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Abstract
The dislocation properties of intermetallic compound (IMC) B2-AlPr in {110} plane is studied in detail based on the 
truncated approximation method in this paper. The results suggest that the core width of screw dislocation and edge dis-
location of Burgers vector < 100 > is wider than that of < 110 >. Meanwhile, their unstable-stacking-fault energy ( �

us
 ) of 

𝛾
us
⟨110⟩ > 𝛾

us
⟨001⟩ indicates that the unstable-stacking-fault energy performs very important function on the core width of 

screw dislocation. The easiest slip system of B2-AlPr is < 111 > {110}. The lattice misfit energy is always less than elastic 
strain energy except the dislocation angle with 54.7°. The phase position of misfit energy and elastic strain energy is always 
showing opposite phases. However, the misfit energy is greater than elastic strain energy for 54.7° dislocation, and shows the 
same phase. The misfit energy, elastic strain energy, total energy and the corresponding stress decrease with the increasing 
of dislocation angle.

Keywords  AlPr · Truncated approximation method · Core width · Peierls stress

Introduction

Aluminium alloy is extensively used in aero-space area. The 
aluminum-rare earth intermetallic compounds with CsCl 
structure (B2 crystal structure) provide good performance 
with lower dense, good resistance to oxidation and corro-
sion, heat resistance and highly ordered. Therefore, the inter-
metallic compound (IMC) has caused wide concern (Morris 
et al. 2004; Tao et al. 2007a, b). In recent decades, some 
properties of aluminum-rare earth intermetallic compounds 
with B2 crystal structure such as mechanical properties, 
electronic property, crystal structure, elastic property and 
thermodynamic property are studied extensively (Farkas 

et al. 1995; Schroll et al. 1998; Vitek 1998; Ludwig and 
Gumbsch 1998; Gschneidner et al. 2003; Li et al. 2011; 
Lazar and Podloucky 2007; Pagare et al. 2011). B2-AlPr 
is one of the aluminum-rare earth intermetallic compounds 
and the lattice constant of AlPr 3.82 Å is discovered as early 
as 1965 (Buschow 1965). Then, the formation enthalpy of 
AlPr is obtained by Kober et al. (1983). Massalski (1990) 
points out that as they provide phase diagram of Al–Pr that 
AB component of AlPr possessing two structural phase, 
α-AlPr and β-AlPr, and α-AlPr perform stable state when 
the temperature is lower than 973 K. And in 973 K–1178 K, 
β-AlPr performed stable state, in which B2-AlPr is metasta-
ble phase.

Tao et al. (2007a, b) investigated the mechanical and ther-
modynamical properties of AlPr using projector augmented 
wave (PAW) method within generalized gradient approxi-
mation (GGA). Srivastava et al. (2008) calculated lattice 
parameters, bulk modulus, Debye temperature and Grü-
neisen constants. It performed a pressure-induced variation 
of Debye temperature and has found a decreasing in Debye 
temperature around 40 kbar in AlRE (RE = La, Ce, Pr) inter-
metallics. However, few studies have been conducted on the 
mechanical properties of AlPr.

Dislocation is one of the important factors which affects the 
plasticity of materials. Therefore, the study of dislocation and 
mobilities is very significant for B2 structure AlPr. This paper 
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mainly focuses on the dislocation core structure of B2-AlPr 
and related Peierls stress using the truncated approximation 
method.

The dislocation core structure of AlPr

Dislocation equation and its truncated dislocation 
solution

Generally, the natural coordinate system is adopted in disloca-
tion theoretical analysis. One coordinate axis is set as disloca-
tion line direction, and the other coordinate axis is perpen-
dicular to dislocation line direction, where Burgers vector was 
involved in glide plane. In fact, it is reasonable that a coordi-
nate is set as Burgers vector “b”. In commonly used dislocation 
coordinates, the dislocation line direction is defined as y-axis, 
the x-axis is parallel to edge dislocation, in which x–y plane, 
glide plane or misfit plane is determined by the dislocation line 
and the Burgers vector “b”. The intrinsic frame is determined 
by a set of orthogonal unit vector ( e⊥, e∥ ), which is obtained 
by rotating the natural coordinate frame along with the y-axis 
(Wang et al. 2011). Figure 1 shows the intersection angle ( � ) 
of Burgers vector and dislocation line.

In intrinsic frame, displacement field can be represented by 
u = u∥ + u⊥ , in which u∥ is the parallel component of Burgers 
vector, and u⊥ is the normal component of the Burgers vec-
tor. The coordinate transformation of two frameworks can be 
represented by the following matrix:

(1)
(

u∥
u⊥

)

=

(
sin 𝛼

− cos 𝛼

cos 𝛼

sin 𝛼

)(
ux
uy

)

.

Besides, restoring force can be represented by the similar 
transformation relation:

Meanwhile, the translation paralleled to the Burgers vec-
tor direction is the main part of the displacement, and the 
normal component is regarded as the perturbation in solving 
of the displacement of parallel component. The bounded 
path is similar to the following unidimensional equation:

where � is the original cell area, �∥ is discrete lattice effect 
correction factor, K∥ the energy factor, u∥ is the displace-
ment field, f∥ is the restoring force. As it is a second-order 
integral differential equation, the analytic solution is difficult 
to obtain.

To separate the dislocation core part from the displace-
ment field, the displacement field u is resolved into two main 
parts:

where u0 is the dislocation shape, which stays away from the 
center of dislocation. uc is the dislocation center section. In 
intrinsic frame:

where � is the structure factor determined by the asymptotic 
characteristic of dislocation and b is the Burgers vector. The 
uc in the dislocation core part is represented as follows:

where Y = 1
/
(1 + q2),Wn, n = 1, 2… ,W  is the orthogonal 

polynomials defined in the interval (0,1) (Wang 2003).

c
∥

n
, c⊥

n
, n = 1, 2,… are the core parameters need to con-

firm. The calculation formula of restoring force is as follows:

The trial solution can be written integrity as:

(2)
(

f∥
f⊥

)

=

(
sin 𝛼

− cos 𝛼

cos 𝛼

sin 𝛼

)(
fx
fy

)

.

(3)−
1

2
�∥�

d2u∥

dx2
−

K∥�

2� ∫
+∞

−∞

dx�

x� − x

(
du∥

dx

)|
|
|
|
|x�=x

= f∥,

(4)u = u0 + uc,

(5)u0∥ =
b

𝜋
arctan q +

b

2
, u0

⊥
= 0, q = 𝜅x,

(6)uc∥ =
bq

�

[
c
∥

1
W1(Y) + c

∥

2
W2(Y) +⋯

]
,

(7)Wn(Y) =
n∑

l=1

bn
l
Yl,

(8)bn
l
=

(−1)n+l(n + l)!
(l + 1)!(l − 1)!(n − l)!

,

(9)

f∥ = −
d�∥

du∥
� = −

���b

2�d
sin

(
2�u∥

b

)(

1 + 2Δ1 sin
2
�u∥

b

)

.

Fig. 1   The intrinsic frame
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For different dislocation core structures, the dislocation 
solution can be truncated at the appropriate place; so it is 
called truncated dislocation solution. The core structural 
parameters cn in trial solution can be obtained by introduc-
ing the material-related parameters; the dislocation core 
structure can be acquired later.

The dislocation core structure of AlPr

Because of the aeolotropism properties of B2-AlPr, the 
aeolotropism should to be considered, and the shear modulus 
and poisson ratio can be obtained by Voigt (1966):

in which the Lame constant is expressed as:

where H is the anisotropic factor,

Ke and Ks are the Energy factors shown as,

The equations of the discrete lattice effect correction fac-
tor are as follows:

where

The restoring force on the equation right side is calculated 
by the section on the expression of generalized-stacking-
fault energy (GSFE) (Li et al. 2011):

(10)u∥ =
b

�

[
arctan q + c

∥

1
qW1(Y) + c

∥

2
qW2(Y) +⋯

]
+

b

2
.

(11)𝜇 = c44 −
1

5
H, 𝜈 =

𝜆

2(𝜇̄ + 𝜆)
,

(12)� = c12 −
1

5
H,

(13)H = 2c44 + c12 − c11,

(14)Ke =
�

1 − �
, Ks = �.

(15)�s� =
3

4
��

[
1 − tan2 � sin2 �

]
,

(16)�e� =
3

4
��

[
2(1 − �)
(1 − 2�)

− tan2 � cos2 �

]

,

(17)
�∥ = �e sin

2
� + �s cos

2
�, K∥ = Ke sin

2
� + Ks cos

2
�.

where �� is the equivalent shear modulus obtained by the 
γ-surface. � is the original cell area, d is the interlamellar 
spacing of upper and lower layers of atoms, b is the Burgers 
vector, and Δ is the correction factor of sine force law. In the 
{110} misfit plane of B2-AlPr, tan � = 1 , sin� = 1

�√
3 . � 

is the intersection angle ( � ) of Burgers vector and disloca-
tion line.

In Table 1, � is the average value of shear modulus, and in 
Table 2, is the ��b

2
/
(4�2d) coefficient of generalized stack-

ing fault energy curve. Δ1 and Δ2 are the correction factor 
of sine force law curve. The previous generalized disloca-
tions section images can conclude that there is no reverse 
boundary energy in < 100 > {110} and < 110 > {110} direc-
tion curve; therefore, only a corrected parameter could fit 
out perfect. In addition, antiphase boundary (APB) energy 
was existed in < 111 > {110} direction curve; two corrected 
parameter were needed to fit it out.

After substituting trial solution, the restoring force and 
the corresponding material parameters into dislocation equa-
tion, the corresponding expressions can be represented by 
the orthogonal polynomial, after which the algebraic equa-
tion related to the core structural parameters cn, n = 1, 2,… 
is acquired by subtracting the right and left sides of the 
equation. Then, the corresponding dislocation solution and 
core structural parameters can be obtained by calculating 
the algebraic equation.

The high symmetry line and the close line are easy to 
slide, on the B2 structure rare earth intermetallic compound 
of {110} surface, when the Burgers vector b = <100 > , 
� = 0◦ , � = 54.7◦ and � = 90◦ ; when the Burgers vector 
b = <110 > , maybe � = 0◦ , � = 35.3◦ and � = 90◦ ; when 
the Burgers vector b = <111 > , maybe � = 0◦ , � = 35.3◦ , 

(18)

f∥ = −
d�∥

du∥
� = −

���b

2�d
sin

(
2�u∥

b

)

×

(

1 + 2Δ
1
sin

2
�u∥

b
+ 3Δ

2
sin

4
�u∥

b

)

,

Table 1   The relational 
parameters in AlPr

a Reference (Tao et al. 2007a)

Parameter a (Å) � (GPa) � C11 (GPa) C12 (GPa) C44 (GPa)

AlPr 3.759 31.52 0.26 66.8a 49.26a 46.67a

Table 2   The fitting parameters of {110} plane’s generalized-stacking-
fault energy in B2-AlPr

AlPr Burgers vector direction �
r
 (GPa) � (J/m2) Δ

1
Δ

2

<100 > {110} 23.218 0.8850 0.2847 0
<110 > {110} 18.580 0.7083 0.8314 0
<111 > {110} 50.400 1.9214 − 0.6067 0
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� = 54.7◦ and � = 90◦ . α angle is the intersection angle of 
Burgers vector and dislocation line.

Tables 3 and 4 display the B2-AlPr, core structural param-
eters cn, n = 1, 2,… core width ξ, decomposition width deq , 
which is the distance between the two peaks in the super-
dislocation along the Burgers vector of b = <111 > or the 
balance distance between two parts of dislocation and shape 
factor S. According to the observation of generalized-stack-
ing-fault energy curve, the paper forecasts that the disloca-
tion core structure is not very complicated; thus, only the 
first four items in the expression of displacement are kept.

The related parameter settings are shown in Tables 1 and 
2. The trial solution and dislocation restoring force are pro-
vided by the Eqs. (3), (9) and (10). Tables 3 and 4 list the first 
four items, and the core structure parameters calculated by 
the Burgers vector along the < 100 >,  < 110 >, < 111 > direc-
tions on B2-AlPr of {110} surface and calculated dislocation 
width, decomposition width and shape factor in describing 
the decomposition dislocation shape.

Because the coordinates selected in this paper are intrin-
sic coordinate frames based on the Burgers vector, the fol-
lowing calculations are based on the Burgers vector as the 
reference unit. It could be seen from Table 3 that on the 
{110} surface of AlPr, the Burgers vector is the disloca-
tion of < 100 > and < 110 > , and the values of c1, c2, c3 and 
c4 of any possible dislocation line decrease in order, indi-
cating that the higher the dislocation, core parameters have 
less influence on the dislocation properties. For different 
dislocation lines, c1 gradually increases and c2, c3 and c4 
gradually decrease with the increase of dislocation angle. 

In the Burgers vector of < 100 > direction, the dislocation 
core width is within the range of 1.33b–1.69b. In the dis-
location of < 110 > direction, the dislocation core width is 
within the range of 1.13b–1.575b. In general, the core width 
of edge dislocation is the largest, the mixed dislocation is in 
the middle, and the screw dislocation is the smallest, which 
conforms to the basic law of dislocation.

The generalized fault energy curve in the direc-
tion of < 111 > {110} of AlPr has antiphase boundary 
(APB) energy, and the dislocation is decomposed two 
superpartial dislocations: superdislocation. In B2 struc-
ture, < 111 > {110} superdislocation is decomposed as fol-
lows (Lazar and Podloucky 2007):

where APB is the antiphase boundary between the two super 
partial dislocation and represents the antiphase boundary 
between two superpartial dislocations. Table 4 shows the 
related properties of AlPr’s < 111 > {110} superdislocation 
calculated in this paper. S is the shape factor and deq is the 
decomposition width of the dislocation. S is defined as the 
second derivative of the dislocation density of the partial 
superdislocation peak point (Wang et al. 2011):

In which a is the lattice constant, and � = du∕dx is the 
dislocation density, Shape factor S is similar to the disloca-
tion width, which describes the decomposition of the width 
of the dislocation of partial dislocation. If the value of S is 
larger, part of the dislocation density of the image peak will 
be sharp, dislocation is narrower, and it is difficult to move 
in the crystal. On the contrary, if the value of S is relatively 
large, the peak of partial dislocation density image is rela-
tively smooth and the dislocation is relatively wide, which 
means that it is easier to move in solids.

It can be obtained from Table 4 that in {110} surface 
of AlPr, the values of c1, c2, c3 and c4 of any possible 
dislocation along the Burgers vector of < 111 > direction 
decrease successively, indicating that the higher the dis-
location core parameters, the less influence on the dis-
location properties. And the correctness of truncated 

b⟨111⟩ → b∕2⟨111⟩ + APB + b∕2⟨111⟩,

(19)S = a2
d2�

dx2

|
|
|
|
|peak

.

Table 3   The core parameters 
cn, n = 1; 2; 3; 4 and core width 
� , with the Burgers vector 
b = <100 > and < 110 > in {110} 
plane of AlPr

AlPr c1 c2 c3 c4 � ( b)

<100 > {110} 0
◦ 1.038 0.182 0.046 0.0210 1.330

54.7
◦ 1.060 0.160 0.039 0.0180 1.420

90
◦ 1.063 0.157 0.038 0.0178 1.690

<110 > {110} 0
◦ 0.513 0.073 0.039 0.0055 1.130

35.3
◦ 0.595 0.072 0.035 0.0040 1.235

90
◦ 0.643 0.066 0.029 0.0032 1.575

Table 4   The core parameters cn, n = 1; 2; 3; 4 sharp-factor |S| and dis-
sociated width d

eq
 , with the Burgers vector b = <111 > in {110} plane 

of AlPr

AlPr 0◦ 35.3◦ 54.7◦ 90◦

c1 − 0.395 − 0.359 − 0.343 0.109
c2 − 0.359 − 0.127 − 0.129 − 0.265
c3 0.092 0.089 0.088 0.027
c4 − 0.027 − 0.025 − 0.024 0.019
d
eq
(b) 1.140 1.490 1.540 1.667

S 0.2810 0.0606 0.0382 0.0223
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dislocation solution is also verified. For different disloca-
tion lines, with the increase of dislocation angle, c1 and 
c4 gradually increase, c3 gradually decreases, c2 does not 
change regularly, and < 100 > , < 110 > directions are dif-
ferent. The value of the shape factor S, which describes the 
image of dislocation density, decreases with the increase 
of dislocation angle. The results in the Fig. 4 show that 
the larger the value of S, the sharper the peak of disloca-
tion density graph and the narrower the width of partial 
dislocation. The edge dislocation has the largest decom-
position width, the mixed dislocation is in the middle, and 
the screw dislocation is the smallest. In other words, the 
edge superdislocation with the Burgers vector < 111 > is 
the easiest to decompose.

Figures 2, 3, and 4 show that in the direction of the 
same Burgers vector, the larger the dislocation angle is, 
the wider the dislocation core width or decomposition 
width will be. The figure of dislocation density of screw 
dislocations with the Burgers vector < 100 > and < 111 > is 
obviously sharper than that of other dislocations, which 
proves that the core width and decomposition width of 
screw dislocations are much narrower than those of other 
dislocations, which are consistent with the numerical 
results given in Tables 3 and 4. By comparing the core 
width of < 100 > and < 110 > direction, it is not difficult to 
find that the core width of screw dislocation and edge dis-
location with the Burgers vector < 100 > is wider than that 
of < 110 >. At the same time, the unstable-stacking-fault 
energy also exists the relationship of 𝛾us⟨110⟩ > 𝛾us⟨001⟩ . 

So, for B2-AlPr, the unstable-stacking-fault energy is an 
important factor affecting the dislocation core width.

Peierls barrier and Peierls stress

The calculation method of Peierls barrier and Peierls 
stress in B2 structure

Peierls energy and Peierls stress are two key quantities 
that characterize dislocation mobility. Dislocation mobil-
ity determines the mechanical properties of materials. The 
existence of dislocation makes the crystal energy increase; 
this part of energy is called dislocation energy. To study the 
mobility of dislocation, a lot of studies have been conducted 
on dislocation energy (Peierls 1940; Nabarro 1967; Fore-
man et al. 1951; Kroupa and Lejcek 1972; Ohsawa et al. 
1994; Wang 1996; Joós and Duesbery 1997; Wu et al. 2008). 
Peierls energy of dislocation is composed of two parts, (1) 
elastic strain energy of upper and lower half of infinite elas-
tomer, and (2) the interaction energy of atoms on the sliding 
surface and the lower two layers is often called misfit energy 
(Wu et al. 2008). Since Peierls and Nabarro first advanced 
Peierls energy and Peierls stress, they have made theoreti-
cal improvements in various aspects (Peierls 1940; Nabarro 
1967). Foreman has calculated Peierls stress under improved 
sinusoidal force law (Foreman et al. 1951). But there are 
two obvious contradictions: one is Peierls stress cycle that is 
half of the Burgers vector rather than the Burgers vector; the 

Fig. 2   The dislocation profile and density in AlPr along the < 100 > direction in {110} plane
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Fig. 3   The dislocation profile and density in AlPr alone < 110 > direction in {110} plane

Fig. 4   The dislocation profile and density in AlPr along < 111 > direction in {110} plane
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other is Peierls stress that slip surface atoms on both sides 
are aligned in different ways. Joos and Duesbery research 
show that Peierls stress is different mainly because of the 
different law of restoring force treated in semi-infinite crys-
tal (Joós and Duesbery 1997). Lu believes that the latter 
contradiction is caused by the different calculation methods 
used to calculate the misfit energy (Lu et al. 2000).

It is well known that Peierls energy and Peierls stress are 
related to the discrete lattice. The key to all these questions 
lies in the different ways to calculate the discrete displace-
ment field when Peierls energy and Peierls stress employed. 
In addition, P–N model only considers discrete and inde-
pendent of misfit energy, while ignoring the elastic strain 
energy. In lattice theory, when calculating Peierls energy 
and Peierls stress, then with the contribution of elastic strain 
energy, the above argument is automatically eliminated. The 
study shows that the contribution of elastic strain energy to 
Peierls barrier is greater than the misfit energy. Therefore, 
to make accurate results, elastic strain material cannot be 
ignored; Peierls barrier should be the total energy misfit 
energy and elastic strain energy sum.

In the P–N theory, the Hamiltonian can be written as the 
sum of the following three parts (Wang 2006):

where Ha(Hb ) is the Hamiltonian of the semi-crystalline 
body above (below) the cutting surface, Hab is the Hamilto-
nian of the interaction between two semi-crystals separated 
by the cutting surface. Each crystal can be approximately 
half of its atoms is considered by harmonic force interac-
tion linking. Since the potential energy of deformation of 
semicrystalline is generated called elastic strain energy, the 
energy generated by the interaction between the two is called 
“a” semi-crystalline misfit energy. It can be shown when 
subjected to force size, semi-crystalline potential harmonic 
equilibrium is:

The interaction is:

Sum covering all atoms with discontinuous forces is not 
equal to zero. Thus, the length of the dislocation, disloca-
tion lines per unit length of elastic strain energy and energy 
misfit are:

(20)H = Ha + Hb + Hab,

(21)Ha =
1

2

∑

n=−∞

fn ⋅ un.

(22)Hab =
∑

n→∞

�n(u).

(23)
Ee

(
x0
)
=

1

l

(
Ha + Hb

)
=

2Ha

l

Em

(
x0
)
=

Hab

l

.

Since the two upper and lower semi-crystalline are equiv-
alent, so Ha = Hb . The misfit energy is related with general-
ized stacking fault energy. The expressions of elastic strain 
energy and misfit energy are different for different disloca-
tion lines and misfit surfaces.

Figure 5 shows the projection diagram of B2-AlRE atoms 
in {110} plane. The hollow point represents the lower layer 
of atoms, and the solid point represents the projection of 
the upper layer of atoms. Different sizes represent different 
species of atoms. Taking the intermetallic compound of B2 
structure < 110 > {110} as an example, as shown in Fig. 5, 
if the dislocation line < 110 > is set as axis y and the direc-
tion perpendicular to the dislocation line is set as direction 
x, then the position of atoms in {110} plane is:

ey and ex is the unit vector of y and x, m and n is the unit 
vector。All dislocations total atomic energy of external 
force energy is not zero sum, it can be expressed as follows:

x0 is the dislocation centre, m + n = n�,m − n = m� . For 
the same parallel to the dislocation line displacement, sum 
can only x direction, the direction becomes an y integral 
multiple,

For the final result is needed a unit of energy dislocation 
dislocation line, then there is:

(24)Rmn = (m + n)

√
2a

2
ey + (m − n)

a

2
ex,

(25)E =
+∞∑

m=−∞

+∞∑

n=−∞

E
[
u
(
Rmn − x0

)]
,

(26)E = N

+∞∑

m�=−∞

E[u(Rm� − x0)].

(27)E =
1

l

+∞∑

m�=−∞

E[u(Rm� − x0)],

Fig. 5   The B2-AlRE atoms projection in the {110} plane, hollow 
points stand for below layer atoms, solid points stand for above layer 
atoms projection, different size means different kinds of atoms
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l is the dislocation line direction of the cycle. Since different 
coordinate neighborhood along the < 110 > direction of the two 
rows of atoms, based on the principle of symmetry, Ee

(
x0
)
 and 

Em

(
x0
)
 were in the structure of the intermetallic compound 

B2 < 110 > {110} expression slip system have the following 
forms:

u is the relative displacement of the center of the dislocation, 
the length of the original cell basis vectors, the sum of all the 
atomic level cover-band width of the misfit in the face. Per unit 
length of the dislocation energy:

Et is the total energy. The same method can be concluded 
that the structure of the intermetallic B2 < 100 > {110} expres-
sion slip system compound has the following form:

For different slip systems and different displacement, the 
specific values are substituted into the expressions the cor-
responding Peierls barrier could be obtained. Since the lattice 
symmetry, when the dislocation slip dislocations in the crystal 
energy periodically change.
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(34)E(x0 + b) = E(x0),

where the shaft x is parallel to the direction of slip, b along 
the direction of the cycle slip. As a periodic function, the 
dislocation energy expanded into Fourier series form. Typi-
cally, the series to retain the following form:

where E0 is related to the crystal and infinite divergence 
constant, EP is the Peierls barrier which needs to climb when 
moving dislocations. Elastic strain energy and the misfit 
energy can be expressed in the same way. Since the lattice is 
discreteness, only the applied force exceeds the Peierls stress 
dislocation movement will be. So Peierls stress is defined as 
maximum stress overcome Peierls barrier required, or mov-
ing dislocations require a minimum of applied stress:

Dislocation energy includes the energy and the misfit 
strain energy contribution. In addition, the specific structure 
of B2-AlPr between misfit energy, elastic strain energy and 
total energy was calculated, and the corresponding stresses 
were also calculated..

Peierls energy and Peierls stress of AlPr

B2-AlPr lattice constant a = 3.759 Å (Li et al. 2011), the 
average shear modulus 

−
� = 31.516 GPa, � = 0.26, {110} 

planes of different pitch surfaces d =
√
2a

�
2 , different 

Burgers vectors dislocation angle core structure parameters 
cn have been given in detail at the previous section. Correla-
tion coefficients and parameters of generalized stacking fault 
energy surface are given in Tables 1 and 2. Substitute the 
specific parameters and expressions into the Eqs. (28)–(35) 
to obtain the misfit energy, elastic strain energy, total energy 
of different dislocation angles of the different Burgers vector 
and the corresponding stress determined by them. Specific 
results are given in Tables 5, 6 and 7.

As shown in Tables 5 and 6, the slip system of the interme-
tallic compound B2-AlPr is < 100 > {110} and < 110 > {110}. 
The misfit energy, elastic strain energy, total energy and the 
corresponding stress are determined by dislocation angles. The 
results show that the misfit energy is always smaller than the 
elastic strain energy, maybe one or two orders of magnitude 
(Lu et al. 2000), and their phases are always opposite. For 
the same slip system, the misfit energy, elastic strain energy, 
total energy and the corresponding stress determined by 
them all decrease with the increase of dislocation angle. For 
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the same dislocation angle, the energy and stress of the slip 
system < 100 > {110} are greater than that of < 110 > {110} 
direction.

Table 7 shows the misfit energy, elastic strain energy, 
total energy and the corresponding stress determined by 
the different dislocations of B2-AlPr with the Burgers vec-
tor < 111 > {110}. The easiest slip system of B2-AlPr 
is < 111 > {110}. In addition to the dislocation angle is 54.7° 
dislocation, misfit energy is always smaller than the elastic 
strain energy, and their phase is always opposite. But for the 
dislocation angle of 54.7° dislocation, misfit energy is larger 
than the elastic strain energy, and they have the same phase. 
For all dislocations on the < 111 > {110} slip system, with 
the increase of dislocation angle, misfit energy, elastic strain 
energy, total energy and the corresponding stress determined 
by them decrease in turn.

Figure  6 shows the total energy (Peierls barrier) of 
B2-AlPr as a function of dislocation angle. The unit of x-axis 
is Å, and that of the y-axis is Em(10

−20 J∕Å) . It is trans-
parent that the different dislocation angles of the slip sys-
tem < 100 > {110}, < 110 > {110} and < 111 > {110} have 
a common rule. Peierls barrier gradually decreases with the 
increasing of dislocation angle. The potential barrier of the 
screw dislocation is much higher than that of the other disloca-
tions, indicating that the screw dislocation is difficult to move.

Conclusions

In this paper, the dislocation properties of B2-AlPr are 
studied by truncation dislocation method. The results 
show that the core width of < 100 > screw and edge dis-
location are wider than that of < 110 > . Meanwhile, the 
unstable-stacking-fault energy is also exists the rela-
tionship of 𝛾us⟨110⟩ > 𝛾us⟨001⟩ , which showing that the 
unstable-stacking-fault-energy is an important factor in 
B2-AlPr affecting the dislocation core width. The easi-
est slip system of B2-AlPr is < 111 > {110}. In addition 
to the dislocation angle of 54.7° dislocation, the misfit 
energy is always smaller than the elastic strain energy, 
and they have always opposite phases. But for the dis-
location angle of 54.7° dislocation, the misfit energy is 
larger than the elastic strain energy, and both of them have 
same phase. For all dislocations on the < 111 > {110} 
slip system, with the dislocation angle increasing, the 
misfit energy, elastic strain energy, total energy and 
the corresponding stresses decrease in turn. Slip sys-
tems < 100 > {110}, < 110 > {110} and < 111 > {110} dis-
locations of different angles have a common law, that is, 
with the increase of the dislocation angle, Peierls barrier 
decreases, screw dislocation barrier is much higher than 
other dislocations, indicating that the screw dislocation is 
difficult to move.

Table 5   The Peierls 
barriers and Peierls stress 
for various dislocations of 
the < 100 > {110} direction in 
B2-structure AlPr

AlPr E
m
(10−20J∕Å) E

e
E
t

�
m
(�) �

e
�
t

0
◦ 0.2312 0.6445 0.4133 0.0230 0.0640 0.0410

54.7
◦ 0.0110 0.0160 0.0050 7.78 × 10−4 1.13 × 10−3 3.49 × 10−4

90
◦ 1.54 × 10−4 0.0151 0.0150 1.09 × 10−5 1.05 × 10−4 1.04 × 10−4

Table 6   The Peierls 
barriers and Peierls stress 
for various dislocations of 
the < 110 > {110} direction in 
B2-structure AlPr

AlPr E
m
(10−20J∕Å) E

e
E
t

�
m
(�) �

e
�
t

0
◦ 0.0033 0.0188 0.0155 3.3 × 10−4 1.88 × 10−3 1.55 × 10−3

35.3
◦ 1.06 × 10−3 6.32 × 10−3 5.26 × 10−3 1.06 × 10−4 6.31 × 10−4 5.25 × 10−4

90
◦ 8.56 × 10−4 5.54 × 10−3 4.72 × 10−3 8.54 × 10−5 5.58 × 10−4 4.72 × 10−4

Table 7   The Peierls 
barriers and Peierls stress 
for various dislocations of 
the < 111 > {110} direction in 
B2-structure AlPr

AlPr E
m
(10−20J∕Å) E

e
E
t

�
m
(�) �

e
�
t

0
◦ 0.0460 0.0620 0.0160 3.11 × 10−3 7.91 × 10−4 2.32 × 10−3

35.3
◦ 0.0106 0.0530 0.0424 5.28 × 10−4 2.63 × 10−3 2.11 × 10−3

54.7
◦ 3.84 × 10−3 3.55 × 10−4 4.20 × 10−3 1.91 × 10−4 1.77 × 10−5 2.09 × 10−4

90
◦ 6.62 × 10−5 2.29 × 10−4 1.62 × 10−4 3.30 × 10−6 1.14 × 10−5 0.81 × 10−5
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