that the crystal
will consist of areas with only one domain wall such as
are observed in these two state structures. Therefore the
patchy domain structure observed experimentally appears
in even the simplest computer model studied.

As we proceed to increase the complexity of the struc-
ture simulated, additional mechanisms become apparent
which further contribute to patchy rather than straight do-
main shapes. In the 2D structural model, the presence of
cordierite's six-membered tetrahedral ring causes short
range interactions to become important. Whereas strain in-
teractions are independent of the detailed structure of the
unit cell we observe additional, topological walls which
are the result of `rubbing' of neighbouring rings, a process
which is highly dependent on the geometry of these ring
structures. The presence of these characteristic ring struc-
tures results directly in doubling the number of possible
domain walls from 6 to 12. This greater flexibility in pos-
sible wall direction makes patchy domain formation still
more energetically favourable than in the simple model.

Finally, proceeding to the 3D structural model, we now
allow layers of T2 rings to interact in the c-direction. The
ordering process is always such that rings are stretched in
the same way along the c-axis. Thus, tubes of T2 rings
form into bulky, rigid structural units extending though

the crystal. The direct rubbing together of these tubes rep-
resents an even greater fraction of the free energy total
than in the 2D structural model and so the system is more
likely to form topological walls which reduce the energy
associated with these local interactions.

However, the formation of coherent T2 tubes in the 3D
model introduces a new type of motion into the system
which is not observed in the other structures simulated.
The very strong local interactions between T2 tubes intro-
duce a strong cohesiveness in the domains: the domains
tend to hold together as well-defined areas even at com-
paratively high temperatures. Whereas in the other mod-
els, the thermal fluctuations at high temperatures appear
as poorly defined domain walls and the appearance of
random ring spins throughout the crystal, in the 3D model
such fluctuations appear to cause entire domains to move
around the sample and change their shapes while retaining
very sharp domain walls. There are clear surface tension
effects involved in this fluid-like motion which cause do-
mains to become rounded and tend to move domain walls
away from their expected soft directions.

In summary there appear to be two factors influencing
patchy domain formation in cordierite: the large number
of allowed domain walls, six strain walls and six topolog-
ical walls and the `writhing', fluid-like motion of domains
caused by strong interactions between tubes of T2 rings
observed in the 3D structure.

We now turn to the question of whether such ill-defined
domain patterns also appear in natural cordierite samples
on a macroscopic scale (e.g. as seen under an optical mi-
croscope). In particular we may ask if topological walls ex-
ist in geological samples. In the thin sections of Fig. 1, the
dominant walls appear to be along the crystallographic
{110} planes. The angle between {110} and planes con-
necting pairs of opposite Al in the rings averaged over sub-
sequent layers along the c-axis is 60ë (Gibbs 1966; Arm-
bruster 1986). In Fig. 1a, the plane of the optical axes is
30ë with respect to the twin walls between segments of
the hexagon. In this configuration there are no domain
walls which are parallel or perpendicular to the plane of
the optical axes in adjacent domains (i.e. perpendicular or
parallel to the AlÐAl connecting vector). Hence all the
walls in Fig. 1a are strain walls. In Fig. 1c, however, wall
segments parallel to the Al�Al connecting vector are seen
at some distance from the centre of the hexagon pointing
vertically (marked as 1 and 2). Although the physical origin
of these walls may be related to growth phenomena etc.,
their orientation is not compatible with the strain-free con-
dition of ferroelastic twin walls. It is possible, therefore,
that the formation of these walls is related to the appear-
ance of topological walls in our computer simulation.
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