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thermal-pressure EoS in combination with a third-order 
Birch–Murnaghan (BM) compressional EoS, the param-
eter V0 =  43.89  cm3  mol−1, isothermal Reuss bulk mod-
ulus KTR,0 = 126.3(2) GPa, K

′

TR,0 = 4.54(6) , a Debye 
temperature θD = 644(9) K, and a Grüneisen parameter 
γ0  =  1.044(4), whose volume dependence is described 
by q = 1.9(2). High-pressure softening of the bulk modu-
lus at room temperature, relative to this EoS, can be fit 
with a fourth-order BM EoS. However, recent high-P, T 
Brillouin measurements are incompatible with these EoS 
and the intrinsic physics implied by it, especially that 
(

∂K ′

TR

∂T

)

P

> 0. We introduce a new parameterisation for 

isothermal-type EoS that scales both the Reuss isother-
mal bulk modulus and its pressure derivative at tempera-

ture by the volume, KTR(T ,P = 0) = KTR,0

[

V0

V(T)

]δT
 and 

K
′

TR(T ,P = 0) = K
′

TR,0

[

V(T)
V0

]δ′

, to ensure thermodynamic 

correctness at low temperatures. This allows the elastic 
softening implied by the high-P, T Brillouin data for man-
tle olivine to be fit simultaneously and consistently with 
the same bulk moduli and pressure derivatives (at room 
temperature) as the MGD EoS, and with the additional 
parameters of αV0 =  2.666(9) ×  10−5  K−1, θE = 484(6), 
δT = 5.77(8), and δ′ = −3.5(1.1). The effects of the differ-
ences between the two EoS on the calculated density, vol-
ume, and elastic properties of olivine at mantle conditions 
and on the calculation of entrapment conditions of olivine 
inclusions in diamonds are discussed, and approaches to 
resolve the current uncertainties are proposed.

Keywords  Olivine · Diamond · Elasticity · Equations of 
state

Abstract  Elasticity is a key property of materials, not 
only for predicting volumes and densities of minerals 
at the pressures and temperatures in the interior of the 
Earth, but also because it is a major factor in the energet-
ics of structural phase transitions, surface energies, and 
defects within minerals. Over the 40  years of publication 
of Physics and Chemistry of Minerals, great progress has 
been made in the accuracy and precision of the measure-
ments of both volumes and elastic tensors of minerals and 
in the pressures and temperatures at which the measure-
ments are made. As an illustration of the state of the art, 
all available single-crystal data that constrain the elastic 
properties and pressure–volume–temperature equation of 
state (EoS) of mantle-composition olivine are reviewed. 
Single-crystal elasticity measurements clearly distinguish 
the Reuss and Voigt bulk moduli of olivine at all condi-
tions. The consistency of volume and bulk modulus data 
is tested by fitting them simultaneously. Data collected at 
ambient pressure and data collected at ambient temperature 
up to 15 GPa are consistent with a Mie–Grünesien–Debye 
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Introduction

Elasticity is critical not only for predicting volumes and 
densities of minerals at the pressures and temperatures 
in the interior of the Earth, but also because it is a major 
factor in the energetics of structural phase transitions, sur-
faces, and defects within minerals. Elasticity is, therefore, 
a key property for describing the physics and chemistry 
of minerals. Over the last 40 years this journal has, there-
fore, published papers on the determination of equations 
of state (EoS), elastic tensors, and their applications as 
diverse as the orientation of the lamellae in e-plagioclase 
(Fleet 1981) and domain walls in albite (Salje et al. 1985), 
the first complete analysis of the coupled phase transitions 
in albite (Salje 1985) and the influence of deviatoric and 
coherency stress on the thermodynamics of reactions (Gei-
likman 1980), the last being an issue of the current major 
dispute in metamorphic petrology (see Wheeler 2014 and 
the subsequent discussion papers). Publications on the 
actual determination of elastic tensors in PCM are rela-
tively sparse compared to other subjects, reflecting the very 
challenging nature of the measurements. Nonetheless, the 
papers that have been published in PCM reflect the incred-
ible development of techniques in terms of pushing forward 
the boundaries in P and T at which elastic and diffraction 
measurements can be made, and the precision and accuracy 
of the data. The first report of an elastic tensor in PCM was 
the measurement of cubic MgF2 at ambient P and to 650 K 
by ultrasonic wave velocity measurements on cm-sized 
single crystals (Jones 1977). At that time, high-pressure 
elastic measurements were limited by sample sizes to gas-
pressure apparatus capable of obtaining 1.2 GPa at ambient 
temperature (Özkan and Jamieson 1978), or to 0.6 GPa for 
polycrystalline hot-pressed samples immersed in a hydro-
static pressure medium (Jackson et  al. 1978). The first 
decade of publication of PCM then witnessed significant 
progress with elastic tensors determined at temperatures up 
to 1300 K (Sumino et al. 1983; Suzuki et al. 1983) and to 
pressures of 3 GPa (Webb et al. 1984). As this review paper 
will show, the precision and accuracy of these early meas-
urements remain competitive with modern measurements 
and their data provide a basis for evaluating single-crystal 
diffraction (e.g., Zhang et  al. 2017) and elasticity meas-
urements (e.g., Trots et  al. 2013; Mao et  al. 2015; Zhang 
and Bass 2016) at the much more extreme conditions now 
attainable with much smaller samples within diamond-
anvil pressure cells.

Inclusions in diamonds are a natural analogue of a dia-
mond-anvil pressure cell experiment. These inclusions 
in diamonds are direct samples of the Earth from depths 
greater than 100 km. However, they can only be interpreted 
if we know the depths (i.e., P and T) at which they were 
trapped by the growing diamond. Diamond is essentially 

pure carbon and, therefore, carries no intrinsic signal that 
can be used to infer its formation conditions. The depths of 
formation of diamond can only be determined by character-
izing the mineral inclusions that are found trapped inside 
0.6–4% of diamonds (Stachel and Harris 2008). When the 
diamond is examined at room conditions, the inclusions 
exhibit high pressures, of 0.1–4 GPa. These remnant pres-
sures are developed because the inclusions and the host 
diamond have different thermal expansion and compress-
ibilities, and the inclusions are constrained by the diamond 
host to occupy a smaller volume than a free crystal in the 
air. The measured residual pressures in the inclusion can be 
used to determine a line in P–T space which represents pos-
sible conditions of entrapment and hence diamond growth 
(e.g., Graham and Cybriwsky 1981).

To determine the conditions at which a mineral inclusion 
was trapped it is therefore necessary to have accurate and 
precise knowledge of the elastic behaviour and EoS for both 
the diamond and the inclusion mineral. When fluids are also 
present in the inclusion, as is found for silicate inclusions 
in gem-quality lithospheric diamonds (Nimis et  al. 2016), 
the EoS of the fluid is also required. EoS of minerals are 
conventionally used to calculate their volumes, densities, 
and elasticity at pressures for calculating phase equilibria 
or seismic wave velocities. For these applications, the EoS 
parameters at room conditions only serve as a useful refer-
ence point simply because many measurements of EoS are 
based on room conditions and then extend to either high P 
(as in compression measurements) or high T (as in meas-
urements of thermal expansion) or to simultaneous P and T. 
However, it is not necessary, for example, for the volume, 
density, or bulk modulus of a mineral to be correct at room 
conditions to correctly predict its volume in a reaction at 
high-P–T metamorphic conditions. However, to interpret 
the remnant pressures in inclusions at room temperature, it 
is necessary to have EoS that are not only accurate at the P 
and T conditions of entrapment, but across the whole of P–T 
space down to room conditions. The study of host-inclusion 
systems, therefore, places far more stringent demands on the 
accuracy and precision of EoS than most other applications.

There is an additional complication for minerals trapped as 
inclusions in diamonds that is not normally considered when 
discussing EoS for applications to seismology or phase equi-
libria. If the inclusion includes a small proportion of fluid, 
as reported for silicate inclusions in diamonds (Nimis et al. 
2016; Smith et al. 2016), then the stresses in the inclusion will 
be hydrostatic, just as the stresses on a crystal in a diamond-
anvil cell are hydrostatic while the pressure medium remains 
liquid. However, if the inclusion is a fluid-free single crystal, 
it will not be subject to hydrostatic pressure. Instead, its size 
and shape will be constrained by the host diamond, which is 
cubic. The inclusion will, therefore, be forced by the diamond 
to expand and contract isotropically in response to changes in 
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P and T. If the inclusion is an anisotropic single crystal of oli-
vine, then the imposed isotropic strain obviously implies that 
the olivine develops anisotropic stresses. The EoS to describe 
the volume variation of the inclusion for these two cases, 
fluid-present and fluid-free, are different and correspond to 
the Reuss and Voigt bounds, respectively, on the bulk modulus 
of the inclusion phase. Note that as the difference between the 
internal inclusion pressure and the external pressure applied 
to the host diamond becomes larger, there is an additional 
relaxation of the system which reduces the pressure gradient 
which was ignored by Graham and Cybriwsky (1981). This 
relaxation cannot be simply modelled by an EoS and requires 
more careful analysis involving the full elastic tensors of both 
the host and inclusion (e.g., Zhang 1998; Angel et al. 2014b, 
2015b). Therefore, host-inclusion systems are a rare example 
of a system in which both the P–V–T EoS and the full elastic 
tensor of the minerals must be used to interpret the behaviour. 
Indeed, the full solution for anisotropic inclusions remains an 
unsolved challenge for mineral physics.

Olivines form around 20% of the inclusion minerals 
found in diamonds identified as coming from the litho-
sphere (Stachel and Harris 2008). In this paper, we examine 
the available data that can be used to constrain the P–V–T 
equation of state of mantle-composition olivine (with com-
positional range 90–92% forsterite component, Fo90–
Fo92) and develop EoS that are suitable for determining the 
formation conditions of olivine inclusions in diamond from 
the inclusion pressure measured while the inclusion is still 
trapped in the diamond at room temperature. At the same 
time, the data on olivine also serve as an example of the 
precision and accuracy of the several experimental meth-
ods to determine both the volume EoS and the full elastic 
tensor of minerals and the level of consistency between 
them. Our analysis points to the significant experimental 
challenges that remain to determine the high-temperature 
high-pressure elastic properties of even the most common 
mantle minerals such as olivine, and suggests approaches 
by which more accurate EoS for them might be obtained.

General issues

Elasticity and bulk moduli

The general relationship between the stresses applied to a 
crystal σj and the resulting strains εj can be expressed in Voigt 
matrix notation as εj = sijσj, where sij is the elastic compliance 
matrix of the crystal (Nye 1957). The indices i and j run from 
1 to 6, and the Einstein summation convention is applied.

The Reuss and Voigt bulk moduli are often described 
as being bounds on the volume response of a polycrystal-
line aggregate to applied stress. However, they also rep-
resent the specific and exact response of a single crystal 

to two different sets of applied stresses. The Reuss bulk 
modulus is the bulk modulus obtained when the crystal is 
subject to hydrostatic stress, P, a state in which all of the 
normal stresses applied to the crystal are equal, and there 
are no shear stresses. If we consider a small increment 
in pressure ∂P, and using the common convention that a 
positive pressure corresponds to negative (compressional) 
normal stress, we can write the three normal strains as

The volume strain of the crystal is just the sum of the 
three normal strains, so that the Reuss bulk modulus is, 
therefore, given exactly by a sum over some of the ele-
ments of the elastic compliance matrix of the crystal:

This is the bulk modulus determined by measuring the vol-
ume of a single crystal as a function of pressure by diffraction 
in a diamond-anvil cell, provided that the pressure medium 
remains hydrostatic. It is also, therefore, the bulk modulus for 
a single-crystal inclusion surrounded by a fluid in a diamond. 
If the crystal is not cubic, the change in shape of the crystal 
under hydrostatic compression will be anisotropic; the strains 
induced by the pressure change (Eq.  1) will be different in 
different directions. The stiffness of any direction in the crys-
tal under hydrostatic stress can be described by linear moduli 
MR = −lδP/δl. The linear moduli of the principal directions 
in the crystal can be derived from Eq. 1 as

Conversely, if the crystal is forced to undergo isotropic 
strain, then ε1 = ε2 = ε3 = ε and the three normal stresses 
are given by

cij is the elastic modulus matrix of the crystal, the inverse 
of the matrix sij (Nye 1957). For a non-cubic crystal, Eq. 4 
shows that isotropic strain produces σ1 �= σ2 �= σ3 which 
means anisotropic stress in the crystal. The Voigt bulk mod-
ulus relates the volume response δV/V = 3ε of the crystal 
to the mean of the normal stresses:

(1)

ε1 =− ∂P(s11 + s12 + s13)

ε2 = − ∂P(s21 + s22 + s23)

ε3 =− ∂P(s31 + s32 + s33).

(2)

KR = −VδP
/

δV =

[

s11 + s22 + s33 + 2(s12 + s13 + s23)
]

−1
.

(3)

M1 = −

∂P

ε1
= (s11 + s12 + s13)

−1

M2 = −

∂P

ε2
= (s21 + s22 + s23)

−1

M3 = −

∂P

ε3
= (s31 + s32 + s33).

−1

(4)

σ1 =c11ε + c12ε + c13ε = (c11 + c12 + c13)ε

σ2 =c21ε + c22ε + c23ε = (c21 + c22 + c23)ε

σ3 =c31ε + c32ε + c33ε = (c31 + c32 + c33)ε.
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The Voigt and Reuss bulk moduli are only identical for 
cubic crystals and elastically isotropic materials, because 
for them, an isotropic applied stress (hydrostatic pressure) 
gives rise to isotropic strain and vice versa. For anisotropic 
materials, KV > KR. Because the volume measurements 
of crystals are made under hydrostatic conditions, we use 
the Reuss bulk modulus calculated from the elastic matri-
ces in the combined fits of volume and elasticity data. One 
additional difficulty is that direct measurements of the elas-
tic tensor are normally adiabatic measurements, whereas 
measurements of volumes are isothermal. Thus, there are 
four distinct bulk moduli that must be considered for any 
non-cubic mineral. The notation used to distinguish them in 
this paper is summarised in Table 1.

We perform the adiabatic to isothermal conversion 
by applying the relationship KSR = (1+ αVγT)KTR , 
where the value of volume thermal expansion (αV) is 
taken from the current EoS at the pressure and tem-
perature of interest. The Grüneisen parameter γ can be 
expressed in terms of measurable quantities, for exam-
ple, γ =

αVKSR
Cp

=
αVKTR
CV

. However, since heat capacity 
data are not available at elevated pressures, we use the 
simple approximation (e.g., Anderson 1995) that

where V0 is the volume at reference conditions, and the 
value of q is believed to be close to 1 for ‘normal’ solids 
under modest P–T conditions (Boehler and Ramakrishnan 
1980; Boehler 1982). It is clear from heat capacity meas-
urements that this is an over-simplification of the behav-
iour of the Grüneisen parameter of olivine, and indeed, it 
decreases with increasing temperature (e.g., Isaak 1992; 
Kroll et al. 2012) contrary to the form used in (5) if q > 0. 
More complex formulations make only a small difference 
to the value of KTR derived from measurements of KSR,  
often within the experimental uncertainties of the value 
of KSR, even at high temperatures. Kroll et al. (2012) cal-
culated γ0 = 1.25 for Fo90–Fo92 and an average value of 
γ = 1.15 for the temperature range 300–1500 K.

Fitting EoS

For the compressional part of the EoS at room tempera-
ture, we only use the Birch–Murnaghan EoS in its third- 
and fourth-order forms (Birch 1947) which we denote by 
BM3 and BM4. Essentially identical sets of parameters are 

(5)
KV =− V

dP

dV
=

(σ1 + σ2 + σ3)
/

3

3ε

KV =

(c11 + c22 + c33 + 2(c12 + c13 + c23))

9
.

(6)γ (P, T) = γ0

(

V(P, T)

V0

)q

,

obtained using a Tait EoS (Huang and Chow 1974; Hol-
land and Powell 2011). We have used the EosFit7c program 
(Angel et al. 2014a) for all of the fits of EoS discussed in 
this paper. In the EosFit7 program suite, the observed mate-
rial parameter (either the volume or the bulk modulus) is 
fit to the pressure (Milani et al. 2017), using the effective 
variance method (Orear 1982) to convert the experimental 
uncertainties in V or K, and T, into effective uncertainties 
in pressure that are then combined with the uncertainty in 
pressure to provide a weight for each datum in the least-
squares process. Single-crystal diffraction data typically 
have fractional uncertainties in volumes of 1 part in 10,000 
or better which translate into effective uncertainties in 
pressures σ ′

P ≈ KTR
σV
V

 or ~0.012 GPa for olivine at mod-
est pressures. By contrast, the typical uncertainty in bulk 
moduli from Brillouin data is of the order of 1  GPa at 
room temperature and high pressure, and can be as large 
as 3 GPa at simultaneous high pressures and temperatures 
(e.g., Mao et al. 2015). The corresponding effective uncer-
tainty in pressures from elastic moduli data is, therefore, 

σ ′

P ≈
σK
K ′

TR
 or 0.2–0.6  GPa, an order of magnitude greater 

than diffraction data. Therefore, if the uncertainties in pres-
sure and temperature of the diffraction and elastic meas-
urements made at similar conditions are similar, then the 
diffraction data are weighted significantly more in the least-
squares process and can be more influential in constraining 
the parameters in the equation of state when both types of 
data are fit together. The advantage of simultaneous fitting 
of elastic and volume data comes from the reduction in the 
strong correlation between the refined values of KTR,0 and 
K ′

TR,0 when only volume data are used (e.g., Angel 2000).

Data for mantle olivine

The elastic response of a crystal to changes in pressure 
or temperature depends on the stress state applied to the 
crystal. In polycrystalline samples, even of a single phase, 
each grain is not subject to the externally applied stress, 
but each grain is under the stress applied to it by the adja-
cent grains. In these conditions it is impossible to precisely 

Table 1   Notation for bulk moduli

The value of each modulus at reference conditions of T = T0 and P = 0 
is indicated by the additional subscript 0: KTV,0, KTR,0, KSV,0, and  
KSR,0

The first pressure derivatives of the bulk moduli (∂K/∂P) are denoted 
as K ′

TV
, K ′

TR
, K ′

SV
, K ′

SR
, and their values at reference conditions are 

indicated by an additional subscript 0

Adiabatic Isothermal

Reuss (isotropic stress) KSR KTR

Voigt (isotropic strain) KSV KTV
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define the stress state of any one single grain; the response 
of the polycrystalline aggregate to stress is estimated 
through average moduli which certainly do not represent 
the response of any one single-crystal grain in the sample. 
Furthermore, the stress state in powders almost certainly 
changes with P and T, and at high applied stresses there 
will be plastic deformation which potentially changes the 
intrinsic elastic properties of the mineral. In addition, the 
stress state leads to considerable uncertainties in pressure 
determined by diffraction in solid mixed-phase samples 
(e.g., Will et al. 1980). Therefore, we only consider single-
crystal data collected from Fo90 to Fo92 olivine under 
hydrostatic conditions in our analysis.

We use the single-crystal high-pressure diffraction data 
at room temperature from Nestola et al. (2011). Since that 
paper was published, the quartz EoS used to determine the 
pressure from measured unit-cell volumes of a quartz crys-
tal included with the sample in the diamond-anvil cell has 
been revised (Scheidl et al. 2016), so we have revised the 
pressure values accordingly. Thermal expansion data for the 
forsterite–fayalite solid solution were reviewed in detail by 
Kroll et al. (2012) and we follow their recommendation to 
use only the dilatometry data of Suzuki (1975) for Fo92.3 
from the literature. There is no single-crystal variable-T 
diffraction data for mantle-composition olivines. But for 
loosely packed powders there are no significant inter-grain 
stress. Therefore we also use recent high-T powder diffrac-
tion data for an Fo92 olivine (Helbert et  al. 2013). These 
two data sets are in good agreement with one another, and 
also with new low-temperature data for the same sample 
obtained by powder diffraction (Nestola et al. 2017). Each 
individual data set of volumes was scaled to its’ own deter-
mination of volume at room conditions prior to fitting the 
data together. For fitting the Mie–Grüneisen–Debye EoS, a 
molar volume for Fo92 olivine of 43.89 cm3 mol−1 at room 

conditions was calculated from the molar volume of Fo100 
and the trend of V with composition of Schwab and Küst-
ner (1977). We are not aware of any volume measurements 
made on mantle-composition olivine single crystals made 
at simultaneous high P and T, except for those in Mao et al. 
(2015).

The full elastic tensor of Fo90–Fo92 olivine has been 
determined by a variety of different methods over the past 
five decades. Room-pressure values of the adiabatic Voigt 
and Reuss bulk moduli from the various measurement 
techniques (Table 2) show, for most of the data, agreement 
that is significantly better than expected from the measure-
ment uncertainties. The one significant outlier among data 
more recent than the work of Webb (1989) is the Fo92.1 
sample of Isaak (1992) which is systematically stiffer than 
the Fo90 sample measured in the same study. This cannot 
be correct in terms of the known variation of bulk moduli 
with the Mg/Fe ratio in the forsterite–fayalite solid solution 
(Speziale et  al. 2004; Jacobsen et  al. 2008). Because the 
room-temperature Fo90 measurements of Isaak (1992) are 
in better agreement with other determinations (Table 2), we 
use the high-temperature data from this sample in prefer-
ence to their Fo92 data. Table 2 shows that the Reuss and 
Voigt adiabatic bulk moduli determined from the full elas-
tic tensor of Fo90–Fo92 olivine at room conditions differ 
by 4.1 GPa, on average, or about 3% in the values of the 
bulk moduli. It is clear from the agreement in values from 
the different experiments listed in Table 2 that single-crys-
tal elasticity measurements clearly distinguish the Reuss 
and Voigt bulk moduli of olivine at room conditions.

In our analysis, we used adiabatic Reuss bulk mod-
uli recalculated from the cij values reported at high P by 
Abramson et  al. (1997) at the four pressures where the 
data are complete, and the data of Zha et al. (1998), Mao 
et al. (2015), and Zhang and Bass (2016) (Table 3). These 

Table 2   Fo90–Fo92 olivine adiabatic bulk moduli at room conditions from single-crystal measurements

a  Esds on K0 given in brackets are estimated by propagation from quoted esd’s on individual moduli, ignoring possible covariance. When no esd 
is given, there is insufficient information in the publication to make an estimate

Author Method Sample KSR,0 KSV,0

Kumazawa and Anderson (1969) Ultrasonic wave velocities Unknown Fo92.7 127.2a 131.5a

Ohno (1976) Resonance ultrasound spectroscopy (RUS) Fo91.3 125.6 (1.3) 130.6 (1.3)

Ohno (1976) RUS Fo92 124.3 (3.0) 129.2 (3.0)

Yeganeh-Haere and Vaughan (1984) Brillouin Fo87.8 128.1 (2.5) 131.7 (2.5)

Webb (1989) Ultrasonic wave velocities San Carlos, Fo90 127.6 (4) 131.5 (4)

Isaak (1992) RUS OLA, Fo92.1 129.0 (6) 133.4 (6)

RAM, Fo90.3 127.3 (5) 131.6 (5)

Abramson et al. (1997) Impulse stimulated light scattering (ISLS) San Carlos, Fo90 127.4 (5) 131.5 (5)

Mao et al. (2015) Brillouin spectroscopy San Carlos, Fo90 127.5 (9) 131.7 (9)

Zhang and Bass (2016) Brillouin spectroscopy San Carlos, Fo90.5 127.0 (2.0) 131.2 (2.0)

Mean (1989–2016) 127.4 (3) 131.5 (2)
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four sets of moduli are in excellent agreement with one 
another (Fig.  1) up to ~15  GPa and with the room-pres-
sure measurements (Table  2) and the volume compres-
sion data of Nestola et  al. (2011). A fit of a BM3 EoS to 

all of this high-pressure, room-temperature data yields 
KTR,0 = 126.7(2) GPa and K ′

TR,0 = 4.43(6), correspond-
ing to an adiabatic value room-pressure bulk modulus of 
KSR,0 = 127.9(2) GPa. Above 15  GPa, the Brillouin data 
show significant softening (Fig. 1) relative to the extrapo-
lation of the BM3 EoS from lower pressures, and cannot 
be fit with a BM3 EoS within the data uncertainties. A fit 
of all of the room-temperature diffraction and bulk mod-
ulus data listed in Table 1 with a BM4 EoS yield param-
eters KTR,0 = 126.0(3) GPa and K ′

TR,0 = 4.9(1) and 
K ′′

0 = −0.133(15) GPa−1. The softening has been attrib-
uted to elastic instabilities in the olivine structure that lead 
to amorphisation at higher pressures (Andrault et al. 1995). 

The only in situ single-crystal measurements of the high 
P–T elastic moduli of mantle-composition olivine are by 
Mao et al. (2015) and Zhang and Bass (2016). When they 
are compared with the data from Isaak (1992), the Mao 

et  al. (2015) data imply that 

(

∂K
′

TR
∂T

)

P

 is slightly negative 

at room pressure (see their Fig. 5 which shows the slopes 
of KS against T becoming shallower at higher T) which has 
been explained as a pre-transition phenomenon associated 
with the transformation of olivine to wadsleyite (Mao et al. 
2015, and references therein), although it is clear from the 
data that these effects occur at pressures and temperatures 
well-away from the stability field of wadsleyite. However, 
the bulk moduli obtained from the results of Mao et  al. 
(2015) are inconsistent with the in situ diffraction measure-
ments of volume made at the same time and reported in the 
same paper. This indicates that the data may include some 
systematic error from either the experiment (e.g., in pres-
sure scale or in V0 measurements) or the data reduction 

Table 3   Data sources

a  Ndata is the number of data used in the refinement of EoS parameters
b  Pressures rescaled from previous quartz EoS (Angel et al. 1997) to revised quartz EoS (Scheidl et al. 2016)

Source Data type P range T range (K) Ndataa P range T range (K) Ndataa

Data used in BM3 fits Additional data used in BM4 fits

Nestola et al. (2011) Single-crystal diffraction 0–8.05 GPab Ambient 14

Zha et al. (1998) Single-crystal diffraction 0–14.2 GPa Ambient 3 19.6–32.4 GPa Ambient 3

Helbert et al. (2013) Powder diffraction Ambient 298–773 20

Nestola et al. (2017) Powder diffraction Ambient 20–298 15

Suzuki (1975) Dilatometry Ambient 298–1123 17

Isaak (1992) Single-crystal RUS Ambient 296–1500 13

Abramson et al. (1997) Single-crystal ISLS 0–12.0 GPa Ambient 4

Zha et al. (1998) Single-crystal Brillouin 0–14.1 GPa Ambient 4 18.8–32.3 Ambient 3

Mao et al. (2015) Single-crystal Brillouin 0–14.0 GPa Ambient 7 16.6–19.2 GPa Ambient 2

Zhang and Bass (2016) Single-crystal Brillouin 0–12.6 GPa Ambient 5 16.5 Ambient 1

Data only used to model elastic softening at high P, T

 Mao et al. (2015) Single-crystal Brillouin 2.7–14.1 GPa 500–900 14

 Zhang and Bass (2016) Single-crystal Brillouin 0–12.8 GPa 1300 5

Fig. 1   Variation of the adiabatic Reuss bulk modulus KSR of Fo90–
Fo92 olivine calculated by Eq.  (2) from experimental high-pressure 
measurements of the elastic moduli. The red solid line is a Birch–
Murnaghan third-order EoS fit to this data up to 15 GPa and the com-
pression data of Nestola et al. (2011). The blue dashed line is a BM4 
EoS fit to all of the data. This same colour coding is used in subse-
quent figures
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process. We, therefore, only use these data in some EoS 
fits, as discussed below. Zhang and Bass (2016) report the 
full elastic tensor of mantle olivine at a series of five pres-
sures from ambient to 12.8 GPa at a single temperature of 
1300 K, which enabled them to infer the densities directly, 
without measurement, in a self-consistent manner from the 
Brillouin data.

Equations of state

All EoS are built on assumptions, some obvious, and 
some subtle (for an introduction to these issues, see 
Anderson 1995; Angel 2000). These assumptions can bias 
either the parameter values at room conditions (which 
are especially important for host-inclusion calculations) 
derived from the experimental data or the predicted vol-
ume and bulk modulus at simultaneous high P and T, 
where experimental data can be sparse or of lower accu-
racy. The major challenge in EoS calculations is how to 
handle the cross derivatives of the elastic parameters with 
respect to P and T, for example, how the bulk modulus 
changes with temperature or how the thermal expansion 
coefficient changes with pressure. There are two possible 
approaches: one based on isothermal EoS at high temper-
ature and the other based on the concept of thermal pres-
sure. We discuss examples of each approach applied to 
olivine in the next sections.

Conventional isothermal EoS

In this approach, the thermal expansion at room pres-
sure is described, along with how the bulk modulus and 
its pressure derivatives change with temperature. Note 
that the model chosen for the specific variation of the 
bulk modulus with temperature also defines the change 
in thermal expansion coefficient with pressure, because 
(

∂α
∂P

)

T
=

1

K2
T

(

∂KT
dT

)

P
. The volume at high P and T is then 

calculated using V(P = 0, T), KTR(P = 0, T), and its pres-
sure derivatives at high T and room P in an isothermal 
equation of state. The major advantages of this approach 
are that the variation of V and K can be determined directly 
from measurements at high temperatures and that the cal-
culation follows a conceptually simple path in P–T space 
(Fig.  2). However, this conventional isothermal approach 
fails in two significant ways. First, although the experimen-
tal data for the bulk modulus of olivine above 300 K can be 
described with (∂KTR/∂T)P constant, this is a non-physical 
approach, because there is a thermodynamic requirement 
that (∂KTR/∂T)P = 0 at T = 0. The failure to account for 
this with the linear model biases the room-T value of the 
bulk modulus KTR,0. This is not obvious for olivine, but 

Fig. 2   P–T diagram showing the two different paths used in calcu-
lating the volume in a thermal-pressure EoS and an isothermal EoS. 
The isochor shown is calculated from the BM4–MGD EoS of Fo92 
olivine

Fig. 3   Solid line is the variation of the isothermal bulk modulus of 
diamond as a function of temperature at room pressure, calculated 
from the EoS of Angel et  al. (2015a). The dashed line is a linear 
extrapolation of the behaviour from high temperature and results in 
considerable error (arrow) in the value of the bulk modulus at room T



102	 Phys Chem Minerals (2018) 45:95–113

1 3

it is a serious problem for diamond, where (∂KTR/∂T)P 
changes significantly below ~800 K (Fig. 3).

Second, it is also usually assumed that K ′

TR does not 
change with increasing temperature, simply because there 
is little or no data to constrain this variation. However, it is 
clear that in the absence of phase transitions, (∂K ′

TR/∂T)P 
should be very slightly positive at high temperatures (e.g., 
Duffy and Anderson 1989; Anderson 1995). Hellfrich and 
Connolly (2009) showed that if (∂K ′

TR/∂T)P is assumed 
to be zero, and K ′

TR is, therefore, invariant with tempera-
ture, then the volume thermal expansion coefficient always 
becomes zero and then negative at high P and T. The 
conventional isothermal EoS with (∂KTR/∂T)P constant 
should, therefore, not be applied to calculate the elastic-
ity of minerals to mantle P and T (Hellfrich and Connolly 
2009).

Holland–Powell thermal‑pressure EoS

The fundamental difference of thermal-pressure EoS mod-
els is that the volume is calculated over a different path in 
P–T space (Fig. 2) starting with an isothermal compression 
to the required volume at T0, followed by a path along an 
isochor to the final temperature. Then, the pressure at a 
given volume and temperature includes two parts:

The first term corresponds to the pressure calculated 
with the conventional EoS for compression at the refer-
ence temperature (usually room T), and the second term 
is the additional pressure generated by heating the mate-
rial at constant volume, i.e. along an isochor. Because an 
isochor in P–T space has the slope 

(

∂P
∂T

)

V
= αVKTR, the 

thermal pressure induced by heating along the isochor 
is Pth =

∫ T

T0 αVKTR∂T . There is nothing theoretically 
superior about thermal-pressure EoS over the isothermal 
approach, because they also require assumptions to be 
made about the EoS parameters and behaviour: first along 
the isothermal compression path in exactly the same way 
as used in the isothermal approach and then also along the 
isochor. For example, one can assume that αVKTR is con-
stant along the isochor, so that Pth = αVKTR(T − T0), but 
this is clearly thermodynamically wrong, because it will 
still give (∂KTR/∂T)P non-zero at low T.

The thermodynamic problems at low temperatures can 
be overcome using vibrational models for the thermal pres-
sure, which then ensure that all of αV, (∂KTR/∂T)P and 
(∂K ′

TR/∂T)P tend to zero as T approaches absolute zero. 
Holland and Powell (2011) introduced an empirical func-
tion to model thermal pressure with the motivation to pro-
vide realistic P–V–T EoS with the minimum number of 
additional parameters. The thermal-pressure part is (Hol-
land and Powell 2011; Kroll et al. 2012)

(7)P(V , T) = P(V , T0)+ Pth(V , T).

The parameter ξ0 is the value of ξ at the reference tem-
perature T0. The big advantage of this model is that the only 
additional parameter is a characteristic ‘Einstein’ tempera-
ture θE that can be estimated from entropy measurements 
(Holland and Powell 2011) or obtained by fitting V–T data. 
The remaining parameters KTR,0 and αV,0 can be obtained 
from the conventional measurements of volume under 
compression and heating alone, so more difficult measure-
ments at simultaneous P and T are not required. This model 
successfully fits the P–V–T data of diamond (Angel et al. 

(8)

Pth(V , T) = αV,0KTR,0

(

θE

ξ0

)(

1

exp(θE/T)− 1
−

1

exp(θE/T0)− 1

)

,

ξ =

(θE/T)
2 exp(θE

/

T)

(exp(θE/T)− 1)2
.

Fig. 4   a Volume data for Fo92 olivine (Table 3) at high temperature 
fit with a Holland–Powell thermal-pressure EoS (Eq.  8). The fits of 
the BM3 and BM4 EoS are indistinguishable. b Data points are the 
adiabatic Reuss bulk moduli, KSR, calculated from the cij values of 
Isaak (1992). The  lines are the prediction of Holland–Powell thermal-
pressure EoS with the BM3, K ′

TR
= 4.4, and the BM4 K ′

TR
= 4.9.  

The  black dashed line with the BM4 and K ′

TR
= 5.5 agrees more 

closely with the data; a BM3 EoS requires K ′

TR
∼ 5.7 to obtain the 

same values of KSR. This illustrates the limitations of the Holland–
Powell thermal-pressure model
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2015a), and both the P–V–T and bulk moduli data collected 
at both high P and at high T of grossular garnet (Milani 
et al. 2017).

However, it is not possible to simultaneously fit 
the P–V, T–V, and the T–K data for Fo92 (or Fo100) 
olivines with this model. The V–T data constrain 
αV,0 = 2.68(2) × 10−5 K−1 and the Einstein tempera-
ture to be 497 ±  11 K (Fig. 4a), consistent with the esti-
mate of 531  K for Fo100 from the measured entropy 
(Holland and Powell 2011) and the known decrease of 
characteristic temperatures with increasing iron content 
(Kroll et  al. 2012). Figure  4b shows that with the values 
of KSR,0 = 127.9(2) GPa and K ′

TR,0 = 4.43(6) determined 
from the fit of the high-pressure data at room temperature 
with a BM3 EoS, the adiabatic bulk modulus calculated 
from the EoS is significantly higher than the values meas-
ured by Isaak (1992) at high temperatures. The discrepancy 
is slightly reduced with the BM4 EoS which describes the 
high-P softening at room temperature, but a significantly 

higher value of K ′

TR,0 ∼ 5.5 to 5.7 is required to obtain 
good agreement with the experimental data of Isaak (1992).

The reason for this failure to fit the high-T bulk moduli 
data lies in a subtle intrinsic property of the Holland–Pow-
ell EoS, which can be understood as follows. The value 
of the Anderson–Grüneisen parameter, δT, determines the 
change in bulk modulus along an isochor (Anderson 1995):

An intrinsic property of the Holland–Powell thermal-
pressure EoS is that the isothermal bulk modulus is con-
stant along an isochor, (∂KTR/∂T)V = 0 (Kroll et al. 2012). 
Equation  (9) then implies that δT = K ′

TR. However, Kroll 
et  al. (2012) calculate that (∂KTR/∂T)V ∼ 0.004 GPa K−1 
for olivines, so that δT ∼ K ′

TR + 1 ~5.5.
This explains why the high-T variation in bulk modu-

lus can be only fit with the EoS by setting δT = K ′

TR ∼ 5.5 
(Fig. 4b) in this EoS instead of ~4.5, although K ′

TR ∼ 5.5 
is completely inconsistent with the room-T elasticity data 
at high pressure (Fig. 1). Therefore, it is clear that the Hol-
land–Powell thermal-pressure EoS involves insufficient 
independent parameters to accurately fit the available data 
for olivines and should only be used for materials such as 
diamond and garnet for which KTR appears to be constant 
along isochors, and thus, δT = K ′

TR. For those materials, 
the Holland–Powell thermal-pressure EoS offers a robust, 
thermodynamically-valid EoS that can be used down to low 
temperatures, with a minimum number of parameters.

Mie–Grüneisen–Debye thermal‑pressure EoS

This EoS is based on the idea that the spectrum of ther-
mally-induced vibrations in the material can be described 
by the Debye model (Debye 1912), whose energy is repre-
sented by a characteristic temperature θD, the Debye tem-
perature. The thermal energy then becomes

in which R is the gas constant, T is the absolute tempera-
ture, and n is the number of atoms per formula unit, 7 for 
olivine. The Debye temperature is explicitly assumed to be 
a function only of volume:

where q is a constant, and γ is the same as the thermal 
Grüneisen parameter (e.g., Mulargi 1977; Anderson 1995; 
Jackson and Rigden 1996; Holzapfel 2001) defined in 
Eq.  (6). This makes γ only a function of volume and not 
explicitly of T, so that γ is constant along an isochor.

(9)(∂KTR/∂T)V = αVKTR(δT − K ′

TR).

(10)ED =

9nRT

(θD/T)3

θD/ T
∫

0

x3

ex − 1
dx,

(11)θD(V) = θD(V0) exp

(

γ0 − γ (V)

q

)

,

Fig. 5   a Thermal expansion and b bulk modulus KSR of Fo90–
Fo92 olivine at room pressure predicted by the two BM–MGD EoS 
(Table  4). The two BM–isothermal EoS are identical to the corre-
sponding order of BM–MGD EoS within uncertainties and, therefore, 
cannot be distinguished on this scale
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The thermal pressure for the Mie–Grüneisen–Debye 
(MGD) EoS, relative to the isotherm at the reference tem-
perature, is then given in terms of the thermal energies 
from the Debye model (Eq. 10) as

The big advantage of the MGD EoS is that the param-
eters γ0 and q control the value of the Debye temperature 
θD through Eqs.  (6) and (11), which means that V–T data 
provide constraints on the values of these parameters in 
addition to the constraints from the KSR data. In combina-
tion with the BM3 and BM4 EoS for room-temperature 

(12)Pth(V , T) =
γ (V)

V
{ED(T , θD(V))− ED(T0, θD(V0))}.

compression, the MGD EoS can fit all of the available 
data for mantle-composition olivine at high temperatures 
and ambient pressure (Fig. 5) with the parameters given in 
Table 4, which are quite similar to earlier fits of the MGD 
EoS (as summarised by Anderson 1995; Stixrude and 
Lithgow-Bertelloni 2005). The ambient temperature high-
pressure data are also fit well, with the use of the high-
temperature data changing the values of KTR,0 and K ′

TR,0 
by less than an esd from the fit to the high-pressure data 
alone. However, Fig.  6 shows that the KSR values deter-
mined from the high P–T data of Mao et  al. (2015) and 
Zhang and Bass (2016) are systematically and significantly 
lower than the values calculated from both the BM3–MGD 

Table 4   Best-fit Reuss EoS parameters for mantle-composition olivine

BM3–MGD BM4–MGD BM3–isothermal BM4–isothermal

KTR,0: GPa 126.3 (2) 125.9 (2) 126.4 (2) 126.0 (2)

KSR,0: GPa 127.3 (2) 126.9 (2) 127.5 (2) 127.1 (2)

K
′

TR,0
4.54 (6) 4.93 (9) 4.51 (5) 4.88 (9)

K
′′

TR,0
–0.037 implied value –0.133 (14) –0.037 implied value –0.126 (15)

αV0: K−1 2.666 (9) × 10−5 2.667 (9) × 10−5

θD or θE: K θD = 644(9) θD = 657(10) θE = 484(6) θE = 485(6)

δT – 5.77 (7) 5.66 (8)

δ′ – –3.5 (1.1) –3.1 (1.2)

γ0 1.044 (4) 1.053 (3) 1.044 fixed 1.044 fixed

q 1.88 (12) 1.22 (16) 1.88 fixed 1.88 fixed

Ndata 102 111 121 130

Data used; see Table 3 P < 15 GPa, no P, T All data, except P, T All P < 15 GPa All

Fig. 6   Isothermal-pressure variation of the bulk modulus KSR at high 
temperatures. Data points from Mao et al. (2015) and Zhang and Bass 
(2016). The slopes of KSR with pressure predicted by the BM3–MGD 
and BM4–EoS slightly increase with increasing pressure, reflecting 
the intrinsic property of 

(

∂K ′

R

∂T

)

P

> 0 of the MGD EoS, and cannot 
fit the data at higher temperatures at these pressures. In contrast, the 

isothermal EoS allows the softening in the high-temperature elastic 
moduli data to be represented; the slopes of KSR with pressure from 
the isothermal EoS decrease with increasing temperature. EoS param-
eters are given in Table 4. Room-temperature data and EoS are shown 
in Fig. 1
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and the BM4–MGD EoS. For example, at 13.3  GPa and 
900 K, both MGD EoS predict KSR = 174.6 GPa, whereas 
the measured value is 167(3) GPa. This misfit of the high 
P–T data is not reduced even if the data are included in the 
fits of the EoS parameters.

The big disadvantage of the MGD EoS is the need to 
use the molar volume V in Eq. (12) to convert the thermal 
energy into the thermal pressure (pressure having units of 
energy per unit volume). This makes the parameters of an 
MGD EoS specific to a single combination of specific vol-
ume and pressure scales, consistent with the units used for 
the bulk modulus. This limits the transferability and ease 
of use of the EoS and results in frequent calculation errors. 
This is not an intrinsic problem for all thermal-pressure 
EoS; for example, the Holland–Powell thermal-pressure 
EoS is scaled simply by the value of KTR,0 (Eq. 8), so that 
the pressure scale of the thermal pressure is automatically 
the same as the pressure scale of the EoS at the reference 
temperature. The second disadvantage of the MGD EoS is 
that the parameters γ0, q, and θD are not directly measur-

able by experiment, in contrast to 
(

∂KT
∂T

)

P
 used in a con-

ventional isothermal EoS. The third limitation of the MGD 

EoS is that it imposes the requirement that 
(

∂K ′

TR
∂T

)

P
> 0 , 

which is normal behaviour for materials, although this 
derivative is normally so small that it cannot normally be 
distinguished from being zero by experimental data. How-
ever, as noted by Zhang and Bass (2016), the elastic moduli 

reported at simultaneous high P and T by Mao et al. (2015) 

clearly imply that 

(

∂K
′

TR
∂T

)

P

 is negative at room pressure 

(Fig.  6), and the MGD EoS cannot fit such variation, not 
even if a fourth-order Birch–Murnaghan EoS is used to fit 
the softening at high P and room T (Fig. 1).

New parameterisation of isothermal EoS

The preceding discussion of the thermal-pressure EoS 
shows that they do not provide sufficient flexibility to fit 
all of the available diffraction and elastic data for mantle-
composition olivine and that the principle difficulty lies in 
fitting the data at simultaneous high P and T. We now pre-
sent a new parameterisation of the isothermal approach that 
is thermodynamically correct, as are the thermal-pressure 
EoS, but provides the additional flexibility required to fit 
the high P–T elastic data for mantle-composition olivines.

In order for any ‘isothermal-type’ EoS to be ther-
modynamically correct, it must ensure that all of 
αV , (∂KTR/∂T)P, and (∂K ′

TR/∂T)P tend to zero as T 
approaches absolute zero. This precludes simple polyno-
mial models for the volume as a function of T at room 
P, which have no such requirement. Kroll et  al. (2012) 
reviewed a number of other models specifically in the 

context of olivine thermal expansion and found that the 
room-pressure thermal expansion equation implicit in 
the Holland–Powell thermal-pressure EoS fitted the 
experimental constraints as well as the best alternatives, 
whereas other models were deficient in one or more 
respects. We implement the Kroll et al. (2012) version of 
Holland–Powell thermal expansion, but we explicitly use 
the Anderson–Grüneisen (Anderson 1995) parameter δT 
in place of (1+ K ′

TR). The expression for volume at tem-
perature then becomes

The parameter ξ0 was defined in Eq.  (8). The use of 
δT and K ′

TR as independent parameters allows data with 
any bulk modulus variation along an isochor (Eq. 9) to be 
fit. This approach also completely separates the thermal 
and baric parts of the EoS while maintaining a reason-
able physical basis in the Einstein oscillator model; any 
description of the thermal expansion and temperature 
dependence of the bulk moduli K is completely sepa-
rated from the description of the isothermal compres-
sion. This also allows this thermal expansion equation 
to be combined with any isothermal equation of state for 
compression.

Hellfrich and Connolly (2009) used the definition of 
δT to propose an alternative description of the variation of 
bulk modulus with temperature:

which can be re-arranged as

This provides the correct behaviour of KTR at low 
temperatures, because KTR follows the volume variation 
and Eq. (13) ensures that αV goes to zero as the tempera-
ture approaches absolute zero. There is no simple ther-
modynamic expression for the temperature variation of 

K ′

TR, because ∂2KTR
∂P∂T

=

(

∂K ′

TR
∂T

)

P
= αδT(δT − K ′

TR + κ), 

where κ =
∂ ln δT
∂(V/V0)

 (Anderson 1995). Therefore, to avoid 

the thermal expansion becoming zero or negative at high 

pressures, which would be a consequence of 
(

∂K ′

TR
∂T

)

P
= 0 

(13)

V(T) =V0



−(δT − 1)+ δT

�

1−
(δ2T − 1)

δT
A

�B


,

A = αV,0

�

θE

ξ0

��

1

exp(θE/T)− 1
−

1

exp(θE/Tref)− 1

�

,

B = (δ2T − 1)−1.

(14)KTR(T ,P = 0) = KTR,0 exp






−δT

T
�

T0

αV(T)dT






,

(15)KTR(T ,P = 0) = KTR,0

[

V0

V(T)

]δT

.
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(Hellfrich and Connolly 2009), we introduce a simple 
expression for the temperature variation of K ′

TR:

Equation  (16) in combination with Eq.  (13) ensures 
that (∂K ′

TR/∂T)P becomes zero at low temperatures in the 
same way as in the MGD and Holland–Powell thermal-
pressure EoS.

Recommended Reuss EoS parameters for mantle 
olivine

The parameters for ‘best fits’ of EoS to the available sin-
gle-crystal data of mantle-composition olivine are listed 
in Table 4, and are provided in the supplementary mate-
rials as ‘.eos’ files for use in the EosFit7 family of pro-
grams (Angel et  al. 2014a; Gonzalez-Platas et  al. 2016) 
to perform calculations of all EoS parameters at P and T.

The BM3–MGD EoS provides an accurate representa-
tion of all of the available single-crystal data for mantle-
composition olivine, except for the room-pressure data 
above 15 GPa, and the simultaneous high P and T elas-
ticity data of Mao et al. (2015) and the highest two pres-
sure points at 1300 K from Zhang and Bass (2016), see 
Figs. 1 and 6. The BM4–MGD EoS also fits the softening 
relative to the BM3 EoS reported at pressures in excess 
of 15 GPa at room T (Zha et al. 1998). At high tempera-
tures, for example at 1300 K, the BM3–MGD and BM4–
MGD predict indistinguishable properties for olivine up 
to at least 19 GPa (Fig. 7). This is because the MGD EoS 
is a quasi-harmonic EoS and the change in bulk moduli 
along any isochor is small (Eq. 9), less than 1.3 GPa for 
olivine from 300 to 1300 K. Up to pressures of ~15 GPa 
at room T, the BM3 and BM4 EoS predict indistinguish-
able KRS (Fig. 1). Since the BM4–MGD isochor through 
15 GPa and 298 K reaches 18.9 GPa at 1300 K (Fig. 2), 
it is only above 19  GPa that the room-temperature sof-
tening (Fig. 1) contributes softening at 1300 K (Fig. 7). 
Isothermal-type EoS with δ′ = 1.0 combined with BM3 
and BM4 EoS for compression have EoS parameters and 
predict volumes, densities, and bulk moduli at P and T 
that cannot be distinguished within the uncertainties from 
those of the corresponding MGD EoS.

The high-temperature data of Mao et  al. (2015) and 
Zhang and Bass (2016) represent elastic softening rela-
tive to the predicted moduli from both the BM–MGD 
EoS (Fig.  6), at pressures significantly below the pres-
sures, where the room-T softening contributes to the 
value of KRS (Fig.  7). Therefore, this softening cannot 
be fit with an MGD EoS. The softening can be fit simul-
taneously with the room-pressure data on bulk moduli 
and thermal expansion with the isothermal-type EoS by 

(16)
K ′

TR(T ,P = 0) = K ′

TR,0

[

V(T)

V0

]δ′

.

allowing the value of δ′ to become negative. While this 
does not violate thermodynamics at modest pressures, 

this implies that 
(

∂K ′

TR
∂T

)

P
< 0 at finite temperatures, and 

will eventually lead to a prediction of negative thermal 
expansion at high pressures. Values of δ′ between −3 
and −4 are obtained by least-squares fit to all of the data 
(Table 4) which fit all of the high-P, T elastic data within 
the uncertainties. As for the MGD EoS, the BM3–isother-
mal EoS does not fit the room-temperature softening, but 
this modelled by the BM4–isothermal EoS (Table 4).

The corresponding orders of BM–MGD and BM–iso-
thermal EoS provide identical fits to the data at room 
T and high P and to the high-T data at room pressure 
(Fig.  5) and predict indistinguishable properties under 
these conditions. They also both show excellent agree-
ment with the determinations of bulk moduli by elasticity 
measurements at room conditions (Table 2). The isother-
mal and MGD EoS of the same order (BM3 or BM4) are, 
therefore, only distinguished by the volumes, density, 
and elasticity (Figs. 6, 7) that they predict at simultane-
ous high P and T. The general trend is that the MGD EoS 
predict larger volumes, bulk moduli and thermal expan-
sion coefficients, and lower densities, at all P and T. For 
example, at 900 K and 13.3 GPa, the most extreme point 
of Mao et al.’s (2015) data, the MGD EoS yields a den-
sity 0.2% lower than the isothermal EoS, bulk moduli 
about 6.5 GPa higher (Fig. 6) and αV about 25% higher. 
The differences at P and T corresponding to depths of 
410–420 km, at the stability limit of olivine, are ~1% in 
volume and density, ~10% in bulk modulus, and ~40% 
in thermal expansion coefficient. As far as we are aware, 
there are no diffraction data from mantle-composition 

Fig. 7   Variation with pressure of the adiabatic bulk modulus KSR at 
1300 K. Data points from Zhang and Bass (2016). The BM3–MGD 
and BM4–MGD EoS only diverge significantly above ~19  GPa, 
where the thermal pressure is ~4 GPa and the corresponding pressure 
on the isochor at 298 K is, therefore, 15 GPa, which is the pressure of 
divergence of the two EoS at 298 K (Fig. 1)
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olivines of sufficient precision to distinguish these two 
EoS. For example, at 8.2 and 1073  K, the powder dif-
fraction data of Liu and Li (2006) yield V/V0 = 0.964(8). 
Both the MGD and the isothermal EoS predict compres-
sion ratios within the quoted uncertainty of this value.

Olivine inclusions in diamond

An olivine trapped inside a diamond at mantle tem-
peratures and pressures is not free to expand and con-
tract in response to changes in P and T as free olivine 
crystal would. Instead, it is constrained to expand and 
contract by the same amount as the host diamond. As a 
consequence, olivine inclusions in diamond exhibit posi-
tive pressures when measured in situ inside diamonds at 
room conditions (Izraeli et al. 1999; Nestola et al. 2011; 
Howell et  al. 2012). If no other processes such as plas-
tic flow or cracking of the diamond have occurred to 
modify the remnant pressure in the inclusion, its remnant 
pressure, Pinc, is comprised of two contributions. The 
constraint of the inclusion to the volume change of the 
host is termed the ‘thermodynamic’ pressure which can 
be calculated from the EoS of the host and the inclusion 
(e.g., Rosenfeld and Chase 1961; Graham and Cybriwsky 
1981; Guiraud and Powell 2006; Angel et  al. 2014b, 
2015b). In addition to this Pthermo, the pressure differ-
ence between the internal pressure in the inclusion and 
the external pressure applied to the diamond is reduced 
by mutual elastic relaxation arising from the pressure dif-
ference. The relaxation can only be calculated exactly 
when the inclusion is perfectly spherical and when both 
the host and inclusion phases are elastically isotropic. 
Given that no single crystal can be elastically isotropic 
over any range of P and T, and olivine inclusions in dia-
mond are not spherical but faceted, the calculation of this 
elastic relaxation becomes an approximation (Angel et al. 
2014b, 2015b). The effects of non-spherical inclusion 
shape have been calculated by finite-element modelling 
to be small (Mazzucchelli et  al. 2016) and of the order 
of the other uncertainties introduced into the calculation 

by the esd’s in EoS parameters. In this discussion, we use 
the isotropic spherical relaxation approximation to allow 
us to illustrate the consequences for the interpretation of 
residual inclusion pressures of using the different EoS 
of olivine (Table 4). The P–V–T EoS of diamond is well 
constrained and contributes relative little uncertainty to 
these calculations (Angel et al. 2015a).

Inclusions with fluids: the Reuss case

Olivine inclusions in diamonds are normally surrounded by 
a thin film of aqueous fluid (Nimis et al. 2016). The fluid 
film occupies only a few % of the total volume of the inclu-
sion and its volume expansion will be similar to that of oli-
vine from typical entrapment conditions to ambient condi-
tions if it is dominated by water (Zhang and Duan 2005). 
The effect of the fluid film on the final inclusion pressures 
will, therefore, be small. For this discussion, we will ignore 
the effects of the hydrous fluid films except for the impor-
tant point that if they completely surround the olivines, the 
films ensure hydrostatic conditions for the olivine, much 
like the pressure fluid in a diamond-anvil cell. Therefore, 
the Reuss EoS describes the P–V–T behaviour of the oli-
vine component of the inclusions. Table  5 compares the 
expected Pthermo and the final inclusion pressures Pinc cal-
culated for the limits of lithospheric entrapment conditions 
(between depths of 120 and 240 km) for a hot and cold cra-
ton geotherm (Pollack and Chapman 1977). Given that lith-
ospheric pressures are significantly less than 19 GPa, there 
is no significant effect of the high-P and low-T elastic sof-
tening on calculated inclusion pressures; for example, the 
BM3–MGD and BM4–MGD EoS yield inclusion pressures 
that differ by less than 0.1  GPa, so we only compare the 
MGD and isothermal EoS in detail here.

The BM3–MGD EoS consistently yields lower pre-
dicted Pthermo and Pinc for all entrapment conditions than 
the BM3–isothermal EoS that includes the elastic soften-
ing implied by the high P–T Brillouin data (Mao et  al. 
2015; Zhang and Bass 2016). For entrapment at shallow 
depths and, therefore, low pressures, the difference is less 
than 0.1 GPa, but this increases significantly to 0.4 GPa as 

Table 5   Diamond-olivine host-inclusion calculations

Pth is the thermodynamic pressure calculated for an olivine inclusion at room temperature (25 °C) that was trapped in diamond at the conditions 
listed, Pinc is the fully-relaxed final remnant pressure. Geotherm from Pollack and Chapman (1977)

Entrapment conditions P (GPa) T (K) BM3–MGD Reuss BM3–isotherm Reuss BM3–MGD Voigt

Pth (GPa) Pinc (GPa) Pth (GPa) Pinc (GPa) Pth (GPa) Pinc (GPa)

Hot craton geotherm, minimum depth (120 km) 4.0 1330 0.183 0.156 0.285 0.241 0.195 0.165

Hot craton geotherm, max depth (240 km) 8.0 1760 2.149 1.809 2.660 2.234 2.146 1.798

Cold craton, min depth (120 km) 4.0 1070 0.816 0.690 0.874 0.740 0.813 0.685

Cold craton, max depth (240 km) 8.0 1430 2.859 2.400 2.679 2.679 2.831 2.364
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the pressure of entrapment increases (Table  5). The con-
sequences for the calculation of entrapment conditions 
from the measured Pinc can be visualised by performing 
the reverse calculation. An inclusion exhibiting Pinc of 
0.241 GPa, for example, will be predicted to have Ptrap of 
4.134 GPa at 1060 °C (1330 K) by the BM3–MGD EoS, 
a difference of less than 0.2  GPa or 6  km in depth from 
the prediction of the BM3–isothermal EoS including the 
high-T elastic softening. The discrepancies are much more 
severe when Pinc is higher, corresponding to deeper entrap-
ment. For the worst case example in Table  5, a residual 
Pinc = 2.234 GPa will lead with the MGD EoS to the cal-
culation of an entrapment pressure 0.7  GPa higher than 
that predicted by the BM3–isothermal EoS, a difference in 
entrapment depth of the order of 20 km.

Solid inclusions: the Voigt case

If the inclusion is a single crystal without fluid, it will not 
be subject to hydrostatic pressure. Instead its size and shape 
will be directly constrained by the host diamond, which is 
cubic. Therefore, the olivine inclusion will be forced to 
expand and contract isotropically in response to changes in 
P and T. This imposed isotropic strain means that the stress 
state in the olivine inclusion becomes anisotropic (Eq. 4). 
In other words, the normal stresses in the inclusion will be 
different in different directions, and the term ‘pressure’ is 
used to mean the average of the normal stresses. The Voigt 
bulk modulus (Eq. 5), therefore, describes the volume vari-
ation of a 100% solid olivine inclusion in diamond, and a 
‘Voigt EoS’ is needed to determine the average stress, or 
‘pressure’, in the inclusion. Inclusions in cubic host min-
erals are, therefore, one of the very few cases that a Voigt 
EoS is applicable to non-cubic single crystals.

The Voigt EoS of olivine, which describes the volume 
response of the material under isotropic strain, is only 
constrained by direct measurements of the elastic tensor, 
and not by volume measurements under hydrostatic stress. 
Therefore, there are far fewer experimental data to con-
strain a Voigt EoS than a Reuss EoS. However, the avail-
able elastic tensor data at both room conditions (Table 1) 
and at non-ambient conditions (Table 3) yield an almost 
constant ratio of KSV/KSR = 1.032(3). If we assume that 
this ratio is constant (it appears to increase to 1.036 at the 
highest temperatures, Isaak 1992), and also assume that 
the same ratio applies to the isothermal moduli, we can 
estimate an EoS for Voigt case of isothermal stress from 
the Reuss EoS by simply setting KTV,0 = 1.032KTR,0 and 
K ′

TV,0 = 1.032K ′

TR,0. For the well-defined case of com-
pression at room temperature, the Voigt EoS provides 
bulk moduli that are higher than the corresponding Reuss 
EoS by about 3% over the pressure range 0–20  GPa, 
and consequently volumes that are up to 0.3% larger at 

20 GPa. Extension of such an EoS from P–V behaviour to 
P–V–T is, however, dependent upon the assumption that 
the anisotropy of thermal expansion does not contribute to 
a change in the average stress, under the constraint of iso-
tropic strain. For olivine, this is reasonable, because the 
available thermal expansion and elasticity data (Table 2) 
show that a change in temperature of 1000 K will contrib-
ute a shift in average normal stress or ‘pressure’ of less 
than 0.1 GPa from that calculated assuming that the ther-
mal expansion is isotropic. Both these factors are small, 
and therefore, the remnant pressures calculated for olivine 
inclusions in diamond are very similar for the Reuss and 
Voigt EoS with the biggest differences in Pinc being of 
the order of 0.04  GPa (Table  5). When back-calculating 
entrapment conditions, the MGD Reuss and Voigt EoS 
yield maximum differences in entrapment pressures of 
~0.06  GPa, which correspond to an uncertainty in depth 
from the calculation of about 2 km.

Discussion

EoS and elasticity of olivine: status quo

The steady improvement in precision of the determination 
of the full elastic tensors of olivine at room conditions and 
at high pressures clearly defines the difference between the 
Reuss and Voigt bulk moduli (Table 1). Similarly, at ambi-
ent pressure, the conversion between adiabatic and isother-
mal bulk moduli has also been well established for at least 
two decades (e.g., Isaak et al. 1989; Isaak 1992). Therefore, 
there is no reason to compare bulk moduli determined by 
diffraction and by Brillouin spectroscopy without mak-
ing the appropriate well-defined conversions between the 
different types of moduli. We should note that the Voigt–
Reuss–Hill bulk moduli, being an average of the Reuss and 
Voigt moduli, have no significance whatsoever in the con-
text of the EoS of single crystals.

While the values of both the Reuss and the Voigt bulk 
moduli, and the difference between them, are well con-
strained by the Brillouin data, it is clear from Fig. 8 that the 
values of axial moduli (the inverse of the axial compress-
ibilities, as defined in Eq. 3) determined in these measure-
ments are often scattered by much more than the uncertain-
ties estimated from the measurements. For a given data set 
at one pressure, there is a tendency for individual moduli to 
be shifted in opposite directions from the trend lines. This 
scatter in moduli is significantly greater when the velocity 
data have been collected on only one oriented single crystal 
(circles in Fig. 8) than when two or more different orien-
tations have been used (square symbols in Fig. 8) indicat-
ing that it arises from covariance of the values of individual 
cij values because of inadequacy of coverage of different 
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phonon propagation directions (e.g., Abramson et al. 1997; 
Kurnosov et  al. 2017). As a consequence, even when the 
bulk moduli are well-constrained by the measured velocity 
data, the variation of the unit-cell parameters with P and 
T can be less well-constrained than the EoS of the mate-
rial, and indicates that further experimental effort is needed 
to determine precisely the elastic anisotropy of mantle 
minerals.

The fact that the room-temperature bulk moduli and 
compressional data for mantle olivine are consistent with 
one another (Fig.  1) and that these are also consistent 
within the theory of the MGD EoS with the high-T data 
on thermal expansion and bulk modulus was established 
some years ago and is further confirmed by the addi-
tion of the new low-T data for olivine thermal expansion 
(Fig.  5). However, the MGD EoS has the disadvantage 
of portability issues in that it requires the volume to be 
molar because of the indirect relationship between param-
eter values and measured data. It also has the restriction 

that 
(

∂K ′

TR
∂T

)

P
> 0, which means that it cannot be used to 

describe the elastic softening at high P and T implied by 
the data of Mao et al. (2015) and Zhang and Bass (2016), 

which require 
(

∂K ′

TR
∂T

)

P
< 0. This requires that δ′ < 0 

which is possible in the new isothermal EoS that we have 
introduced, and a value of δ′ ∼ −3.5 almost fits all of the 

available data within the experimental uncertainties. Both 
the MGD and the isothermal EoS give identical proper-
ties at room pressure and varying temperature (Fig.  5) 
and at high pressures at ambient temperatures, reflecting 
the consistency of all of the experimental data at these 
conditions. The difference between the two EoS is only 
at simultaneous high P and T, where they predict signifi-
cantly different properties. Therefore, one accurate and 
precise measurement of V and K at P and T of the order 
of 15 GPa and 1300 K in a hydrostatic pressure medium 
would suffice to distinguish between the predictions of 
the MGD and isothermal EoS and the fundamentally dif-
ferent physics they imply for the behaviour of olivine. 
At these conditions, the predicted volumes from the 
two EoS differ by 0.5% and the bulk moduli by 16 GPa 
(Fig.  7). Such a measurement must necessarily be with 
a single crystal to avoid the stress uncertainties intro-
duced by grain–grain contacts in a powder. To be useful, 
a measurement with a precision of about 1 part in 10,000 
in volume and about 2  GPa in bulk modulus would be 
necessary, to allow for the additional uncertainties in the 
comparison that arise from the experimental uncertainties 
in P and T. Without such a measurement, it is still not 
possible to predict the volume, and hence the density, of 
mantle olivines to better than ~1% in volume and density, 
~10% in bulk modulus, and ~20% in thermal expansion 

Fig. 8   Adiabatic axial moduli from Brillouin experiments at room 
temperature show much greater scatter than the bulk moduli deter-
mined from the same data. The opposite shifts of individual moduli 
from the trend lines at a given pressure (e.g., arrowed) indicate that 

the scatter arises from covariance between individual cij values. The 
scatter is less when the wave velocity data are collected from multiple 
crystal orientations (square symbols). Further data up to 32 GPa (Zha 
et al. 1998) not shown for clarity, but exhibit greater scatter
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coefficient at P and T corresponding to the transforma-
tion of olivine to wadsleyite. Further experimental data 
are, therefore, essential to be able to draw robust conclu-
sions about the structure and composition of the mantle 
from seismic data.

Olivine inclusions in diamond

Careful consideration of the stress state of the inclusion is 
important for back-calculating entrapment conditions from 
measured remnant inclusion pressures. If the inclusion con-
tains fluid, then the stress state is hydrostatic, and the con-
ventional EoS using the Reuss isothermal bulk modulus 
and its pressure derivatives is appropriate for the inclusion. 
However, the pressure of the inclusion even in the absence 
of cracks or defects will be modified by the presence of the 
fluid, and the effects depend on the contrast between fluid 
EoS and the solid component of the inclusion, and their vol-
ume proportions within the inclusions. On the other hand, 
a 100% solid inclusion in diamond is subject to uniform 
strain by the cubic diamond host, and is, therefore, under 
anisotropic stress. The variation of the inclusion pressure 
with changes in solely the external pressure is, therefore, 
determined not by the Reuss bulk modulus of the inclusion 
but by its isothermal Voigt bulk modulus and EoS. Only 
for cubic minerals are these two EoS identical. For olivine, 
although the difference between the Reuss and Voigt bulk 
modulus is 3% (Table  1), the difference in remnant pres-
sures for lithospheric olivine inclusions is less than 0.1 GPa, 
leading to differences in inferred entrapment pressures of 
less than 0.1  GPa. For other, more elastically anisotropic 
minerals such as coesite (Weidner and Carleton 1977), the 
differences will be larger. Of more importance for olivine 
inclusions is the uncertainty about the high-P, T EoS, repre-
sented by the MGD EoS that describe it as a ‘normal solid’ 
and the isothermal EoS that describes elastic softening at 
high P and T. This uncertainty translates into uncertain-
ties in entrapment depths of at least 20 km. This means that 
while olivines originating from shallow depths in cratons 
can clearly be distinguished from those trapped in diamonds 
grown at the base of the lithosphere, we cannot determine 
the absolute depths of entrapment to better than 20–30 km, 
equivalent to a pressure uncertainty of ~1 GPa.

EoS and elasticity: the future

Despite the impressive improvement over the last four 
decades, both in accuracy and precision, and in P and T 
that can be obtained in a controlled manner, in situ simul-
taneous P–T elasticity and volume measurements remain 
severely challenging. However, they are essential if one is 
to draw conclusions about the fundamental physics of the 
behaviour of minerals and similar materials and if one is 

to be able to draw robust conclusions about the structure, 
composition, and dynamics of the Earth from geophysi-
cal observations such as seismic wave velocities. While 
individual experiments and data sets can be internally 
consistent and, therefore, precise, their accuracy depends 
on questions of pressure and temperature determina-
tion, and especially the accuracy of high P–T pressure 
scales. The consequence is that the two sets of high P–T 
determinations of the elasticity of single-crystal man-
tle olivines (Mao et al. 2015; Zhang and Bass 2016) are 
on the margins of being mutually inconsistent (Fig.  6), 
and the elastic anisotropy of olivine at high pressures is 
poorly constrained (Fig.  8). Some of the discrepancies 
between data sets probably lie in the different complex 
assumptions built into the data reduction of elasticity 
data because of the need to determine densities to convert 
measured velocities into elastic moduli and in the han-
dling of the adiabatic to isothermal corrections at high P 
and T. As a consequence, the EoS parameters obtained 
from a single, or a few, experiments often differ consider-
ably. Furthermore, when EoS parameters obtained from 
fits to different data sets are compared, the origin of the 
discrepancies is not obvious, especially because they can 
be further obscured by the covariance of EoS parameters. 
Nor is it clear how one should combine the results of dif-
ferent fits of different EoS to different data sets into bet-
ter constraints on the EoS parameters such as KTR,0.

An alternative approach to data analysis has been pre-
sented in this paper, the simultaneous fitting of both vol-
ume and moduli data to a single EoS as previously advo-
cated by, for example, Stixrude and Lithgow-Bertelloni 
(2005) and Kennett and Jackson (2009). This allows the 
mutual compatibility of very different data sets to be 
examined directly, by testing whether a single EoS and 
set of parameters can fit all of the data within their exper-
imental uncertainties. As we have also demonstrated, this 
approach also allows the physical assumptions behind 
different EoS to be explored and the differences in the 
fundamental physical behaviour of the mineral implied 
by the use of the MGD and isothermal EoS (with δ′ < 0 ) 
to be identified. This in turn has indicated the precision 
and accuracy that would be required in new experiments 
to distinguish the true behaviour of mantle olivines at 
mantle conditions.

In its current form, the approach of simultaneous fitting 
relies on the bulk modulus having been obtained from the 
measured wave velocities with the correct density and 
with the correct adiabatic to isothermal conversion. A fur-
ther valuable development would be to use the primary 
data of the adiabatic wave velocities instead of the derived 
values of bulk moduli in the fit of the EoS parameters, as 
has been done for individual series of Brillouin measure-
ments at high pressures (e.g., Kurnosov et al. 2017). This 
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would have several benefits. First, it would use the raw 
unbiased data to constrain the bulk modulus in the same 
way that the volume data obtained by diffraction are raw 
and not biased by assumptions in data reduction. Then, 
the uncertainties in the refined EoS parameters would cor-
rectly reflect the true uncertainties in the underlying raw 
data, and not include the influence of choices made in 
data reduction. Second, this approach would also increase 
the value of the much more difficult P–T measurements 
of wave velocities by allowing them to be reduced to bulk 
moduli using densities in part constrained by the more 
precise measurements at ambient P and at ambient T. 
In addition, it would allow fundamental thermodynamic 
issues such as the variation of the Grüneisen param-
eter and q with temperature, pressure, and volume to be 
addressed and tested directly.
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