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(∂KT/∂T)P = (–0.033 ± 0.020) GPa K−1. For ε-FeO(OH), the 
values K = (142.8 ± 15.1) GPa, V0 = (66.18 ± 0.16) Å3, (K′ 
= 4), were obtained. Groutite and manganite are more com-
pressible than their Fe analogues. K(groutite) = (84.0 ± 2.9) 
GPa, V0 = (139.92 ± 0.13) Å3, (K′ = 4). K(manganite) = 
(82.2 ± 3.0) GPa, V0 = (135.37 ± 0.15) Å3, (K′ = 4). Grou-
tite disappeared at P ≈ 5.5 GPa and T = 300 °C, only man-
ganite remained. At T > 400 °C, the sample dehydrated first 
to Mn3O4 [II] and then to manganosite (MnO) again point-
ing to reducing conditions.

Keywords  Goethite · ε-FeO(OH) · Groutite · 
Manganite · High pressure · Compressibility · In situ XRD 
measurements

Introduction

Fe2O3 and FeO(OH) in their different polymorphs consti-
tute the majority of crystalline ferric oxides and oxyhy-
droxides on Earth (Majzlan et  al. 2003a). Whereas most 
polymorphs are only stable at ambient pressure, goe-
thite (α-FeO(OH)) and its dehydration product hematite 
(α-Fe2O3) can be observed at elevated pressure as well 
(Voigt and Will 1981). Bendeliani et al. (1972) synthesized 
a high-pressure polymorph of FeO(OH) during the studies 
of phase relations in the system Fe2O3-H2O at P = 9 GPa 
and T = 400 °C. They reported this new phase, ε-FeO(OH), 
to be isostructural with manganite, γ-MnO(OH). Chenavas 
et al. (1973) also synthesized ε-FeO(OH) hydrothermally at 
8 GPa and 500 °C and manganite at the same pressure and 
T = 600 °C. They found ε-FeO(OH) to have the orthorhom-
bic InO(OH) structure, whereas the manganite structure 
is only pseudo-orthorhombic; the angle β of the unit cell 
deviates slightly from 90°, and the structure is monoclinic. 

Abstract  The P-V-T behavior of FeO(OH) and MnO(OH) 
has been determined under high pressure and high tem-
perature up to 7.5 GPa and 500 °C using a MAX 80 cubic 
anvil high-pressure apparatus. The samples, synthetic goe-
thite, α-FeO(OH), respectively, a natural groutite/mangan-
ite, α-MnO(OH)/γ-MnO(OH), specimen were mixed with 
Vaseline to ensure hydrostatic pressure-transmitting condi-
tions, and NaCl served as an internal standard for pressure 
calibration. Energy-dispersive diffraction patterns were 
collected at a fixed 2θ angle (θ ≈ 4.52°). At pressures >7.1 
GPa and temperatures >310 °C, respectively, P > 6.3 GPa 
and T > 350 °C, the transformation goethite ↔ ε-FeO(OH) 
was observed. Between 400 and 450 °C, the sample dehy-
drated to magnetite due to the reducing conditions caused 
by the graphite-tube furnace. By fitting a Birch–Murna-
ghan equation of state to the data, the bulk modulus of 
goethite was determined as (112.26 ± 2.26) GPa, (K′ = 4), 
VT,0 = (138.79 ± 0.10) Å3·exp [∫(0.497 ± 0.103) × 10−4 dT], 
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The phase relations in the system Fe2O3-H2O were inves-
tigated up to ca. 7.5 GPa and 500 °C (Voigt and Will 
1981) or up to 625 °C (Baneyeva and Bendeliani 1973). 
Both groups agree that the phase transition α-FeO(OH) ↔ 
ε-FeO(OH) is nearly temperature independent but, accord-
ing to Baneyeva and Bendeliani (1973), the invariant point 
of the phases hematite + H2O, goethite, and ε-FeO(OH) is 
to be found at 450 °C and 5.6 GPa, whereas Voigt and Will 
(1981) located it at 485 °C and 7.33 GPa. Gleason et  al. 
(2008) published pressure–temperature stability studies 
of FeO(OH) using in  situ X-ray diffraction measurements 
in a diamond anvil cell. They roughly validate the reac-
tion boundaries between goethite and hematite + water as 
well as between α-FeO(OH) and ε-FeO(OH) as reported 
by Voigt and Will (1981). For goethite, the bulk modulus 
K = (140.3 ± 3.7) GPa, K′ = 4.6 ± 0.4 was reported, for 
ε-FeO(OH), Gleason et  al. (2008) obtained K = (158 ± 5) 
GPa with K′ assumed to be 4 (Table 1). A few other studies 
of the high-pressure behavior of FeO(OH) can be found in 
the literature. They are also listed in Table 1. Kim and Yi 
(1997) obtained K = 147.9 GPa for goethite. This value is 
similar to the value of Gleason et al. (2008) but differs sig-
nificantly from the bulk modulus reported by Nagai et  al. 
(2003), K = (111 ± 2) GPa. Both groups assumed K′ to be 
4. Fernando et  al. (2012) investigated the compressibility 
of nanoparticulate goethite and compared their results to 
the measurements of Nagai et al. (2003). According to their 
studies, the bulk modulus of nanoparticulate goethite, K = 
(109.4 ± 2.2) GPa, is very similar to that of bulk goethite. 
The high-pressure polymorph, ε-FeO(OH), was investi-
gated by Suzuki et  al. (2010). They found K = (126 ± 3) 
GPa and its pressure derivative K′ = 10 ± 1.

Much less is known about the behavior of MnO(OH) 
at elevated pressure and temperature. Although also 

synthesized at high pressure and temperature by Chenavas 
et  al. (1973), manganite occurs in nature associated with 
other manganese oxides in deposits formed by circulating 
low-temperature hydrothermal fluids, commonly with a sig-
nificant contribution of meteoric waters. Often it is formed 
in low-temperature hydrothermal veins in association with 
calcite, barite and siderite (Klein and Hurlbut 1993; Maj-
zlan et al. 2016). Groutite (α-MnO(OH)), the Mn-analogue 
of goethite, was first described by Gruner (1947) from 
the Cuyuna range, Minnesota, associated with iron ores. 
Kohler et al. (1997) refined the crystal structures of groutite 
and manganite. They also investigated the behavior of both 
MnO(OH) polymorphs at elevated temperature by in  situ 
temperature-dependent single-crystal X-ray diffraction and 
found that both phases transform in air above ca. 300 °C to 
β-MnO2 (pyrolusite). The bulk modulus of manganite was 
reported recently to be (91 ± 3) GPa by Suzuki (2013). The 
compressibility of groutite and the P-V-T behavior of both 
minerals are not known.

There are still some discrepancies concerning the bulk 
moduli of the FeO(OH) polymorphs and the Fe2O3-H2O 
phase diagram. In this study, we are addressing some of the 
inconsistencies by in situ powder X-ray diffraction (XRD) 
data of FeO(OH) using a MAX 80 cubic anvil high-pres-
sure apparatus. Additionally, the P-V-T behavior of a natu-
ral groutite–manganite sample was investigated.

Samples

FeO(OH): The synthetic goethite sample prepared by 
Majzlan et  al. (2003a) was used. The lattice parameters 
obtained by Majzlan et al. (2003a) are listed in Table 2.

MnO(OH): The groutite sample comes from the village 
Zaval’evka, south of the city Gajworon in the Kirovograd 

Table 1   Compressibility data of goethite, ε-FeO(OH), groutite and manganite; literature values in comparison with this study

DAC diamond anvil cell
a Spacegroup B21/d

Phase Bulk modulus K [GPa] Pressure deriva-
tive K′

Volume at ambient 
pressure V0 [Å³]

Technique References

Synthetic goethite 109.4 ± 2.2 4 140.45 DAC Fernando et al. (2012)
Synthetic goethite 111 ± 2 4 140.45 ± 1 DAC Nagai et al. (2003)
Synthetic goethite 140.3 ± 3.7 4.6 ± 0.4 138.75 ± 0.02 DAC Gleason et al. (2008)
Natural goethite 147.9 4 139.3 DAC Kim and Yi (1997)
Synthetic goethite 112.3 ± 2.3 4 138.79 ± 0.10 Multi-anvil press This study
ε-FeO(OH) 126 ± 3 10 ± 1 66.20 ± 0.03 Multi-anvil press Suzuki (2010)
ε-FeO(OH) 158 ± 5 4 66.3 ±0.5 DAC Gleason et al. (2008)
ε-FeO(OH) 142.8 ± 15.1 4 66.18 ± 0.16 Multi-anvil press This study
Natural manganite 91 ± 3 7 ± 1 270.47 ± 0.09a Multi-anvil press Suzuki (2013)
Natural manganite 82.2 ± 3.0 4 135.37 ± 0.15 Multi-anvil press This study
Natural groutite 84.0 ± 2.9 4 139.92 ± 0.13 Multi-anvil press This study
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region, Ukraine. Black, spherical aggregates of MnO(OH) 
minerals grow on calcite; they contain mostly groutite, 
with about 20 wt% manganite. For the XRD experiments, 
the sample was finely ground. A Rietveld refinement of 
an XRD pattern obtained at a Bruker D8 diffractometer in 
Bochum yielded the lattice parameters listed in Table  2. 
The values are in good agreement with the data of Kohler 
et al. (1997).

Experimental

In situ XRD experiments were carried out using a MAX 
80 cubic anvil high-pressure apparatus, which was installed 
at beamline F.2.1 of the DORIS III storage ring of HASY-
LAB (Desy, Hamburg, Germany). The experimental setup 
as described in detail by Grevel et  al. (2000) and Darul 
et al. (2013) will be repeated here briefly.

A quasi-isostatic pressure environment was generated by 
six tungsten carbide anvils with 6 × 6 or 4 × 4 mm2 square 
truncations in a cubic arrangement. In Fig. 1, the high-pres-
sure boron–epoxy sample assembly is shown. Correspond-
ing to the edge length of 8 or 6 mm, it contained a graphite-
tube furnace with a diameter of 4 or 3  mm, respectively. 
This graphite resistance heater also acted as sample con-
tainer for up to five different sample or standard layers. Due 
to problems during the sample preparation, we abstained 
from using an additional hexagonal boron nitride (hBN) 
capsule within the graphite heater (cf. Darul et  al. 2013). 
The temperature was controlled by a Nicrosil–Nisil (type 
N) thermocouple within ± 2 °C; no correction was made for 
the effect of pressure on the thermocouple electromotive 
force (emf). The overall uncertainty in temperature due to 
possible temperature gradients in the high-pressure cell is 
estimated to be ± 30 °C. The powdered samples were mixed 
with Vaseline as a pressure medium to ensure hydrostatic 
pressure-transmitting conditions (cf. Grevel et  al. 2000). 
Vaseline or petroleum jelly (CAS #: 8009-03-8) consists of 
saturated hydrocarbons with carbon numbers mainly higher 

than 25. It is insoluble in water and not readily acted on by 
chemical reagents (cf. http://www.inchem.org/documents/
icsc/icsc/eics1440.htm). Directly adjacent pellets of pow-
dered NaCl served as a diffraction standard for pressure 
determination. The vertical pressure variation due to inter-
nal stress and small variations in pressure control (±0.5 
tons) between single layers of the standard (Fig. 1) was in 
the range 0.05–0.25 GPa; therefore, an overall uncertainty 
of ±0.25 GPa was assumed during the evaluation of the 
data (see below).

A white synchrotron beam of 100 × 100 µm2 dimen-
sion was used for carrying out the measurements. Energy-
dispersive diffraction patterns were collected at a fixed 2θ 
angle (θ ≈ 4.52°), which was determined for each run from 
the diffraction pattern of NaCl at ambient conditions. Spec-
tra were collected using a Canberra germanium solid-state 
detector with a resolution varying from 135 eV at 6.3 keV 
to 450 eV at 122 keV. By means of a peak-search program 
for the evaluation of Gauss-shaped diffraction patterns 

Table 2   Lattice parameters of the studied phases

Phase a (Å) b (Å) c (Å) β (°) V (Å3) Spacegroup References

Goethite, 
FeO(OH)

4.6089 ± 0.0003 9.9550 ± 0.0006 3.0224 ± 0.0002 138.67 ± 0.02 Pbnm Majzlan et al. 
(2003a)

Groutite, 
MnO(OH)

10.667 ± 0.001 2.871 ± 0.001 4.554 ± 0.001 139.47 ± 0.06 Pnma Kohler et al. (1997)

Groutite, 
MnO(OH)

10.6649 ± 0.0005 2.8718 ± 0.0001 4.5567 ± 0.0002 139.56 ± 0.01 Pnma This study

Manganite, 
MnO(OH)

5.304 ± 0.001 5.277 ± 0.001 5.304 ± 0.001 114.38 ± 0.02 135.22 ± 0.05 P21/c Kohler et al. (1997)

Manganite, 
MnO(OH)

5.3044 ± 0.0003 5.2739 ± 0.0003 5.3099 ± 0.0003 114.4784 ± 0.0003 135.20 ± 0.04 P21/c This study

Fig. 1   Sketch of the high-pressure, high-temperature cell assembly. 
Heating is realized through a graphite resistance heater which also 
functions as sample container. The powdered samples (layers B, D) 
are mixed with Vaseline for hydrostatic pressure transmission, NaCl 
layers (marked A, C, E) act as pressure standard. Commonly, layer C 
(containing the thermocouple) was a NaCl/hBN mixture. Measure-
ments correspond to large cubes (8/4 mm) or small cubes (6/3 mm), 
respectively. In our small cube experiments, only a single sample 
layer was investigated. The whole cell can be moved up- or down-
wards, thus positioning different layers into the X-ray beam path 
which is fixed

http://www.inchem.org/documents/icsc/icsc/eics1440.htm
http://www.inchem.org/documents/icsc/icsc/eics1440.htm
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(Lauterjung et  al. 1985), peak positions were determined 
automatically after subtracting the background.

Two experimental runs using 8-mm cubes were car-
ried out, run 5 contained FeO(OH) and MnO(OH), run 6 
only MnO(OH) (Table S1a–c; online resource 1). Another 
five successful experiments were run using only goethite 
as starting material in 6-mm cubes. Usually, the samples 
were compressed in several steps to a selected pressure at 
room temperature and then heated until either a breakdown 
reaction occurred or the thermocouple showed fluctuations 
in temperature indicating problems with heating. In runs 
25, 28 and 30 other P-T paths were chosen (cf. Table S1a, 
online resource 1). Diffraction data were collected for about 
three minutes. A subset of at least four of the NaCl diffrac-
tion maxima with Bragg indices 111, 200, 220, 311, 222, 
400, 420 and 422 was used to calculate its cell parameter 
at different P-T conditions. Using this parameter and the 
measured temperature, pressure values were determined 
from the Decker equation of state (EOS) for NaCl (Decker 
1971).

Goethite diffraction data were evaluated using the struc-
tural data given by Majzlan et  al. (2003a). Indexing of 
ε-FeO(OH) followed Voigt and Will (1981) and Suzuki 
et  al. (2010). Groutite and manganite were indexed based 
on Kohler et al. (1997).

Results and discussion

FeO(OH): phase diagram

In a pressure–temperature diagram (Fig.  2), all measured 
points and postulated phase boundaries from previous 
studies (Baneyeva and Bendeliani 1973; Voigt and Will 
1981) are shown. The breakdown reaction of FeO(OH) 
could be observed around 400–450 °C (runs 5, 22, 28, 30; 
see Fig.  3a). At that temperature, the dehydration occurs, 
however, due to the reducing conditions caused by the 
graphite-tube furnace (cf. Fig. 1) and probably also by the 
Vaseline, FeO(OH) decomposed to Fe3O4 (magnetite) and 
H2O and not to Fe2O3 (hematite) and H2O, as expected. In 
the run 22 at 500 °C, even wüstite (FeO) could be detected. 
These observations confirm the dehydration boundary (2 
FeO(OH) → Fe2O3 + H2O) at non-reducing conditions 
reported by Voigt and Will (1981) within uncertainties.

The α→ε phase transition shown in Fig.  3b could be 
localized between 325 and 350 °C at 6.6 GPa (isobaric 
path, run 30) and between 6.2 and 6.6 GPa at 350 °C 
(isothermal path, run 28) (see Fig.  2, phase transition) 
and seems to be kinetically inhibited below 250 °C. The 
refinement of the unit-cell parameters of α-FeO(OH) and 
ε FeO(OH) related to the spectrum depicted in Fig. 3b is 
shown in Tables  3 and 4, respectively. We conclude that 

the nearly pressure-independent α-ε boundary is confirmed 
and the values of Voigt and Will (1981) are most appro-
priate. In two runs, the sample was cooled stepwise and 
finally depressurized to ambient pressure after the ε phase 
occurred. In contrast to Gleason et al. (2008), ε-FeO(OH) 
could be quenched to ambient conditions. The reverse reac-
tion ε-FeO(OH) → goethite was not observed in our study.

FeO(OH): equation of state

Unit-cell volume and unit-cell parameters of the FeO(OH) 
polymorphs and their dehydration products as a function 
of pressure and temperature are listed in Table S1a (online 
resource 1).

By fitting a Birch–Murnaghan equation of state

to the data, the values of the isothermal bulk modulus, K, 
and its pressure derivative, K′, can be derived. V is the unit-
cell volume at high pressure P (in GPa) and temperature T 
(in K), and V0 is the volume at ambient pressure. KT = K + 
(∂KT/∂T)P × (T – T0), K′T and VT,0 are the isothermal bulk 
modulus, its pressure derivative and the unit-cell volume 
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Fig. 2   Pressure–temperature diagram of the FeO(OH) system show-
ing all measured points and postulated phase boundaries from previ-
ous studies. Due to the reducing conditions, FeO(OH) decomposed to 
Fe3O4 + H2O. The α→ε phase transition highlighted by arrows could 
be localized between 325 and 350 °C at 6.6 GPa (isobaric path) and 
between 6.2 and 6.6 GPa at 350 °C (isothermal path). The shaded 
gray line illustrates a low geothermal gradient (≈4.4° / km) under 
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ter (2014)] which is very similar to the cold Martian thermal gradi-
ent suggested by Verhoeven et al. (2005) and Zharkov and Gudkova 
(2014)



571Phys Chem Minerals (2017) 44:567–576	

1 3

at temperature T and 0.1 MPa, respectively, T0 = 298.15 K. 
The thermal expansion at ambient pressure, αT,0, can be 
approximated as

In Eqs. (1) and (2), V0, K, K′T, (∂KT/∂T)P, a and b are 
considered as fit parameters, which were obtained by fitting 
Eq. (1) to the experimental unweighted data of the respec-
tive phases (Table S1a, online resource 1). As indicated by 
the uncertainties after the first fit, the measured volumes 
scatter too much to obtain precise values of b and K′T. 
Therefore, K′T was kept constant at a value of 4 and b was 
omitted (i.e., b = 0) in all cases.

Accordingly, the bulk modulus of goethite was deter-
mined as K = (112.3 ± 2.3) GPa, VT,0 (goethite) = 
(138.79 ± 0.10) Å3·exp [∫(0.497 ± 0.103) × 10− 4 dT], 
(∂KT/∂T)P = (−0.033 ± 0.020) GPa K−1. The unit-cell vol-
ume of goethite as a function of pressure at room tempera-
ture is depicted in Fig. 4 and the compressibility behavior 
of the cell parameters is shown in Fig. 5. Goethite deforms 
anisotropically; the a and c axes are more compress-
ible than the b axis, a being the most compressible one. A 
similar compressibility behavior was observed for the iso-
structural Al-analogue diaspore (Grevel et  al. 2000). Our 
KT value is in good agreement with the values reported by 
Nagai et al. (2003) and Fernando et al. (2012) (Table 1). On 
the other hand, these authors both reported a much higher 
volume at zero pressure. Our data confirm a parallel shift 
of the EOS curve to smaller values of the unit-cell volume 
which is in accordance with the unit-cell data at ambient 
conditions (Majzlan et al. 2003a). Compressibility data by 
Kim and Yi (1997) and Gleason et al. (2008) deviate signif-
icantly from both lines probably due to non-hydrostaticity 
effects.

Gualtieri and Venturelli (1999) investigated the temper-
ature-induced goethite-hematite phase transformation at 
ambient pressure by in situ synchrotron X-ray powder dif-
fraction. They used the orthorhombic space group Pnma for 
goethite having a = 9.95  Å, b = 3.01  Å, c = 4.62  Å (Z = 4) 
because this unit cell could be easily compared to the one 
of hematite in which the c axis is coincident and three 
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Fig. 3   a Dehydration of goethite to magnetite (run 5); b phase transi-
tion goethite → ε-FeO(OH) (run 30)

Table 3   Refinement of 
the unit-cell parameters of 
α-FeO(OH) (goethite), Run 
R30-17 (T = 350 °C, P = 6.66 
GPa)

h k l dobs dcalc dobs − dcalc

1 1 0 4.102 4.101 0.001
1 2 0 3.327 3.329 −0.003
1 3 0 2.661 2.659 0.002
0 2 1 2.563 2.563 0.000
1 1 1 2.422 2.420 0.001
1 2 1 2.231 2.228 0.003
1 4 0 2.165 2.165 0.000
2 1 1 1.771 1.772 −0.001
2 2 1 1.693 1.693 0.000
2 3 1 1.580 1.580 0.000
1 5 1 1.550 1.549 0.001
0 0 2 1.499 1.499 0.000
0 6 1 1.442 1.443 −0.001

Table 4   Refinement of 
the unit-cell parameters of 
ε-FeO(OH), Run R30-17 
(T = 350 °C, P = 6.6 GPa)

h k l dobs dcalc dobs − dcalc

1 1 0 3.267 3.259 0.008
0 1 1 2.467 2.466 0.001
1 1 1 2.202 2.204 −0.002
2 0 1 1.909 1.899 0.010
2 1 1 1.739 1.741 −0.002
1 2 1 1.662 1.657 0.005
2 2 0 1.633 1.630 0.003
3 1 0 1.532 1.534 −0.002
1 1 2 1.359 1.359 0.000
0 3 1 1.306 1.306 0.000
2 3 1 1.152 1.153 −0.001
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times the c axis of goethite. The decomposition of goethite 
started at about 200 °C. During the transformation, Gualt-
ieri and Venturelli (1999) observed a dramatic decrease in 
the cell parameter b which determined a volume contrac-
tion of goethite while a and c expanded. Therefore, we 
checked our high-pressure goethite data at elevated tem-
perature but perhaps due to the scatter of the data we did 
not observe a similar trend in the cell parameters. The scat-
ter is also reflected by the large uncertainty in the thermal 

expansion coefficient α = (0.497 ± 0.103) × 10−5 K−1 which 
thus should be used with some caution.

Our Birch–Murnaghan fitting procedure for the 
ε-FeO(OH) phase yielded: K = (142.8 ± 15.1) GPa, V0 = 
(66.18 ± 0.16) Å3, (K′ = 4). This is in accordance with val-
ues from the literature (cf. Table 1).

MnO(OH): phase diagram

Since our natural sample contained both MnO(OH) 
polymorphs, groutite, α-MnO(OH) and manganite, 
γ-MnO(OH), we were able to investigate the behavior 
of both phases at high pressure and temperature. For the 
refinement procedure, only those reflections were used 
which clearly could be assigned to either groutite or man-
ganite. Unit-cell volume and unit-cell parameters of grou-
tite as a function of pressure and temperature are listed in 
Table S1b (online resource 1); the data for manganite can 
be found in Table S1c (online resource 1). While increasing 
the pressure, MnO(OH) diffraction patterns were obtained 
at two different positions in the sample layer (e.g., no. 4 and 
4b in run 5 at P = 2.18 GPa). The differences in the lattice 
parameters may reflect some pressure gradient and also a 
different grade of sample homogeneity. Between T = 250 °C 
and T = 300 °C at P ≈ 5.5 GPa groutite clearly disappeared, 
only the manganite reflections remained indicating a phase 
transition groutite → manganite (no. 10 and 11 in run 5, 
see Fig.  6a). The refinement of the unit-cell parameters 
of α-MnO(OH) and γ-FeO(OH) related to the spectrum 
depicted in Fig. 6a is shown in Tables 5 and 6, respectively.

Both groutite, α-MnO(OH) and manganite, γ-MnO(OH), 
transform in air above ca. 300 °C to β-MnO2 (pyrolusite) 
(Kohler et  al. 1997). In our experiments, we observed 
dehydration to manganosite (MnO) in both runs, probably 
again caused by the reducing conditions. In run 5–14 at 
T = 450 °C, manganite disappeared and several new reflec-
tions occurred pointing to an intermediate phase. This 
phase is still seen in run 5–15 (T = 500 °C) besides manga-
nosite (see Fig. 6b), however, with less intense reflections.

In a HRTEM study of the transformation from man-
ganite to pyrolusite, Rask and Buseck (1986) observed the 
phase Mn5O8 and also described another new Mn oxide. 
They suggested that this new phase is a structural modifi-
cation of pyrolusite. Post and Heaney (2004) investigated 
the structures and dehydration behaviors of ramsdellite, 
MnO2 and groutellite, ideally Mn4+

0.5Mn3+
0.5O1.5(OH)0.5, 

a phase that is generated synthetically as an intermediate 
compound during the reduction of ramsdellite to grou-
tite (Klingsberg and Roy 1959). The latter authors also 
determined the univariant P-T curves for the reactions 
Mn(OH)2 (pyrochroite) = MnO (manganosite) + H2O 
and 2 γ-MnOOH (manganite) = Mn2O3 (bixbyite) + H2O 
up to about 400  MPa. We compared the reflections of 
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the intermediate phase (see Fig.  6b) to XRD patterns 
of groutellite, the phase Mn5O8, pyrochroite and sev-
eral other Mn-hydroxides and -oxides, e.g., feitknech-
teite, β-MnO(OH), nsutite, γ-MnO2 or more exactly 
(Mn4+,Mn2+)(O,OH)2, ramsdellite, pyrolusite, akhten-
skite, ε-MnO2 (Chukhrov et  al. 1989; Chabre and Pan-
netier 1995), bixbyite, and hausmannite, Mn3O4, how-
ever, without a convincing match. Finally, we compared 
our diagram to the pattern obtained for a high-pressure 
polymorph of hausmannite. Hausmannite, a tetragonal 
substructure of the spinel structure, has been reported 
by Reid and Ringwood (1969) to transform at 12 GPa 
and 900 °C into an orthorhombic phase with marokite, 
CaMn2O4, structure (Ross et al. 1990). Paris et al. (1992) 
described the phase transition and the compressibility of 
both polymorphs in more detail. They designated Mn3O4 
in the low-pressure hausmannite structure as Mn3O4 [I] 

and the high-pressure marokite-like polymorph as Mn3O4 
[II]. The behavior of Mn3O4 as a function of pressure and 
temperature was studied by in  situ high-pressure high-
temperature powder diffraction measurements recently 
(Darul et  al. 2013). These experiments also were car-
ried out at HASYLAB using the same experimental 
setup as described above. Upon heating the sample under 
the pressure of 7.20 GPa, Darul et  al. (2013) observed 
the tetragonal-to-orthorhombic phase transition at 
T ~ 400 °C. Now, we were able to assign most of the for-
merly unknown reflections successfully (see Fig. 6b). At 
P ~ 5.5 GPa, manganite decomposed first to Mn3O4 [II] at 
T ~ 450 °C and then to manganosite (MnO) with increas-
ing temperature. The cell parameters obtained for Mn3O4 
[II] (Table  S1c, online resource 1) are in a good agree-
ment with the parameters reported by Paris et al. (1992) 
at room temperature.

Based on these observations, we propose a phase dia-
gram of MnO(OH) (Fig.  7) similar to the diagram for 
FeO(OH) as shown in Fig. 2. It has to be noted again that 
dehydration of FeO(OH) and MnO(OH) took place under 
reducing conditions. Under air, MnO(OH) would prob-
ably decompose to bixbyite or pyrolusite. This has to be 
investigated in more detail in future.
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Fig. 6   a At P ≈ 5.5 GPa and T = 250 °C, groutite clearly disappeared, 
and only the manganite reflections remained indicating a phase tran-
sition groutite → manganite (run 5). b Dehydration of manganite to 
manganosite, note the appearance of the marokite-like high-pressure 
polymorph of Mn3O4 (named Mn3O4 [II]) in run 5–14; the following 
reflections (denoted hn) were assigned to Mn3O4 [II], listed are d-val-
ues [Å]: (1) 2.654—(320); (2) 2.432—(040); (3) 2.143—(131); (4) 
2.008—(231); (5) 1.838—(411); (6) 1.588—(600); (7) 1.449—(351); 
(8) 1.309—(322); (9, not shown) 1.215—(080). The reflections (040) 
and (080) are very strong indicating preferred orientation

Table 5   Refinement of 
the unit-cell parameters of 
α-MnO(OH) (groutite), Run 
R05-10 (T = 250 °C, P = 5.64 
GPa)

h k l dobs dcalc dobs − dcalc

3 0 1 2.756 2.761 −0.005
4 0 0 2.620 2.628 −0.008
2 1 0 2.507 2.507 0.000
1 1 1 2.341 2.346 −0.005
4 0 1 2.262 2.267 −0.005
2 1 1 2.192 2.188 0.004
2 0 2 2.054 2.062 −0.008
3 1 1 1.988 1.984 0.004
4 1 0 1.939 1.933 0.006
5 0 1 1.902 1.904 −0.002
4 1 1 1.783 1.775 0.008
1 1 2 1.731 1.738 −0.007
4 0 2 1.698 1.706 −0.008
2 1 2 1.675 1.671 0.004
5 1 1 1.589 1.583 0.006
5 0 2 1.530 1.534 −0.004
6 1 0 1.490 1.493 −0.003
0 2 0 1.421 1.426 −0.005
3 0 3 1.377 1.375 0.002
3 2 1 1.268 1.267 0.001
6 1 2 1.245 1.243 0.002
8 0 2 1.133 1.134 −0.001
1 0 4 1.115 1.115 0.000



574	 Phys Chem Minerals (2017) 44:567–576

1 3

MnO(OH): equation of state

Unit-cell volume and unit-cell parameters of the MnO(OH) 
polymorphs as a function of pressure are shown in Figs. 8 
and 9.

The MnO(OH) phases are more compressible than their 
Fe analogues. From a fit of Eq. (1) to the high-pressure data 
at room temperature, we obtained K(groutite) = (84.0 ± 2.9) 

GPa, V0 = (139.92 ± 0.13) Å3, (K′ = 4) (cf. Fig.  8) and 
K(manganite) = (82.2 ± 3.0) GPa, V0 = (135.37 ± 0.15) Å3, 
(K′ = 4) which is lower than the value reported by Suzuki 
(2013) (cf. Table  1). As can be seen in Fig.  9a, Suzuki’s 
(2013) measurements agree well with our measurements 
up to 4 GPa. At higher pressure, they deviate significantly 
from our curve, perhaps indicating problems with non-
hydrostaticity. The unusual high K′ value 7 obtained by 
Suzuki (2013) points to the same direction.

Because the P-T space covered by our data is too limited, 
we did not derive the volumetric thermal expansion coeffi-
cient α for the MnO(OH) polymorphs from a fit to Eq. (1). 
Instead, α for both phases was obtained from the study of 
Kohler et al. (1997, their Table 4) by a linear approximation

Table 6   Refinement of 
the unit-cell parameters of 
γ-MnO(OH) (manganite), Run 
R5-10 (T = 250 °C, P = 5.64 
GPa)

h k l dobs dcalc dobs − dcalc

−1 1 1 3.332 3.346 −0.014
0 2 0 2.586 2.588 −0.002
1 1 1 2.485 2.491 −0.006
0 0 2 2.386 2.385 0.001
2 0 0 2.386 2.385 0.001
−1 2 1 2.226 2.229 −0.003
0 1 2 2.165 2.166 −0.001
2 1 0 2.165 2.166 −0.001
0 2 2 1.754 1.754 0.000
2 2 0 1.754 1.754 0.000
−1 1 3 1.646 1.646 0.000
−3 1 1 1.646 1.646 0.000
−1 3 1 1.606 1.605 0.001
1 3 1 1.475 1.475 0.000
2 0 2 1.421 1.421 0.000
2 2 2 1.245 1.245 0.000
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The results are almost identical, 
α(groutite) = 1.565 × 10−5 K−1, α(manganite) = 1.564 × 10−5 
K−1. For manganite, this value can be compared to an esti-
mate obtained from run 5. Figure  10 depicts the unit-cell 
volume of manganite (run 5–6 to run 5–14) as a function 
of temperature. αrun 5(manganite) = 1.597 × 10−5 K−1, which 
was calculated from the mean room temperature volumes 
(run 5–6, run 5–6b) and the value at T = 450 °C, is very 
similar to the value above.

(3)V
T
= V0

(

1 + �

(

T−T0
))3

Conclusions

In this study, the bulk modulus of goethite was determined 
as (112.26 ± 2.26) GPa which is in very close agreement to 
the values provided by Nagai et  al. (2003) and Fernando 
et al. (2012). Goethite is more compressible than its struc-
tural Al-analogue diaspore. The compressibility data 
reported by Kim and Yi (1997) and Gleason et al. (2008) 
seem to be too low probably caused by non-hydrostatic 
conditions in their experiments.

On the other hand, the thermal expansion coefficient 
of goethite is not sufficiently constrained yet. The value 
obtained in this study α = (4.97 ± 1.03) × 10−5 K−1 is sig-
nificantly higher than the value given by Gleason et  al. 
(2008), α = (2.3 ± 0.6) × 10−5 K−1. Further investigations 
are needed at this point.

Majzlan et al. (2003b) generated an internally consistent 
thermodynamic data set for goethite and hematite by math-
ematical programming analysis (MAP). This method com-
bines calorimetric measurements on one hand and phase-
equilibrium bracketing experiments on the other hand. 
They provided two slightly different datasets (Table  5 in 
Majzlan et al. 2003b) based on the phase-equilibria data of 
Baneyeva and Bendeliani (1973) and Voigt and Will (1981), 
respectively. The reaction boundaries for the dehydration of 
goethite and for the phase transition between α-FeO(OH) 
and ε-FeO(OH) have been further constrained by the data 
presented in this study. The stability fields proposed by 
Voigt and Will (1981) are confirmed within uncertainties. 
Therefore, we recommend the use of the standard thermo-
dynamic data for goethite derived from the Voigt and Will 
(1981) brackets: ΔH0

f (goethite) = −561.4 kJ mol−1, and S0 
(goethite) = 59.5 J K−1 mol−1.

This study shows evidence for similarities in the pres-
sure–temperature phase diagrams for FeO(OH) and 
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MnO(OH) (Figs.  2, 7). Like the α-FeO(OH)–ε-FeO(OH) 
phase transition, we propose a high-pressure phase transi-
tion α-MnO(OH) (groutite)–γ-MnO(OH) (manganite). The 
dehydration temperature of MnO(OH) was constrained as 
well. The shaded gray line shown in Figs.  2 and 7 illus-
trates a low geothermal gradient (approx. 4.4°/km) under 
stable continental crust (cratons) [after Jaupart and Mare-
schal (1999) and Winter (2014)] which is very similar to 
the cold Martian thermal gradient suggested by Verhoeven 
et al. (2005) and Zharkov and Gudkova (2014). Since hot-
ter profiles are much shallower, P-T conditions of the phase 
transitions α-FeO(OH)–ε-FeO(OH) and α-MnO(OH)–γ-
MnO(OH) are probably not realized on Earth or terrestrial 
planets.

Additionally, first compressibility data for groutite and 
further P-V-T data for manganite could be presented.
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