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Abstract
We show how a genetic algorithm (GA) generates efficiently the energy landscape of the equimolar calcite–magnesite 
(CaCO3—MgCO3) solid solution. Starting from a random configuration of cations and a supercell containing 480 atoms, 
the lowest energy form of ordered dolomite was found in all runs, in 94% of which it was located with less than 20,000 fit-
ness evaluations. Practical implementation and operation of the GA are discussed in detail. The method can also generate 
both low-lying and high-lying excited states. Detailed analysis of the energy-minimised structures of the different configu-
rations reveals that low energies are associated with reduction of strain associated with rotation of the carbonate groups, a 
mechanism possible only when a carbonate layer lies between a layer of just Ca and a layer of just Mg. Such strain relief is 
not possible in the equimolar MgO–CaO solid solution despite the similarity of the crystal structures of these binary oxides 
to calcite–magnesite, and therefore, the enthalpy of mixing is very high. Implications for thermodynamic configurational 
averaging over the minima in the energy landscape are briefly considered. Overall, the genetic algorithm is shown to be a 
powerful tool in probing non-ideality in solid solutions and revealing the ordering patterns that give rise to such behaviour.

Keywords  Genetic algorithm · Crystal structure prediction · Carbonates · Ab initio methods · Density functional theory · 
Non-ideal solid solution · Layered crystal structures

Introduction

Most natural mineral groups exist over a range of chemi-
cal compositions and solid solutions play a major role in 
determining mineral stability and chemical behaviour (Put-
nis 1992). Non-ideality of such solutions and the resulting 
tendency to unmix often depends on the atomic ordering. 
For example, the enthalpy of mixing of disordered dolo-
mite is positive, but negative for ordered dolomite. Similar 
behaviour is found in the diopside–jadeite solid solution—it 
is non-ideal, yet an intermediate ordered phase forms on 

cooling. Non-ideality is fundamental also to the interpreta-
tion of any processes involving partitioning between phases. 
Solid solutions continue to pose considerable challenges for 
computation, as does non-ideality in particular. In this paper, 
we report the use of genetic algorithms to predict the exist-
ence of an ordered phase ab initio and discuss why this phase 
is more stable than the disordered form.

We have developed a number of computational methods 
for the study of solid solutions and grossly non-stoichiomet-
ric compounds. Any technique must be able to sample many 
arrangements of the atoms, allowing for the exchange of 
ions located at different positions. It is also crucial to allow 
for the relaxation of the local environment of each ion, i.e. 
local structural movements which can reduce considerably 
the energy associated with ion exchange. Local effects due 
to ion association or clustering must not be averaged out. We 
have previously used basin-sampling approaches, such as 
configurational Boltzmann averaging (Purton et al. 1998a, b; 
Allan et al. 2001; Todorov et al. 2004; Mohn et al. 2005) and 
also exchange Monte Carlo methods (Purton et al. 1998a, b; 
Todorov et al. 2004; Purton et al. 2007, 2013).
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This paper is primarily concerned with basin-sampling 
and exploring the energy landscape of a strongly non-ideal 
system, MgCO3–CaCO3. Such marked non-ideality poses a 
number of difficult problems. Unlike the energy landscapes 
of the binary oxide mixtures considered in our previous 
work (Purton et al. 1998a, b), where configurations with 
distinct cation arrangements were generated randomly, the 
energy landscape for MgCO3–CaCO3 is very different. It 
contains a small number of deep minima, some of which 
correspond to the formation of ordered dolomite at 50% 
Mg, 50% Ca. Generating cation arrangements at random 
is almost bound to fail to discover such deep minima with 
very small weights (degeneracies). Since only a few minima 
are thermally accessible, simply generating a random selec-
tion of starting configurations will not probe sufficiently 
the low-energy parts of the landscape, and so any averaged 
thermodynamic property is likely to be highly inaccurate. 
Monte Carlo techniques are also likely to fail to locate such 
minima due to “basin trapping”; the large mismatch in ionic 
radii [all ionic radii are for sixfold coordination and taken 
from Shannon (1976)], between Ca2+ (1.00 Å) and Mg2+ 
(0.72 Å) is such that changes in local environments associ-
ated with any exchange are large, and therefore, the accept-
ance rate of exchanges is very low even at high temperatures.

The development of tools for locating low-lying minima 
for such situations is of considerable importance. Ordering 
patterns may be extremely complex and somewhat counter-
intuitive, such as in the garnet solid solution, where third-, 
fourth- and even fifth-nearest neighbour cation orderings are 
energetically more important than first and second neigh-
bours (van Westrenen et al. 2003; Sluiter et al. 2004; Free-
man et al. 2006; Lavrentiev et al. 2006; Lyakhov et al. 2010, 
2013; Oganov et al. 2009, 2010, 2011; Zhu et al. 2012). 
Before tackling systems where ordering is not fully estab-
lished, in this paper, we take a well understood system and 
show how a genetic algorithm (GA) together with energy 
minimisation can be used to find low-energy minima in the 
energy landscape (Holland 1975; Goldberg 1989). We then 
examine these deep minima in some detail.

Most applications of GA carried out at the atomic level 
have involved application to and optimisation of a range of 
nanoclusters (Deaven and Ho 1995; Johnston 2003; Chen 
et al. 2007; Ferrando et al. 2008). Nevertheless, there are 
an increasing number of successful applications to other 
materials science problems, such as the prediction of crys-
tal structures (Woodley et al. 1999; Woodley and Catlow 
2008; Oganov et al. 2006; Woodley 2009), and modelling 
reconstruction and construction of surfaces (Chuang et al. 
2004) and grain boundaries (Zhang et al. 2009; Chua et al. 
2010) as well as prediction of ordering in disordered alloys 
(Johnston 2003; Smith 1992; Mohn and Kob 2009, 2015, 
Mohn et al.  2011), and searching for alloys with desired 
physical properties (Dudiy and Zunger 2006). Only a very 

few examples have demonstrated how GAs can be used to 
understand ordering patterns or local structure in grossly 
disordered ceramics. Mohn and Stølen (2005) used a GA 
to map low energy minima for a binary oxide solid solution 
but their simulation box was restricted to just 64 ions. Often 
much larger cells are needed to model gross non-stoichi-
ometry in ceramics (Taylor et al. 1997a, b; Todorov et al. 
2004; Bakken et al. 2003). Here we extend the earlier study 
of Mohn and Stølen (2005) to the more complex carbonate 
system.

The CaCO3–MgCO3 solid solution itself is one of the 
most well-examined solid solutions in mineralogy. The 
essential features are two asymmetric miscibility gaps sep-
arated by a narrow stability field for the dolomite (50:50) 
composition. Calorimetric studies (Navrotsky and Capo-
bianco 1987; Chai et al. 1995; Chai and Navrotsky 1996; 
Navrotsky et al. 1999) yield a negative enthalpy of formation 
for ordered dolomite relative to the end-members MgCO3 
and CaCO3. In contrast, the enthalpy of formation of a dis-
ordered solid solution with the same 50:50 composition is 
positive (Burton and Kikuchi 1984; Burton 1987). Theoreti-
cal work has been substantial (Burton and Kikuchi 1984; 
Burton 1987; Davidson 1994; Burton and Van de Walle 
2003; Purton et al. 2006) and is consistent with experiment. 
For example, in Refs. (Vinograd et al. 2007, 2009) the fully 
optimised energies of a large set of randomly varied struc-
tures were used to parameterise a cluster expansion of 12 
pair-wise effective interactions to obtain the activity–com-
position relations and a phase diagram in good agreement 
with experiment.

In the next section, we discuss the theoretical methods 
and the genetic algorithms. Results follow. We then exam-
ine the energy landscape in detail, concentrating on the 
link between the enthalpies of formation and structures of 
individual configurations. Of particular interest is the local 
environment of individual Ca2+ and Mg2+ ions, and how 
the carbonate ions adjust to accommodate cation neighbours 
with very different sizes, leading to the observed stability of 
the ordered dolomite structure. Some brief remarks about 
extracting thermodynamic properties for such systems from 
the energy landscape follow, and we also consider the con-
sequences of the form of the energy landscape for the kinet-
ics of transitions between different orderings and hence the 
difficulty in preparation of ordered dolomite (the so-called 
“dolomite” problem or paradox).

Theoretical methods

Energy minimisation using interatomic potentials

For the structural optimisations within the GA algorithm 
and also for the molecular calculations we have used the 
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set of interatomic shell-model potentials and atomic charges 
as Fisler et al. (2000). Energy minimisations involved full 
structural optimisation (Taylor et al. 1997a, b, 1998) in the 
static limit (thus ignoring vibrational contributions) of all 
lattice parameters and atomic positions with no symmetry 
constraints, and were carried out with the GULP code (Gale 
1997; Gale and Rohl 2003; Gale 2005). Calculated lattice 
parameters for MgCO3, CaCO3 and ordered dolomite are in 
good agreement with experimental values (Table 1).

Since preliminary runs indicated that inclusion of the 
shell model (Dick and Overhauser 1958) in this potential 
set only affected absolute energies (and then only slightly) 
but not the relative energies of different arrangements, shells 
were omitted from the GA runs described below. Shells were 
included for the molecular mechanics studies described in 
the final sections of this paper. In addition, since we found 
that a few high-energy configurations minimisations failed 
because the carbonate ion became non-planar, we increased 
the four body O–C–O–O torsion constant to 0.7510 eV; 
again this has no effect on any relative energies.

Ab initio optimisations

For selected very low and very high energy arrange-
ments, we also carried out structural optimisations using 
the ab initio all-electron periodic Hartree–Fock method, as 
implemented in the CRYSTAL09 code (Dovesi et al. 2005; 
Dovesi et al. 2009). Previously published basis sets were 
used (Catti et al. 1991, 1993; McCarthy and Harrison 1994; 
Towler et al. 1994) with a Monkhorst–Pack k-point grid of 
8 × 8 × 8. Once again, no symmetry constraints were applied 
and calculated lattice parameters are in good agreement with 
experiment (Table 1).

Genetic algorithms

The GA used here consists of five steps:

1.	 Setting up an initial population (of arrangements/con-
figurations): An initial population is selected at random. 
Typical population sizes used in GA studies range from 
a few 100 to several 1000 members; here the initial pop-

ulation is 1000. Each member of the initial population 
is generated by distributing 48 Ca and 48 Mg ions at 
random over the cation positions in a hexagonal super-
cell containing in total 480 atoms and six cation lay-
ers. The energy of each configuration is calculated by a 
static energy minimisation with full structural relaxation 
(optimisation) of all basis atom positions and unit cell 
parameters. These structural optimisations thus permit 
distortion of the cell shape from hexagonal, depending 
on the symmetry of the particular cation configuration. 
We shall see later that while it is computer-time inten-
sive, this full optimisation is crucial.

2.	 Selection: Parents with high fitness are preferentially 
selected using an appropriate scheme. We used a Boltz-
mann selection where two parents are chosen with a 
Boltzmann probability, given by exp(− ΔE/kT) where 
ΔE is the energy difference of a configuration relative 
to the lowest energy so far found and, after a number of 
test calculations, the value of T was set to 7000 K. The 
temperature controls the amount of selection, i.e. the 
probability of choosing two parents.

3.	 Mating: We used a real-space crossover where slices and 
small clusters from the Parent 1 structure are randomly 
selected and combined with the complementary struc-
ture of Parent 2, maintaining the correct composition. 
We also used a uniform crossover where a random set 
of cations are selected from Parent 1 and the comple-
mentary set of cations is selected from Parent 2, with 
the constraint that the child has the correct composition. 
Far less bonds are broken when a real-space crossover is 
applied compared to that of a binary uniform crossover 
and the child inherits more local structural information 
from its parents. On the contrary, a uniform crossover 
ensures more diversity in the population since no such 
structural constraints are imposed on the crossover. 
Results below are reported using a uniform crossover 
but we compare with calculations carried out using a 
real-space crossover.

4.	 A full structural optimisation of the child structure is 
completed, as described above, and the child structure 
is then added to the population if it has a lower energy 
than the worst (highest-energy) member in the popula-

Table 1   Calculated and 
experimental lattice parameters 
for magnesite, calcite and 
dolomite

a Ref. (Zhang and Reeder 1999)
b Refs. (Taylor et al. 1997a, b)
c Ref. (Althoff 1977)

MgCO3 CaCO3 Dolomite

a (Å) c (Å) a (Å) c (Å) a (Å) c (Å)

Molecular mechanics 4.679 14.915 4.991 17.057 4.849 15.818
Ab initio Hartree–Fock 4.648 15.092 5.065 17.234 4.842 16.189
Experimental 4.636a 15.021a 4.989a 17.042a 4.807b, 4.803c 16.003b, 15.984c
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tion, which is itself removed. An important modification 
that avoids the slow convergence associated with “con-
ventional” GA is the incorporation of the symmetry of 
the underlying lattice within the GA operators using a 
randomly chosen symmetry crossover operation, i.e. we 
simply replace the child with a random structure which 
is symmetrically equivalent (Mohn and Kob 2009). 
In this work, only translational symmetry operations 
along the c-axis (i.e. the direction in which the cation 
layers are stacked) were used and these create sufficient 
diversity to locate the global minima configuration. A 
periodic translation along the c axis, T(n/6), where n is 
a randomly chosen integer (0 ≤ n < 6), generates a new 
symmetrically equivalent child, e.g.

 

 which has the same energy as the child before the symmetry 
operations were applied. Replacing the child with the sym-
metry operated child drastically increases the diversity of the 
population since different symmetrically equivalent regions 
in the energy landscape are explored simultaneously.

5.	 Mutation: This involves the exchange of a pair of differ-
ent cations, chosen at random, in the child. In this work, 
the mutation probability is 0.1.

Steps 2–5 are repeated until there are no further changes 
in the lowest energy arrangements, i.e. we carried out the 
GA simulations for an additional 5N steps, where N was 
the number of steps required to find the ordered dolomite 
arrangement.

It is straightforward to adapt this procedure to search for 
high-energy rather than low-energy arrangements, provided 
the method used for the energy calculation is accurate for 
the different interatomic distances often sampled in such 
arrangements. In this case, step 2 is modified by replacing 
∆E with − ∆E so that the members in each population with 
high energies are selected to mate preferentially, and a child 
is only added to the population if it has higher energy than 
the lowest-energy member.

Results

GA

Figure 1 shows the evolution of the lowest-energy member 
of the population as a function of the number of generations, 

T(2∕6)Catlay1Catlay2Catlay3Catlay4Catlay5Catlay6

→ Catlay5Catlay6Catlay1Catlay2Catlay3Catlay4

N. The three dotted lines show the progress of typical cal-
culations each starting from a different initial population 
of 1000 randomly-generated structures. The red curve is 
the average lowest energy after N generations of the results 
obtained from 100 such initial populations. The crystal 
structure is shown at three different stages of one of the cal-
culations, showing the emergence of intact layers along the 
c-axis containing single cation types and finally the emer-
gence of ordered dolomite as the lowest-energy structure. 
This global minimum structure contains alternating layers of 
Mg and Ca ions along the c-axis, and each individual cation 
layer contains only one type of ion. 94% of all runs reached 
the global minimum within 20,000 generations and 80% of 
all runs within 10,000 generations.

The speed at which the GA can find orderings very simi-
lar in structure and energy to ordered dolomite with layers 
of one only cation type along the c-axis is striking. Search-
ing for low-energy structures is generally a very challeng-
ing problem for unit cells with, as here, at least several 100 
atoms. There are about 6.4 × 1027 arrangements of the 48 Ca 
and 48 Mg cations in the supercell used in this work. The 
speed and reliability of finding the global minimum struc-
ture demonstrates the effectiveness of the GA methods for 
searching for low-energy structures in systems of this type.

The benefit of including the symmetry crossover operations 
is evident. The global minimum structure was only found in 
3% of all runs after 20,000 steps, in contrast to 94% when the 
symmetry operations were used. When a real-space crossover 

Fig. 1   Progression plots (lowest unit cell energy vs. number of gener-
ations N) of the genetic algorithm for Mg0.5Ca0.5CO3 using a uniform 
crossover. The energy value is relative to the global energy minimum. 
The unit cell contained 480 atoms (96 cations). The dotted lines show 
the progress of the calculations starting from three different initial 
populations of 1000 randomly-generated structures. The red curve 
shows the energy obtained from averaging the results at each genera-
tion for 100 such starting populations. In the accompanying crystal 
structures, the a-axis points out of the plane of the paper, Mg ions are 
orange, Ca blue, C grey and oxygen red. The black arrows show the 
step and the GA run to which these structures relate



197Physics and Chemistry of Minerals (2019) 46:193–202	

1 3

is applied instead of a uniform crossover, the success rate was 
slightly lower because the diversity in the population is larger 
when an uniform crossover is used. However, when using a 
real-space crossover, the convergence to the global minima 
was slightly faster since fewer bonds are broken after crossover 
and the child, therefore, inherits more structural information 
from its parents (the crossover is more efficient). It is worth 
bearing in mind that when full relaxations of the structures 
generated in each generation are not included, the GA algo-
rithm fails to find the ordered dolomite structure. This empha-
sises the necessity of including full relaxations of all the atom 
positions and unit cell parameters, despite the considerable 
extra expense in computer time. The reasons at the atomic 
level for this will become clearer in the next section.

The GA algorithm is readily reversed to generate states 
which are high, rather than low, in energy. There is no one 
global maximum, but rather a large number of structures close 
in energy in which each layer along the c-axis contains both 
Mg and Ca ions.

Structure analysis

We have probed the important features of low- and high-
energy structures through molecular mechanics calculations, 
carried out with full structural optimisations and interatomic 
potentials as described earlier. For comparison, geometric 
optimisations and total energies were also calculated using 
the periodic ab initio Hartree–Fock method. We wish to exam-
ine the structural changes that accompany the differences in 
energy between different cation orderings and ultimately give 
rise to the strong non-ideality of the CaCO3–MgCO3 solid 
solution. Four different orderings of Mg0.5Ca0.5CO3 have been 
investigated (Fig. 2), selected as those of particular interest 
based on the GA results.

For these studies we have used a unit cell containing 12 
cations (six cation layers with two cations per layer). Energies 
(in the static limit) are reported as the energy of formation of 
the mixed system relative to that of the pure end-members:

The Hartree–Fock formation energies are all slightly less 
negative (or more positive) than those calculated with the 
interatomic potentials but both follow the same trends. For 
comparison, the formation energy reported by Chan and 
Zunger for ordered dolomite (Chan and Zunger 2009) using 
density functional theory in the generalised gradient approxi-
mation is − 39 meV per cation pair, while the experimentally 
determined value is approximately − 100 meV per cation pair 
(Navrotsky 1987). Our calculated values of − 50 meV (molec-
ular mechanics) and − 82 meV (Hartree–Fock) are in closer 
agreement with experiment.

Eformation = E(Mg0.5Ca0.5CO3) − 1∕2E(MgCO3) − 1∕2E(CaCO3)

Discussion

The results from the molecular mechanics calculations show 
that, in the structures in which each layer contains cations of 
only a single element (Orderings 1, 2 and 3), the carbonate 
groups lie flat between the cation layers (Fig. 2a–c), as they 
do in the end-members CaCO3 and MgCO3.

In CaCO3 and MgCO3, the carbonate group is oriented 
to give identical Ca–O/Mg–O distances to cations in the 
layers both above and below the anion layer (Fig. 3a, b). In 
ordered dolomite, clearly the cation–O distances should not 
all be identical, but Ca–O distances should be significantly 
longer than Mg–O. If the same orientation of the carbonate 
groups were maintained in ordered dolomite as in CaCO3 
and MgCO3, the only degree of freedom allowing optimisa-
tion of the Mg–O and Ca–O distances would be the inter-
layer spacing. However, an additional degree of freedom 
is obtained through rotation of the carbonate group. Thus, 
when there are alternating layers of Ca and Mg ions along 
the c-axis (as in ordered dolomite, Ordering 1, Fig. 2a), 
the carbonate group rotates within the ab-plane so that the 

Fig. 2   a Ordered dolomite with stacking sequence 
Mglay1Calay2Mglay3Calay4Mglay5Calay6 along the c axis (Ordering 
1), representing the final structure (global minimum) found from 
the GA, b Ordering 2 contains intact layers of Ca and Mg with 
Mglay1Calay2Calay3Mglay4Calay5Mglay6 stacking-sequence along the 
c-axis, c Ordering 3 with stacking sequence Calay1Calay2Mglay3Mg 
lay4Mg lay5Calay6 and d Ordering 4 in which all layers contain a mix-
ture of both Ca and Mg ions. Corresponding formation energies are 
listed in Table 2. The blue atoms are Ca, the orange atoms Mg, the 
brown atoms carbon and the red atoms oxygen. The black lines show 
the unit cell boundaries. The c-axis direction is the vertical (stacking) 
direction
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oxygen atoms are closer to the Mg ions in one neighbour-
ing cation layer and further from the calcium ions in the 
other neighbouring cation layer (Fig. 3c). Hence, the rotation 
of the carbonate groups is crucial since it allows both the 
Mg–O and Ca–O distances to be optimised without intro-
ducing significant strain into the C–O bonds. The rotation 
of the carbonate group in ordered dolomite relative to that 
in CaCO3 (and MgCO3) is shown in Fig. 3d.

Like ordered dolomite, Orderings 2 and 3 also have intact 
Mg2+ and Ca2+ layers (Fig. 2b, c), but are higher in energy. 
In Ordering 3, for which Table 2 shows that the formation 
energy is positive, there are three adjacent layers of cations 
of the same element (Fig. 2c). The lattice parameters are 
intermediate between those of CaCO3 and MgCO3, there-
fore, the CaCO3 layers are compressed in the ab-plane rela-
tive to pure calcite (Fig. 3e), while the MgCO3 layers are 
stretched relative to pure magnesite. The Ca–O distances 
are thus shorter than those in the end-member CaCO3, while 
Mg–O distances are longer. Some strain is also found in the 
C–O bonds within the carbonate groups, with these bonds 
being significantly compressed in anion layers adjacent to 
Ca (Fig. 3e) and stretched in anion layers adjacent to Mg.

Except at the interfaces between the Ca and Mg layers, 
these strains in the bond lengths cannot be relieved by rota-
tions of the carbonate groups, in contrast to ordered dolo-
mite. In these structures with two or more adjacent layers 
with cations of the same element (e.g. Orderings 2 and 3, 
Fig. 2b, c), no advantage can be gained through rotation of 
the carbonate groups. For example, rotation to decrease the 
Mg–O distances in one direction (e.g. to the layer below) 
would increase them in the other direction (e.g. to the layer 
above). Hence, the carbonate groups between two layers of 
the same cation remain in the same orientation as in pure 
magnesite and calcite; the bond lengths are compromised 
because the lattice parameters are in between those of the 
end-members and there are insufficient degrees of freedom 
for bond length optimisation.

Thus, rotation of the carbonate groups to optimise bond 
lengths is only effective when the anion layer has Mg ions in 
one neighbouring layer and Ca ions in the other, and there-
fore, the lowest energy ordering for Mg0.5Ca0.5CO3 is that 
with alternating layers of Ca and Mg ions. Ordering 2 has 

Table 2   Optimised volumes and formation energies, in the static 
limit, calculated using molecular mechanics and (in parentheses) 
periodic Hartree–Fock theory, of some different cation orderings in 
Mg0.5Ca0.5CO3

Ordering 1 is ordered dolomite with alternating layers of Ca and Mg 
along the c-axis. Note the large differences in energy between the four 
orderings

Ordering Volume/Å3 per cation pair Eformation/meV 
per cation pair

1 107.37 (109.59) − 80 (− 52)
2 107.64 (109.91) − 13 (52)
3 107.93 (110.20) 54 (158)
4 107.53 (110.34) 169 (281)

Fig. 3   Two cation layers (ab-plane) and one anion layer of a CaCO3, 
b MgCO3, c ordered dolomite (Ordering 1, shown  in Fig.  2a), 
viewed along the c-axis (cations in the layer below the anion layer 
are labelled “1”; cations above the anion layer are labelled “2”). d 
Ordered dolomite with the positions of the oxygen atoms in the end 
members MgCO3 and CaCO3 overlaid (pink atoms show the position 
of the oxygen atoms in MgCO3 and CaCO3). Note that, in ordered 
dolomite, the carbonate group rotates clockwise to move the oxygen 
atoms closer to Mg ions in the layer above and further from Ca ions 
in the layer below, hence optimising both the Mg–O and Ca–O dis-
tances. e Ordering 3 (the calcium layer shown is the middle of the 
three adjacent layers in Fig. 2c). Blue atoms are Ca, orange atoms are 
Mg, brown atoms are carbon and red atoms are oxygen. The black 
lines show the unit cell boundaries. Some important bond lengths are 
shown; note that the Ca–O and C–O bond lengths in ordered dolo-
mite (c) are closer to those of pure calcite (a) than in Ordering 3 (e), 
in which these bond lengths are reduced
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a formation energy intermediate between those of ordered 
dolomite (Ordering 1) and Ordering 3 (Table 2); the num-
ber of anion layers with Mg ions in one neighbouring layer 
and calcium ions in the other is also intermediate between 
Ordering 1 and Ordering 3. This again indicates the ener-
getic favorability of the cation species alternating between 
layers, so that the carbonate groups can rotate to achieve 
optimal O–Ca and O–Mg separations.

In Ordering 4, in which all layers contain a mixture of 
Mg2+ and Ca2+ (Fig. 2d), the carbonate groups are distorted 
and no longer lie flat between the cation layers. There is 
considerable variation in C–O bond lengths in this particu-
lar ordering and O–C–O bond angles range from 117.2° to 
122.5°. In contrast, in the ordered dolomite structure, all 
C–O bond lengths are the same and all O–C–O bond angles 
are 120.0° (as they are in the CaCO3 and MgCO3 end-mem-
bers). Similarly, in the ordered dolomite structure, all Mg–O 
and Ca–O distances are the same, whereas there is signifi-
cant variation in these distances for Ordering 4. Several dif-
ferent orderings with layers containing a mixture of Mg2+ 
and Ca2+ have been investigated in addition to Ordering 4; 
all have positive energies of formation, with Ordering 4 the 
maximum. This indicates that layers containing a mixture 
of cations are unfavourable, consistent with the GA results. 
Chan and Zunger (2009) also found that a random cation 
distribution is high in energy and accompanied by carbon-
ate ion distortions and strain. All the same qualitative con-
clusions and trends are also evident in the results from the 
Hartree–Fock calculations.

Ordered dolomite has a small but negative enthalpy of 
mixing (Table 2). The rotation of the carbonate group also 
allows more volume-efficient stacking of the layers than 
in either MgCO3 or CaCO3 end-members. The separation 
along the c-axis of a layer of Mg2+ ions and the neighbour-
ing anion layer is 1.249 Å in MgCO3 and 1.228 Å in ordered 
dolomite; the separation in the c-axis direction of a layer of 
Ca2+ ions and the neighbouring anion layer is 1.421 Å in 
CaCO3 and 1.409 Å in ordered dolomite. Thus, the volume 
of ordered dolomite is ~ 1% smaller than the average volume 
of MgCO3 and CaCO3 and at fixed temperature the thermo-
dynamic stability of ordered dolomite with respect to the 
end-members increases with increasing pressure.

The nature of the low-energy excited states as revealed 
by both the GA and the molecular mechanics calculations 
also provides some insight into the difficulty of forma-
tion of ordered dolomite (Deelman 1999) If we “funnel” 
down in energy so we end up in local minima with struc-
tures in which each cation layer contains ions of only one 
element but the Ca2+ and Mg2+ are not alternating, there 
are substantial kinetic barriers in proceeding further to the 
global minimum, since this would require interchange of 
cations between layers, producing intermediate high-energy 

structures with a mixture of Ca and Mg cations in the lay-
ers. The activation energies for such cation interchanges are 
large.

We end with a few remarks about the consequences of 
non-ideality for calculation of thermodynamic properties, 
in particular by configurational averaging (often referred 
to as basin sampling). In principle, a solid solution can 
assume any state, i.e. each atom can be at any position 
and each will have a different probability. However, the 
only states of practical importance away from the melting 
point lie at the bottom of K local minima in the energy 
landscape, so the thermodynamic averaging is carried out 
over results from a set of optimisations of different cation 
arrangements within a given supercell. The configurational 
averaging approach to solid solutions commonly uses the 
isobaric–isothermal (NPT) ensemble; therefore, for exam-
ple, the enthalpy of the solid solution H is given by:

where Gk and Hk are the free energy and enthalpy of each 
local minimum, respectively. All vibrational entropy terms 
are usually neglected so Gk is replaced by Hk calculated in 
the static limit.

For other than the smallest supercells it is impractical to 
sum over all K configurations, and therefore, both summa-
tions in Eq. (1) are restricted to K′ configurations chosen 
at random. In previous work on non-ideal solid solutions 
showing much smaller deviations from non-ideality than 
magnesite–calcite, we demonstrated convergence with 
a manageable value of K′ configurations, chosen at ran-
dom, and good agreement with Monte Carlo simulation 
(Todorov et al. 2004 and; Allan et al. 2001). For a 32-atom 
supercell of composition 50% MgO/50% MnO, conver-
gence of the formation enthalpy of the solid solution to 
0.04 kJ mol−1 is typically obtained with only ≈ 150 out of 
a total of 12,870 configurations (Allan et al. 2001).

This procedure requires adaption for very strong non-
ideal systems such as MgCO3–CaCO3. For the so-called 
“disordered” dolomite, a random selection of configura-
tions can be used, excluding any with negative heats of 
formation. In any case, in any reasonably sized simulation 
cell the chance of selection of an ordering with a nega-
tive heat of formation is extremely small due to the small 
weightings of the highly-ordered states which are the only 
states with such exothermic heats of formation.

For ordered dolomite a modified procedure is needed. A 
working procedure is to select a random set of configura-
tions and combine this set with the lower energy configu-
rations found by the GA during evolution. The GA is able 
to sample efficiently a large fraction of low energy minima 

(1)H =

∑K

k
H

k
exp(− �G

k
)

∑K

k
exp(− �G

k
)
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as it “funnels” down the potential energy landscape but 
does not of course, by construction, converge to the Boltz-
mann distribution (except at T = 0 K). Nevertheless, after 
using symmetry arguments to find the correct weighting 
of the states found by GA with the use of symmetry argu-
ments, we can represent the low-energy tail of the parent 
distribution of minima. This “tail” can be glued together 
with the distribution from a random selection of minima as 
explained in detail by Mohn and Stølen (2005) to generate 
a “combined” distribution for the calculation of ensem-
ble averages. Such a “combined” distribution does not 
sample the high-energy tail of the parent distribution of 
minima, but in principle the GA can easily be modified to 
preferentially select for such high-energy configurations. 
We stress that this procedure requires a careful map of 
low-energy distributions; including only a few states fully 
weighted tends to underestimate the partition function in 
the denominator of Eq. (1) and therefore, overestimates the 
final result. In previous work (Purton et al. 2006), we did 
not follow such a procedure and consequently our results 
for the enthalpy of mixing were overestimated. The modi-
fied method gives values for the enthalpy of formation for 
dolomite very close to those obtained using the cluster 
variation method by Vinograd et al. (2007).

Conclusions

In this paper, we have shown that a GA incorporating sym-
metry is a particularly computationally efficient method of 
establishing non-ideality and any preferential ordering in 
a solid solution. Combined with configurational averaging 
(basin sampling), it thus provides a very powerful tool for 
modelling solid solutions and non-stoichiometry in gen-
eral. It readily provides information as to low-lying and 
higher excited states. Extension to high pressures would be 
straightforward as would extension to Mg:Ca ratios other 
than 50:50. Here, the generated energy landscape provides 
atomistic insights into why dolomite forms—the rotation of 
the carbonate ions between adjacent layers of Ca and Mg 
relieves strain—and also into the dolomite problem. The 
presence of a polyatomic ion is thus crucial for the formation 
of an ordered mixed phase—the same reduction of strain 
is impossible in the MgO–CaO binary solution despite the 
similarity of the rock salt and calcite structures. The under-
standing of local order in substitutionally disordered materi-
als is important in fields as diverse as the development of 
new materials with improved mechanical or electrical prop-
erties and the understanding of fundamental geochemical 
processes in the deep Earth, and we hope the techniques and 
the encouraging results presented in this paper will assist in 
such investigations.
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