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Abstract
Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under 
high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, 
we use the Peierls–Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 
1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated 
using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found 
that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0–125 GPa. 
Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in 
the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for 
a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime 
by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth’s lower 
mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the 
interpretation of the seismic anisotropy in this region.
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Introduction

Dislocations are linear topological defects in a crystal lat-
tice that act as carriers of plastic strain. The stress required 
to move a dislocation by glide is lower than the ideal shear 
strength of a crystal, and glide-controlled creep can be a 
significant contributor to deformation, especially under 
conditions of moderate to high stress or low temperature. 
Dislocations can also act as reservoirs for point defects, as 
the strain fields around the core induce elastic and inelas-
tic interactions between point defects and dislocations that 
cause segregation of point defects to dislocation cores. This 
can diminish dislocation mobility through the phenomenon 
of solute drag, whereby the additional energy required to 
either pull a solute cloud along with a translating dislocation 
or break free from it altogether increases the stress required 

for dislocation creep (Cottrell and Bilby 1949). Alterna-
tively, in the glide-creep regime, point defects can enhance 
dislocation mobility, by reducing the stress required to initi-
ate glide at 0 K (the Peierls stress, σp).

Vacancies have been found to reduce stacking fault ener-
gies and lubricate dislocation glide in a variety of metals, 
including fcc Al (Lauzier et al. 1989; Lu and Kaxiras 2002), 
Ni, Cu, Fe (Asadi et al. 2014). Vacancies can also reduce 
the Peierls stress in non-metals, such as the superconductor 
 MgB2 (Shen et al. 2015). Theoretical calculations show that 
hydrogen can lubricate dislocation glide in fcc metals such 
Al (Lu et al. 2001) and Fe (Taketomi et al. 2008), which may 
explain the ubiquitous phenomenon of hydrogen induced 
local plasticity in these metals. Chemical impurities, in the 
form of interstitial oxygen defects, can also lubricate dislo-
cation glide in oxides such as  UO2, decreasing the critical 
resolved shear stress and changing the relative strength of 
its major slip systems (Keller et al. 1988). This is attributed 
to interactions between dislocation cores and the interstitial 
oxygen ions reducing the Peierls barrier to glide (Ashbee 
and Yust 1982).

(Mg, Fe)O is thought to be the second most abun-
dant mineral in the Earth’s lower mantle, after the 
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perovskite-structured mineral (Mg, Fe)SiO3 bridgmanite, 
comprising slightly less than 20% of the region’s volume 
(e.g. Lee et al. 2004). Despite being less abundant than 
bridgmanite, the relatively low strength of (Mg, Fe)O means 
that it may accommodate the majority of the strain in lower-
mantle rocks (Girard et al. 2016). Along a mantle geotherm, 
MgO deforms athermally to ~ 2000 km depth, with disloca-
tion–dislocation interactions governing flow rates. At greater 
depths, the rheology is in the thermally activated regime 
and the Peierls stress becomes important for determining 
strain rates (Cordier et al. 2012). In MgO, the dominant 
slip system at ambient pressure is 1/2<110>{110}, with a 
modest additional contribution from the 1/2<110>{100} 
slip system. High pressure creep experiments show that the 
relative activity of the 1/2<110>{100} slip system in MgO 
gradually increases with pressure and, above ~ 23 GPa, this 
slip system comes to dominate over the 1/2<110>{110} slip 
system (Girard et al. 2012).

In some mantle silicates and oxides, dissolved water-
related defects, in the form of chemically bound hydroxyl, 
may enhance strain rates by reducing the Peierls stress. For 
instance, under dry conditions the measured Peierls stress 
of olivine, the most abundant mineral in the Earth’s upper 
mantle, is between 3.8 GPa (Idrissi et al. 2016) and ~ 15 GPa 
(Demouchy et al. 2013), although more typical values are 
in the range 5–10 GPa (e.g. Evans and Goetze 1979; Kranjc 
et al. 2016; Proietti et al. 2016). In contrast, high-stress, low-
temperature deformation experiments designed to measure 
the Peierls stress of hydrated olivine report its value to be in 
the range 1.6–2.9 GPa (Katayama and Karato 2008), signifi-
cantly below the range of Peierls stresses measured for dry 
olivine. These experiments have measured only an average 
Peierls stress for olivine, which does not correspond to any 
individual slip system. However, changes in the deformation 
fabric with water content suggest that some slip systems are 
more sensitive to water content than others (Jung and Karato 
2001; Katayama et al. 2004).

In pure MgO, hydrogen is incorporated via the charge-
neutral substitution of an  Mg2+ ion by a pair of protons, 
represented in the Kroger–Vink notation as {2HMg}X 
(Kröger and Vink 1956). Analogous defects, in which a 
divalent cation (typically Mg or Fe) is replaced with two 
protons are also found in (Mg, Fe)-silicates in the man-
tle, including olivine (Bai and Kohlstedt 1993; Kohlstedt 
et al. 1996). The solubility of hydrogen in MgO is very 
low, and under conditions of ambient pressure and water 
saturation, the concentration of hydrated Mg vacancies is 
< 10 wt ppm  H2O (Joachim et al. 2012). However, con-
centrations of hydrated vacancies may be much higher in 
regions of the crystal under compressional strain, as is 
the case directly above the glide plane of an edge disloca-
tion. This is certainly the case for bare Mg vacancies (i.e. 
vacancies without protons present), which in cluster-based 

simulations segregate strongly to 1/2<110>{110} edge 
dislocation cores in MgO, with a segregation energy of 
− 1.7 eV for the tightest binding site (Zhang et al. 2010). 
Ab initio calculations show that {2HMg}X defects in MgO 
bind to {310} tilt grain boundaries, which can be modeled 
as an array of dislocation, with minimum segregation ener-
gies on the order of − 1 eV at 0 GPa (Karki et al. 2015).

A number of different methods exist for calculating Pei-
erls stresses from atomistic simulations. While fully atom-
istic calculations are possible, one approach that has seen 
considerable use in materials science is the Peierls–Nabarro 
(PN) method (Peierls 1940; Nabarro 1947). This model uses 
a hybrid continuum-elastic approach in which a dislocation 
is represented as a discrete distribution of dislocation density 
which interact with each other elastically, held together by 
inelastic restoring forces representing the shear strength of 
the crystal. These restoring forces can be calculated using 
atomistic simulations by introducing the concept of a gener-
alized stacking fault (GSF), which is a translational discon-
tinuity across the glide plane of the crystal, whose energy 
can be calculated using any one of the numerous atomic 
simulation techniques available (Christian and Vítek 1970).

The PN approach has been applied to calculation of dis-
location properties, including Peierls stresses, of disloca-
tions in pure MgO, and is able to reproduce experimentally 
observed dislocation properties with some accuracy. Carrez 
et al. (2009) used an ab initio parameterized continuous PN 
model of relative slip strength in MgO, predicting that the 
1/2<110>{110} slip system is approximately an order of 
magnitude weaker than the 1/2<110>{100} slip system, 
consistent with experimental observations (e.g. Foitzik et al. 
1989). Ab initio parameterised Peierls–Nabarro–Galerkin 
(PNG; Denoual 2004) simulations show that Peierls stress 
of the 1/2<110>{110} slip system is lower than that of the 
1/2<110>{100} slip system at low pressure, but that the 
strengths of the two slip systems converge at lower mantle 
pressures (Amodeo et al. 2012). This approach was used as 
the basis for simulations of dislocation mobility by kink-
nucleation in MgO (Cordier et al. 2012).

In this study, we use the PN model to compare Peierls-
stresses in MgO with and without dissolved {2HMg}X 
defects, in order to determine whether hydrous defects can 
reduce the Peierls stress in mantle minerals, and to deter-
mine the possible significance of this for deformation of 
MgO. To do this, we use density functional theory (DFT; 
Hohenberg and Kohn 1964; Kohn and Sham 1965) to cal-
culate generalized stacking fault energies are calculated 
for slip in the 1/2<110> direction on the {100} and {110} 
planes, with and without {2HMg}X defects present at the slip 
plane. These GSF energies, together with elastic constants 
calculated ab initio are used to parameterize PN models for 
1/2<110>{100} and 1/2<110>{100} dislocations in both 
hydrous and anhydrous MgO.
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Computational details

Ab initio calculations

All atomistic calculations performed in this study use 
plane-wave density functional theory (DFT), as imple-
mented in version 5.2.0 of Quantum Espresso (Giannozzi 
et al. 2009). Core and semi-core electrons were repre-
sented using the planar augmented wave (PAW) method 
(Blöchl 1994), while the exchange correlation (xc) energy 
was treated using the PBEsol xc-functional (Perdew et al. 
2008). This xc-functional, which was developed to cor-
rect biases in earlier parameterizations towards isolated 
systems, was chosen for its ability to accurately predict the 
structure and properties of crystalline solids (see e.g. Ropo 
et al. 2008; Demichelis et al. 2010). The PAW data sets for 
Mg, H, and O atoms are from version 1.0.0 of pslibrary 
(Dal Corso 2014); details of their generation parameters 
can found therein. The kinetic energy cutoff and spacing 
of the Monkhorst–Pack grid used to sample reciprocal 
space (Monkhorst and Pack 1976) were chosen to ensure 
convergence of the total energy to with < 5 meV/atom. 
This required a kinetic energy cutoff of 80 Ry (~ 1090 eV) 
and a Monkhorst–Pack grid spacing that corresponds to 
a 4 × 4 × 4 grid for the 8-atom rock salt unit cell. In all 
calculations, free parameters (atomic positions and, where 
applicable, cell parameters) were relaxed using the BFGS 
quasi-Newton scheme (Pfrommer et al. 1997).

In the bulk crystal, the lowest energy configuration of 
{2HMg}X defect is one in which the two hydrogen ions are 
bonded to opposing oxygen ions within the M-site octa-
hedron, with the O–H bonds in each defect parallel and 
pointing towards the center of the site. This is consist-
ent with the DFT calculations of Hernández et al. (2013), 
who similarly found the linear hydrogen configuration to 
be the most stable. There are three possible arrangements 
and all possible configurations of this defect are symme-
try equivalent in a perfect crystal. However, as discussed 
below, the insertion of a topological defect such as a dis-
location or generalized stacking fault breaks the symmetry 
of the crystal, leading to multiple symmetry-inequivalent 
configurations of the {2HMg}X defect.

The elastic constants Cij determine the strength of the 
repulsive elastic interactions between components of the 
dislocation density in the PN model. These were calcu-
lated using the finite strain approach, in which a small 
strain is applied to the simulation cell and the internal 
coordinates (i.e. atomic positions) are relaxed. The elas-
tic constants can then be extracted by fitting the residual 
stress to the Hooke’s law relation �i = Cij�j . Linear elastic-
ity breaks down at large strain amplitudes whereas, if the 
strain amplitude is too small, the numerical error due to 

the use of finite convergence criteria may be of the same 
order as the residual stresses, leading to high uncertain-
ties in the fitted values of the Cij. The number of distinct 
imposed strains depends on the symmetry of the crystal; 
for MgO, which has cubic symmetry, a single strain was 
sufficient to determine all ofhe Cij. In addition to the elas-
tic constants of anhydrous MgO, we also calculated elas-
tic constants for 1 × 1 × 1 and 2 × 2 × 2 supercells, each 
containing a single {2HMg}X defect, to assess the possible 
influence of hydrated defects on the elastic self-interaction 
of a Peierls–Nabarro dislocation.

Peierls–Nabarro calculations

The Peierls–Nabarro (PN) model represents a planar disloca-
tion with finite core-width as a distribution of dislocation den-
sity ρ along the glide plane. This distribution may be continu-
ous or discrete. The core shape is determined by the balance 
between the repulsive elastic interactions between components 
of the dislocation density distribution at different points in the 
crystal and the inelastic restoring forces caused by the presence 
of a disregistry u in the material at the glide plane. The core 
energy ECORE of a dislocation in the PN model is

where EMISFIT is the inelastic energy due to displacement 
of atoms across the glide plane, E

WORK
= −� ∫ u(x)dx is 

the work done on the dislocation by an applied stress σ, and 
EELASTIC is

which is the energy due to the elastic self-interaction of the 
dislocation density distribution. The static core structure of 
the dislocation can be determined by minimizing ECORE with 
σ = 0. The Peierls stress is calculated by gradually increasing 
σ until Eq. (1) no longer has a minimum energy solution, as 
the dislocation is able to glide freely.

In the classical formulation of the Peierls–Nabarro model, 
a dislocation core is represented as continuous distribution 
of infinitesimal dislocation density. However, such a dis-
tribution is translationally invariant, meaning that there no 
energy barrier to glide of the dislocation. The dislocation 
can alternatively be represented as a distribution of disloca-
tion density on a discrete lattice (Bulatov and Kaxiras 1997). 
In this approach, the dislocation density takes finite values 
and the inelastic misfit energy becomes a sum over the lat-
tice points, i.e.

where ap is the lattice spacing and γ(u) (called the γ-line in 
1D and the γ-surface in 2D) gives the inelastic energy of a 
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crystal lattice offset across the glide plane by u, the disregis-
try. In this work the γ-line is calculated from energies recov-
ered from generalized stacking fault calculations (Christian 
and Vítek 1970) with the energies calculated using density 
functional theory.

A GSF is a planar defect in a crystal across which the 
crystal is offset by some vector u, perpendicular to the nor-
mal of the GSF plane. In an atomistic simulation, a GSF is 
inserted by cutting an appropriately oriented simulation cell 
and displacing one-half with respect to the other by u. The 
atomic coordinates are then to relaxed to their minimum 
energy configuration, subject to the constraint  Mg2+ and 
 O2− ions can only move in the direction of the stacking fault 
normal. It is common to incorporate a vacuum layer into 
the simulation cell, to prevent direct interactions between 
stacking faults along the slab axis. In all GSF calculations 
described here, the vacuum layer was 15 Å thick, and the 
coordinates of all atoms within 2.5 Å of the vacuum layer 
were fixed during relaxation. For {100} and {110} oriented 
simulation cells, the energies of the γ-line maxima to within 
10 meV/Å2 by the use of a slab cell whose thickness (in units 
of the fault normal vector) was n = 6. GSF cell geometries 
for simulating slip on {100} and {110} are shown in Fig. 1.

To calculate the effect of protonated Mg vacancies on 
GSF energies, all γ-line calculations were repeated with 
simulation cells containing a single {2HMg}X defect at the 
slip plane, with the cell dimensions in the x- and y-directions 
doubled to reduce interactions between the defect and its 
periodic images. Consistent with the fact that the strain field 
induced by a point defect decays more quickly with distance 
than that of an unstable stacking fault, the slab cell thickness 
used in calculations of GSF energies without adsorbed point 
defects were sufficient to ensure convergence of those with 
{2HMg}X defects present at the slip plane. For the {100} 
GSF calculations, this corresponds to a cross-sectional area 
of √2a × √2a, where a is the unit cell parameter of MgO, 
while the cross-sectional area of the cell used in the {110} 
GSF calculations was √2a × 2a. However, although the 
differently oriented simulation cells have different cross-sec-
tional areas, the number of defects per lattice site at the slip 
plane is the same for the {100} and {110} oriented simula-
tion cells, permitting a direct comparison of the effects of 
protonated Mg vacancies on glide of 1/2<110>{100} and 
1/2<110>{110} dislocations.

Parameterizing the inelastic restoring force using calcu-
lations of GSF energies in which a point defect has been 
inserted allows us to investigate the potential influence that 
point defect might have on the core structure and mobil-
ity of a particular dislocation. The dislocation properties 
calculated using this represent only an approximation to 
the true effect that the point may have, as the point defect 
is effectively spread out across the entire dislocation core. 
This is less of a problem for dislocations in MgO, which 

have narrow, undissociated cores, than it would be for dis-
locations with widely dissociated cores, for example [001] 
dislocations in olivine (Durinck et  al. 2007) and [010] 
dislocations in wadsleyite (Metsue et al. 2010). Addition-
ally, because the PN model does not simulate an individual 
point defect, it is impossible to calculate the binding energy 
between the point defect and a dislocation. However, the 
PN model has some advantages over fully atomistic calcula-
tions, the most important of which is that GSF simulation 
cells contain fewer atoms than those used in fully atomistic 
simulations of dislocations, so that it is possible to use DFT 
instead of empirical potentials, which may be inaccurate for 
highly deformed regions of a crystal, such as in the vicinity 
of a dislocation core.

Results and discussion

Elastic constants

The shape and mobility of a Peierls–Nabarro dislocation 
are controlled by the balance between the repulsive elastic 

Fig. 1  Simulation cells containing 1/4<110 > generalized stacking 
faults on the a {100} and b {110} planes
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interactions between components of the dislocation den-
sity and the inelastic restoring parameterized using GSF 
calculations. Before addressing the effects of adsorbed 
{2HMg}X defects on GSF energies, we will address the 
question of how sensitive the elastic constants Cij—and 
through them the elastic prefactor K in Eq. (2)—are to the 
concentration of these defects.

Compared with the experimental measurements (taken 
from Sinogeikin and Bass 1999), the PBEsol xc-functional 
predicts modestly lower elastic stiffness, with the calcu-
lated 0 GPa elastic constants less than their experimen-
tal values by 1.6% (C11) and 6.9% (C44). To determine 
the effect of water on the elastic constants of MgO, we 
compare the Cij calculated for anhydrous MgO above with 
those calculated using 1 × 1 × 1 and 2 × 2 × 2 supercells, 
each containing a single {2HMg}X defect (Table 1). In the 
1 × 1 × 1 supercell, one quarter of the Mg sites are replaced 
with {2HMg}X, while the 2 × 2 × 2 supercell contains one 
{2HMg}X per 32 Mg sites. The Voigt–Reuss–Hill average 
of the isotropic shear modulus, GVRH, for the 1 × 1 × 1 
cell is ~ 18% softer than the dry shear modulus at 0 GPa, 
compared with a ~ 4% shear modulus relaxation of the 
shear modulus for the 2 × 2 × 2 simulation cell. Pres-
sure increases the relative shear modulus deficit of the 
1 × 1 × 1 simulation cell slightly, to ~ 19.5%, while that of 
the 2 × 2 × 2 simulation cell is essentially pressure invari-
ant. However, while the effect of water on the isotropic 
shear modulus is relatively pressure insensitive, this is not 
the case for the individual elastic constants. For instance, 
the value of C12 for the 1 × 1 × 1 simulation cell is ~ 34.7% 
lower than that of dry MgO at 0 GPa, but only 18.7% lower 
at 100 GPa.

For a more rigorous quantification of the effect of defect 
chemistry on the elasticity of a material, we can compute 
the Euclidean distance between the elasticity tensors of 
the pure material and the supercells containing protonated 
vacancies. To do this, the elasticity tensor is represented 
as a 21-dimensional vector, corresponding to the number 
of linearly independent elastic constants Cij for a triclinic 
crystal, with appropriate prefactors to maintain invariance 
under coordinate transformations (Browaeys and Chevrot 
2004). The distance between two elasticity tensors is then 
||C1–C2||, where C1 and C2 are the vector representations of 
the two tensors, and the relative deviation of C1 from C2 is 
||C1–C2||/||C2||. For MgO, which has cubic symmetry, only 
the first 9 components of the vectorial representation of the 
elasticity tensor are non-zero, with components 1–3 equal 
to C11, components 4–6 equal to √2C12, and components 
7–9 equal to 2C44. This technique has been used to calculate 
the effect of chemistry and order on the elasticity of metal 
alloys (e.g. Xie et al. 2012; Zhou et al. 2013). Using the 
elastic constants reported in Table 1, we calculate the nor-
malized distance between the elasticity tensor of dry MgO 
and a 1 × 1 × 1 supercell to be 0.239 at 0 GPa, decreasing 
to 0.15 at 125 GPa. The elasticity tensor of the 2 × 2 × 2 
supercell is even closer to that of dry MgO, reflecting the 
eightfold reduction in the defect concentration, with a nor-
malized distance between the dry and wet C of just 0.046 at 
ambient pressure, decreasing only slightly with pressure to 
0.043 at 125 GPa.

Crystal elasticity affects the core properties of a disloca-
tion through the elastic energy coefficient K in Eq. (2), which 
depends both on the elastic constants Cij and the dislocation 
geometry. Elastic energy coefficients for the 1/2<110>{100} 

Table 1  Calculated elastic 
constants (in GPa) of anhydrous 
MgO, compared with those of 
1 × 1 × 1 and 2 × 2 × 2 supercells 
containing a single {2HMg}X 
defect

Measured elastic constants of dry MgO at ambient pressure given for reference. For each set of elastic con-
stants, we have computed the elastic energy coefficients for 1/2<110>{100} and 1/2<110>{110} disloca-
tions. While the edge coefficients (Ke) differ between the two slip systems, the screw energy coefficient (Ks) 
does not
a Sinogeikin and Bass (1999)

C11 C12 C44 GVRH Ke Ks

1/2<110>{100} 1/2<110>{110}

Anhydrous (DFT)
 0 GPa 293.2 89.8 143.8 125.1 160.7 147.7 120.9
 125 GPa 1281.5 253.1 204.7 299.0 381.2 446.1 324.4

Anhydrous (expt.)a

 0 GPa 297.9 (15) 95.8 (10) 154.4 (20) 130.2 (1) 168.8 152.0 124.9
1 × 1 × 1 supercell
 0 GPa 277.8 58.6 98.1 102.6 125.0 128.2 103.7
 125 GPa 1112.3 205.8 153.1 240.7 306.1 365.3 263.4

2 × 2 × 2 supercell
 0 GPa 283.6 85.3 135.8 119.7 153.3 142.0 116.0
 125 GPa 1224.7 246.6 196.3 285.8 365.2 426.7 309.8
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and 1/2<110>{110} edge dislocations, and for the 
1/2<110> screw dislocation (whose coefficient is the same 
for glide on {100} and {110}) calculated from the elastic 
constants of dry and protonated vacancy-containing MgO. 
As expected, the elastic energy coefficients calculated from 
the elastic constants of supercells containing a {2HMg}X 
defect are systematically lower than those calculated for 
dislocations in dry MgO (Table 1). At 0 GPa, Ke for the 
1/2<110>{100} slip system is 22.2% lower when calculated 
using the elastic constants for the 1 × 1 × 1 supercell. How-
ever, the Ke for this slip system computed using the elastic 
constants of the 2 × 2 × 2 supercell differs form the dry value 
by only − 4.6%, comparable to the difference between the 
DFT and experimental values. The value of Ke calculated 
for the 1/2<110>{110} slip system at ambient pressure is 
even less sensitive to the concentration of {2HMg}X defects, 
with the values calculated using the elastic constants of 
the 1 × 1 × 1 and 2 × 2 × 2 supercells differing from the dry 
Ke by − 13.2 and − 3.9%, respectively. However, the defi-
cit increases modestly with pressure, reaching − 18.1 and 
− 4.3% at 125 GPa. The effect of {2HMg}X concentration 
on Ks, the elastic energy coefficient of the 1/2<110 > screw 
dislocation, is similar to that reported for Ke.

For MgO, as for magnesian silicates such as forsterite (Liu 
et al. 2009) and wadsleyite (Mao et al. 2008; Chang et al. 
2015), the incorporation of water as protonated vacancies 
softens the elasticity tensor. However, this effect decreases 
rapidly with decreasing water content. Consequently, since 
the simulation cells used for GSF calculations in this study 

have relatively large cross-sections and bulk water solubili-
ties are extremely low in both MgO (< 10 ppmw; Joachim 
et al. 2012) and (Mg, Fe)O (< 100 ppmw; Bolfan-Casanova 
et al. 2003), the elastic energy coefficients for all PN simula-
tions in this study were calculated using the elastic constants 
of dry MgO.

Generalized stacking fault energies

To determine the effect of {2HMg}X defects on inelastic 
stacking faults in MgO, it is first necessary to calculate 
the energies of these stacking faults in the absence of 
adsorbed point defects (shown in Fig. 2). At 0 GPa, the 
maximum energy computed along the 1/2<110> γ-line 
is associated with the 1/4<110> stacking fault vector for 
slip on both the {110} and {100} families of of planes, 
with values of 0.0691 and 0.1434 eV/Å2, comparable to 
the values of 0.0655 and 0.1361 eV/Å2 calculated for these 
GSFs using the PBE xc-functional in a previous study 
(Carrez et al. 2009). However, {110} GSF energies are 
more pressure sensitive than {100} GSF energies. Com-
paring the energies of the 1/4<110 > stacking fault vector 
on {110} and {100} as functions of pressure (Fig. 3), it 
can be seen that, in the former case, the calculated GSF 
energy increases almost six-fold over the pressure range 
0–125 GPa, reaching 0.3907 eV/Å2 at the highest pres-
sure, whereas the energy of the 1/4<110> stacking vector 
on {100} is roughly doubled, reaching 0.2605 eV/Å2 at 
125 GPa. This causes a reversal of the relative heights of 

Fig. 2  Pressure evolution of wet 
and dry 1/2<110>{110} (top) 
and 1/2<110>{100} (bottom) 
γ-lines in MgO
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the 1/2<110>{110} and 1/2<110>{100} γ-lines, which 
occurs at ~ 54 GPa. Since the γ-line functions influence 
the dislocation energy (Eq. 1) through the inelastic misfit 
energy (Eq. 3), this means that the relative strengths for 
dislocation glide on {110} and {100} will invert at high 
pressure.

Due to the high symmetry of MgO, there are three pos-
sible symmetry equivalent—and thus energy degenerate—
configurations of the {2HMg}X defect in the bulk crystal. 
However, this energy degeneracy is lifted by the insertion of 
a stacking fault. There are two distinct configurations of the 
{2HMg}X defect for GSFs on {110}. In one, the O–H bonds 
lie within the stacking fault plane, but are normal to the 
stacking fault vector (Fig. 4a). For the other, the O–H bonds 
intersect the glide plane with an angle of 45° (Fig. 4b). There 
are likewise two symmetrically distinct configurations for 
a protonated vacancy located near the {100} plane: one 
with the O–H bonds in the fault plane and inclined 45° 
with respect to the GSF vector (Fig. 4c), and the other with 
O–H bonds normal to the fault plane (Fig. 4d). For both 
{100} and {110} oriented fault planes, the configuration 
whose O–H bonds are make an angle of 45° with respect to 
1/2<110> is doubly degenerate.

The orientation of the O-H bonds in the {2HMg}X 
defect, relative to the slip plane, influences the calculated 
GSF energy, as can be seen by comparing the wet and dry 
γ-lines (Fig. 2). For slip on {110}, the defect configuration 
in which the O–H bonds cross the slip plane has a γ-line 
maximum of 0.0923 eV/Å2, higher than the calculated γ-line 
maximum for dry MgO. In contrast, the γ-line maximum is 
reduced by the presence of the defect with the O–H bonds 
within the {110} plane, to just 0.0529 eV/Å2. At 125 GPa 
applied pressure, the corresponding values for the two 

Fig. 3  Pressure dependence of the γ-line maximum for slip along 
1/2<110> on the {100} (diamonds) and {110} (squares) planes, with 
dry and wet values plotted with full and empty symbols, respectively. 
For wet γ-lines, values are shown only for the lowest energy {2HMg}X 
configuration for each slip plane

Fig. 4  The symmetrically 
distinct configurations of the 
{2HMg}X defect relative to the 
{110} stacking fault plane cor-
respond to the cases when the 
O–H bonds are either (a) in the 
slip plane and parallel to b, or 
b crossing the slip plane. For 
a {2HMg}X defect on a {100} 
stacking fault, the two symmet-
rically distinct configurations 
are those with c the O–H bond 
in the slip plane and d normal to 
the slip plane
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defect configurations are 0.3572 and 0.3423 eV/Å2. For 
slip on {100}, meanwhile, the γ-line maximum at 0 GPa is 
0.1447 eV/Å2 when O–H bonds are aligned normal to the 
glide plane compared with 0.1214 eV/Å2 when the O–H 
bonds are parallel to it. At 125 GPa, the corresponding ener-
gies are 0.2378 and 0.2194 eV/Å2 so that, while the absolute 
and relative differences in energy are reduced, the defect 
with O–H bonds in the slip plane remains lower in energy. 
In summary, for slip along 1/2<110> on {110} and {100}, 
it is clear that the orientation of the O–H bonds relative 
to the slip plane influences the degree of water weakening, 
with lower energies when the configuration of the adsorbed 
{2HMg}X defect has O–H bonds parallel to the slip plane. In 
the following section, where we calculate Peierls stresses 
for dislocations in hydrous MgO, we will use the γ-lines 
calculated for these {2HMg}X defects.

One way to quantify the impact of a protonated vacancy 
on a generalized stacking fault is to consider the relative 
reduction of the γ-line maximum by the addition of a single 
defect at the stacking fault plane. For the 1/2<110>{110} 
γ-line, the energy maximum at 0 GPa is reduced by 23% 
by the addition of a {2HMg}X defect, the deficit decreas-
ing steadily with pressure to 12% at 125 GPa. In contrast, 
the 1/2<110>{100} γ-line is less affected by the presence 
of a protonated defect at 0 GPa, and the maximum energy 
decreases by 15%. However, the relative magnitude of the 
γ-line relaxation increases slightly with pressure, to 16% at 
125 GPa.

As mentioned at the end of “Peierls–Nabarro calcula-
tions”, it is impossible to calculate the binding energy 
between a point defect and a dislocation with the PN formal-
ism. However, by taking the difference between dry and wet 
GSF energies with the same stacking fault vector u, it possi-
ble to determine the segregation energy Eseg of a protonated 
vacancy from the bulk to a generalized stacking fault. For 
the 1/4<110>{100} GSF, the segregation energy at 0 GPa 
is − 0.78 eV, rising to − 1.14 eV at 125 GPa. At 0 GPa, the 
segregation energy to a 1/4<110>{110} GSF is − 0.81 eV, 
but rises more quickly with pressure, reaching − 1.90 eV 
at 125 GPa. While a direct quantitative comparison with 
the results of Karki et al. (2015) for {2HMg}X segregation 
to {310} tilt boundaries is not possible, the magnitudes of 
the segregation energies reported at 0 GPa in that study are 
comparable to those found here (approximately − 1 eV), and 
increase with pressure.

Peierls–Nabarro dislocations

Using the γ-lines calculated in “Generalized stacking fault 
energies”, Peierls–Nabarro dislocation core structures 
can be obtained by minimizing Eq. (1) with applied stress 
σ = 0. A static dislocation can be characterized by its core 
width ξ, which is defined to be the width of the region 

within which |b|/4 < |u(x)| < 3|b|/4, and its maximum dis-
location density, ρmax. In anhydrous MgO, both of these 
parameters are nearly constant for the 1/2<110>{100} 
edge dislocation and the 1/2<110> screw dislocation 
spreading on {100}, whereas ξ and ρmax respectively 
decrease and increase for the 1/2<110>{110} edge dis-
location and the 1/2<110> screw dislocation spreading 
on {110} (Fig. 5). Relaxing the static dislocation core 
structure using the wet γ-lines increases core spread-
ing, particularly on the {110} plane, with a correspond-
ing decrease in the value ρmax. However, this hydrogen-
induced dislocation core spreading has no significant effect 
on the pressure derivatives of either ξ or ρmax.

From these static dislocation core structures, Peierls 
stresses for the different slip systems can be obtained by 
minimizing Eq. (1) with |σ| > 0, using the static disregis-
try profile u(x) as input. Within the 1/2<110>{110} slip 
system, the Peierls stress of the 1/2<110>{110} edge dis-
location is lower than that of the 1/2<110> screw disloca-
tion gliding on {100}, which controls mobility in this slip 
system. The Peierls stress of the edge dislocation at ambi-
ent pressure is 0.06 GPa, similar to the 0.02 GPa (Carrez 
et al. 2009) and 0.04 GPa (Liu et al. 2012) calculated for 
this dislocation in previous studies. For the 1/2<110> screw 
dislocation, σp for glide on {110} is 0.26 GPa at ambient 
pressure. Previous computational studies have found values 
for this slip system ranging from 0.04 GPa (Carrez et al. 
2009) to 0.16 GPa (Liu et al. 2012). For the 1/2<110>{100} 
slip system we find that, across the entire pressure range 
0–125 GPa, a 1/2<110> screw dislocation gliding on {100} 
has lower Peierls stress than 1/2<110>{100} edge disloca-
tion. At 0 GPa, the screw dislocation has σp = 1.7 GPa for 
the screw dislocation, comparable to the value of 1.53 GPa 
calculated by Carrez et al. (2009) using a continuous 1D 
PN model. Carrez et al. determined the Peierls stress of the 
1/2<110>{100} edge dislocation at ambient pressure to be 
1.16 GPa, markedly lower than the 2.8 GPa computed in 
this study.

The 0 GPa Peierls stresses are thus comparable with 
those found in previous studies, albeit modestly higher for 
all dislocations studied. This difference can be attributed 
to the choice of xc-functional as Carrez et al. (2009) and 
Liu et al. (2012) used the PBE-GGA xc-functional (Perdew 
et al. 1996), which is known to significantly overestimate 
the cell volume, due to under-binding of the exchange–cor-
relation energy. For MgO, the elastic constants Cij increase 
with decreasing cell volume (i.e. increasing pressure) which 
means that, at a given pressure the PBE xc-functional under-
estimates the elastic constants. Consequently, PN simula-
tions parameterized using the results of DFT calculations 
performed using the PBE xc-functional should consistently 
predict lower Peierls stresses than those parameterized using 
the PBEsol xc-functional, as is the case here.
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In “Generalized stacking fault energies”, it was shown 
that adsorption of {2HMg}X defects to the fault plane low-
ers GSF energies along the 1/2<110>{110} γ-line. When 
these γ-lines are used to parameterize PN calculations of 
dislocation glide, this translates into lower Peierls stresses 
for glide on the 1/2<110>{110} slip system. Although 
the edge and screw dislocations in this slip have compara-
ble Peierls stresses at ambient pressure, above 0 GPa the 
Peierls stress of the 1/2<110 > screw dislocation gliding 
on {110} is greater than that of the 1/2<110>{110} edge 
dislocation, and screw dislocation controls the mobil-
ity of this slip system. At 0 GPa, the Peierls stress of a 
1/2<110>{110} edge dislocation is 0.06 GPa, indistin-
guishable from the Peierls stress for this slip system in 
dry MgO. However, as can be seen in Fig. 6a, the pressure 
derivative dσp/dP is lowered by {2HMg}X defects and, at 
125 GPa pressure, the σp calculated using the wet γ-line 
is 1.7 GPa, < 50% of the value for this dislocation in dry 
MgO (3.6 GPa). For glide of 1/2<110> screw disloca-
tions on {110}, the Peierls stress is 0.06 GPa when the 
wet γ-line is used, compared with 0.26 GPa under dry con-
ditions; at 125 GPa the corresponding wet and dry values 
are 10.6 and 23.0 GPa.

The effect of protonated vacancies on the qualitative 
pressure dependence of dislocations gliding on {100} is 
more pronounced. Whereas, in dry MgO, the Peierls stress 
of 1/2<110>{100} edge dislocations increases monotoni-
cally with pressure, the addition of water leads to a pro-
nounced negative curvature of σp(P). This effect is suffi-
ciently great that σp actually decreases above 75 GPa. The 
Peierls stress for glide of 1/2<110> screw dislocations on 
{100} is similar for anhydrous and hydrous MgO at ambient 
pressure (~ 1.7 GPa). However, the adsorption of protonated 
vacancies to the glide plane greatly reduces the pressure 
dependence of σp, which in hydrous MgO is just 2.7 GPa 
at 125 GPa, compared with 4.2 GPa for dry MgO. As was 
found for dry MgO, the Peierls stress of the 1/2<110>{100} 
dislocation is greater than that of the 1/2<110> screw dis-
location gliding on {100} at all pressures, although in wet 
MgO the Peierls stress for the edge and screw dislocation 
begin to converge at high pressure.

For 1/2<110> screw dislocations in dry MgO, the rela-
tively rapid increase in σp for glide on {110} with pressure 
means that glide on {100} becomes easier at high pres-
sure. This results in a cross-over of the relative strengths 
of the two glide planes at high pressure. Using the Peierls 

Fig. 5  Pressure dependence of the dislocation core width, as a frac-
tion of the Burger’s vector magnitude |b| (top) and maximum dis-
location density along the glide plane (bottom). Results for the 

1/2<110>{110} and 1/2<110>{100} slip systems are shown with 
square and diamond symbols, respectively, while values for hydrous 
MgO are indicated with hollow symbols
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stresses calculated for dry MgO, we that this occurs at a 
pressure of 24.8 GPa, comparable to the ~ 23 GPa measured 
in creep experiments (Girard et al. 2012). However, glide 
of 1/2<110> screw dislocations on {110} is preferentially 
enhanced by the presence of protonated vacancies over glide 
on {100}. While this effect is not sufficient to prevent the 
preferred glide plane from changing at mantle pressures, the 
slip system cross-over is shifted to higher pressures (Fig. 7b). 
For the {2HMg}X defect concentrations used in this study, 
the cross-over pressure at which glide of 1/2<110> screw 
dislocation on {110} increases to 32.1 GPa. Assuming lin-
ear dependence of the Peierls stress on {2HMg}X defect, this 
implies that the cross-over pressure is shifted by ~ 29 GPa 
multiplied by the fraction of protonated cation sites at the 
glide plane. In anhydrous MgO, the 1/2<110>{110} edge 

dislocation slip system is weaker than the 1/2<110>{100} 
edge dislocation slip system at all mantle-relevant pressures 
(Fig. 7a), and this is not changed by the incorporation of 
{2HMg}X defects at the glide plane. However, the pressure 
at which the Peierls stress of 1/2<110 > screw dislocation 
on {110} exceeds that of the 1/2<110>{100} edge disloca-
tion increases from 30.6 GPa in dry MgO to 46.2 GPa for 
hydrous MgO with {2HMg}X present at the concentrations 
used in this study, giving a dependence of the cross-over 
pressure on {2HMg}X concentration of ~ 62 GPa times the 
fraction of occupied sites.

The hydrolytic weakening of the Peierls stress found here 
is a direct result of the reduction of the γ-line maximum by 
the insertion of suitably oriented {2HMg}X defects at the slip 
plane. This reduces the inelastic restoring force that balances 

Fig. 6  Pressure dependence of the Peierls stresses calculated for a glide of edge dislocation, and b screw dislocations. Square and diamond sym-
bols correspond to the {110} and {100} glide planes, while filled and hollow symbols are used to represent σp in anhydrous and hydrous MgO

Fig. 7  Ratio of σp for glide on {100} and {110} for a edge and b screw dislocations, with (filled symbols) and without (hollow symbols) 
{2HMg}X defects present. The horizontal dashed line for the screw dislocations represents a Peierls stress ratio of 1
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the repulsive elastic interaction between components of the 
dislocation density distribution ρ at different lattice planes. 
What cannot be determined, however, is whether the reduc-
tion of the γ-line energies is due to the presence of hydrogen, 
or the vacancy generated when creating a {2HMg}X defect. 
Given that the 1/2<110> γ-line maxima on both {110} and 
{100} correspond to the points of closest approach between 
Mg atoms on either side of the stacking fault plane, it is 
likely that the mechanism by which protonated vacancies 
reduce the Peierls stress is by minimizing the repulsive inter-
actions between adjacent Mg ions across the glide plane. In 
this case, the role of the H atoms is solely to charge-balance 
the creation of an Mg vacancy.

Creation of protonated defects is not the only mechanism 
by which vacancies can be generated in MgO or its iron-
bearing analogue (Mg, Fe)O. Insertion of trivalent cations, 
such as  Al3+ and  Fe3+ into MgO/(Mg, Fe)O leads to the 
creation of M-site vacancies to maintain overall charge 
neutrality. Extrinsic vacancies associated with trivalent 
cations can vastly outnumber intrinsic vacancies, such as 
those associated with Schottky defects (Van Orman et al. 
2009). In the case of MgO, doping with trivalent cations at 
the 100–200 ppm level decreases dislocation mobility and 
increases its critical resolved shear stress (Singh and Coble 
1974a, b). The increase in yield strength is nearly identical 
for  Cr3+,  Al3+, and  Fe3+, despite their different ionic radii, 
which suggests that this pinning is not caused by attractive 
elastic interactions between the trivalent cation and the dis-
location core but the substantial change in the electrostatic 
energy of this complex when it is sheared by a passing dislo-
cation (Ahlquist 1975). However, Otsuka et al. (2010) have 
suggested that under lower mantle conditions, ferric iron and 
{□M}″ vacancies dissociate. It is thus possible that, under 
oxidized conditions, there will be free vacancies, capable 
of inducing Peierls stress reductions comparable to those 
predicted here for protonated vacancies to dislocation cores, 
with similar geophysical implications. More work needs to 
be done to investigate the effects of  Fe3+ on the deformation 
of (Mg, Fe)O with realistic Fe contents.

Iron-bearing (Mg, Fe)O is the weakest major phase in the 
Earth’s lower mantle. In both numerical simulations of two-
phase creep (Madi et al. 2005) and high-pressure deforma-
tion experiments on magnesiowustite + bridgmanite aggre-
gates (Girard et al. 2016) the bulk of the strain in multi-phase 
lower mantle materials is accommodated by (Mg, Fe)O. 
When deformed under moderate stress conditions, (Mg, Fe)
O polycrystals develop pronounced lattice preferred orienta-
tion (LPO) (Yamazaki and Karato 2002), although a recent 
deformation experiment of a magnesiowustite + bridgmanite 
at 61 GPa found no evidence for the development of a coher-
ent deformation fabric (Miyagi and Wenk 2016). MgO is 
highly elastically anisotropic over the entire pressure range 
of the Earth’s mantle (Karki et al. 1999). (Mg, Fe)O is even 

more anisotropic than pure MgO and probably accounts for 
the majority of the observed seismic wave anisotropy in the 
Earth’s lower mantle (Marquardt et al. 2009), especially as 
(Mg, Fe)SiO3 bridgmanite, the other major component of the 
lower mantle, does not develop any significant LPO when 
deformed under mantle-relevant conditions (Merkel et al. 
2003). At high pressure, the 1/2<110> screw dislocations 
experience more lattice friction for glide on {110} than on 
{100}, which results in a change in the LPO for a give pat-
tern of mantle strain. Lattice preferred orientation of (Mg, 
Fe)O has also been invoked to explain seismic anisotropy in 
the D″ region of the lowermost mantle, on the assumption 
that the dominant slip system is 1/2<110>{100} (Karato 
2014). In hydrous MgO, the greatest Peierls stress reduc-
tion was found for the 1/2<110>{110} slip system, so that 
the pressure at which {100} becomes the dominant slip 
for the 1/2<110> screw dislocations is displaced to higher 
pressures under hydrous conditions. At pressures representa-
tive of the deep lower mantle, the preferred slip system is 
the same for both hydrous and anhydrous MgO. However, 
{2HMg}X defects preferentially enhance 1/2<110>{110} slip 
by {2HMg}X defects, thereby altering the relative activities 
of the two major slip systems in MgO and changing its LPO, 
and potentially the observed pattern of seismic anisotropy.

Conclusions

In this study, we have used the PN model, parameterized 
using ab initio calculated GSF energies to determine the 
effect of a common variety of protonated vacancy, {2HMg}X, 
on the Peierls stress of MgO. Using DFT, 1/2<110> γ-lines 
were calculated for slip on the {110} and {100} families 
of planes, representing the most important slip systems in 
MgO, and these were used to parameterize Peierls–Nabarro 
calculations of edge and screw dislocation core structures 
and Peierls stresses. Calculations were performed using 
stoichiometric MgO simulation cells, in addition to simu-
lation cells containing {2HMg}X defects, and it was found 
that the latter produced wider dislocation cores and lower 
Peierls stresses over the entire pressure range of the Earth’s 
mantle. Although σp is decreased by the presence of proto-
nated vacancies at the glide plane for slip on both {100} and 
{110}, we find that the Peierls stress reduction is greatest for 
1/2<110>{110} slip (for both edge and screw dislocations). 
In the case of 1/2<110> screw dislocations, this leads to an 
increase in the pressure at which glide on {100} becomes 
easiest, meaning that the presence of water may influence 
the deformation fabric.

These calculations show that the presence of protonated 
defects near a dislocation core in MgO can reduce its Peierls 
stress. However, although we have considered only MgO, the 
results have implications for the glide controlled creep of 
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other mantle minerals such as olivine or pyroxene. The easy 
glide planes of the dominant slip systems for dislocation are 
parallel to sheets of  MO6 octahedra (where M is typically 
Mg or Fe), for which MgO may be considered a structurally 
simple analogue. Glide lubrication by protonated defects 
may provide an explanation for the lower yield strength 
and different LPO of hydrous versus anhydrous olivine, and 
this possibility warrants further exploration using atomistic 
simulations.
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