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Abstract The vibrational spectrum of Mg2SiO4 olivine
was calculated at the C point by using the periodic ab
initio CRYSTAL program. An all electron localized
Gaussian-type basis set and the B3LYP Hamiltonian
were employed. The full set of frequencies (35 IR active,
36 Raman active, 10 ‘‘silent’’ modes) was computed and
compared to experimental data from different sources
(four for IR and four for Raman). A generally good
agreement is observed with experiment (the mean
absolute difference ranging from 7 to 10 cm�1 for the
various sets), when some of the experimental frequen-
cies, whose attribution is uncertain or appears to be
affected by large errors, are not taken into account. A
small number of observed peaks are not consistent with
calculated frequencies, and a few theoretical peaks do
not correspond to measured values. The implications are
discussed in detail. The full set of modes are character-
ized using different tools, namely isotopic substitution,
direct inspection of the eigenvectors and graphical rep-
resentation, so as to obtain a consistent mode assign-
ment.

Introduction

Olivines are important rock-forming silicates, as they
belong to the most abundant phases of the Earth’s crust
and upper mantle. In particular, the pure Mg-end
member forsterite (Mg2SiO4) has been the subject of
many experimental studies on crystallographic, ther-
modynamic and spectroscopic properties. First-princi-
ples investigations have concentrated on the elastic and
structural behavior at high pressure (Jochym et al. 2004;
Brodholt et al. 1996; Da Silva et al. 1997), whereas no
ab initio simulations of vibrational spectra of forsterite
have been performed yet, to our knowledge. On the
other hand, a large number of infrared (IR) (Servoin and
Piriou 1973; Hohler and Funck 1973; Iishi 1978; Hof-
meister 1987; Hofmeister et al. 1989; Reynard 1991) and
Raman (Servoin and Piriou 1973; Iishi 1978; Chopelas
1991; Kolesov and Geiger 2004) measurements are re-
ported in the literature. Yet, not all vibrational bands
allowed by symmetry have been observed in such stud-
ies, and the frequencies of some observed bands are not
perfectly established (see Hofmeister 2001, introduction
section). Most of the allowed Raman peaks have been
assigned in a very recent paper (Kolesov and Geiger
2004), although some doubts still remain concerning
their attribution to internal and external motions of
atomic subunits, namely Si–O stretching and O–Si–O
bending within the SiO4 tetrahedra, SiO4 rotations and
translations, and Mg cation translations. In most cases,
the assignments have been supported by force-field lat-
tice dynamical calculations based on semiempirical in-
teratomic potentials (Devarajan and Funck 1975; Pilati
et al. 1995), as usual in solid-state vibrational spectros-
copy. However, an accurate first-principles calculation
of the Brillouin-zone centre lattice dynamical frequen-
cies would be very helpful to definitely clarify all the
open points referred to above.

It should be also pointed out that reliable calculations
of the vibrational properties by a quantum-mechanical
approach can open the way to full ab initio thermody-
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namics of the crystalline phases, within the frame of the
quasi-harmonic approximation. Results obtained at the
C point are the first step towards this final goal, which
appears to be particularly attractive for important geo-
logical materials such as forsterite (Rao et al. 1988). In
this respect theoretical calculations are important, as
they provide also frequencies of the IR and Raman
inactive modes, whose contribution to the thermody-
namic functions has to be taken into account. CRYS-
TAL, an ab initio periodic all-electron computer
program that uses a gaussian type basis set for repre-
senting the electronic crystalline orbitals (Saunders et al.
2003), was chosen as computational tool for this work.
The method here adopted is based on the calculation of
the Hessian matrix by numerical differentiation, starting
from the analytical energy gradients with respect to
nuclear positions.

In a previous paper (Pascale et al. 2004), devoted to
illustrating the methodological aspects, the effects of the
computational parameters controlling the accuracy of the
calculated vibrational frequencies are discussed at length
with reference to a-quartz. A subsequent study (Zicovich-
Wilson et al. 2004) also analyzes how different basis sets
and Hamiltonians affect the accuracy of calculated fre-
quencies, again with application to a-quartz. In particu-
lar, excellent results are proved to be obtained by use of
the B3LYP (Becke 1993) Hamiltonian, with a mean
absolute difference of 6–7 cm�1 with respect to experi-
ment for the quartz frequencies. The aim of the present
paper is to show that we can now calculate the full
vibrational spectrum of forsterite at the C point with the
superior accuracy afforded by the quantum-mechanical
B3LYP functional. This will be also exploited to assess
the several spectroscopic data available in the literature.

The nesosilicate forsterite, Mg2SiO4, is orthorhombic
(space group Pbnm, non-conventional setting of Pnma,
n. 62). There are six symmetry-independent atoms and
28 atoms (four formula units) in the unit-cell, giving rise
to 84 vibrational modes. Their symmetry decomposition
corresponds to:

Ctotal ¼ 11Ag þ 11B1g þ 7B2g þ 7B3g þ 10Au þ 10B1u

þ 14B2u þ 14B3u:

A total of 35 IR active modes of type B1u,B2u and B3u

and 36 Raman active modes (11Ag + 11B1g +
7B2g + 7B3g) is then expected, plus 10 Au inactive
modes. The three B1u, B2u and B3u modes left correspond
to rigid translations.

The structure of the paper is as follows. We first
summarize briefly the method employed for the calcula-
tion of vibrational spectra. The Results section presents
our calculated data, analyzes the vibrational modes and
compares the present results with experiment, separately
for IR and Raman spectroscopic frequencies. Dielectric
properties and isotope effects are also discussed, together
with a statistical analysis of different sets of measure-
ments versus theoretically predicted quantities.

Computational methods

For the present calculations we have used a development
version of the CRYSTAL program (Saunders et al.
2003), which is a periodic quantum-mechanical ab initio
code for calculating the total-energy-dependent and
wave-function-dependent properties of crystalline solids.
A localized gaussian-type basis set for the expansion of
one-electron wave functions is therein employed.

The B3LYP Hamiltonian (Becke 1993), containing a
hybrid Hartree-Fock/Density-Functional-Theory ex-
change-correlation term, has been adopted. This Ham-
iltonian is widely and successfully used in molecular
quantum chemistry (Kochand Holthausen 2000) as well
as in solid state calculations, where it has been shown to
provide excellent results for geometries and vibrational
frequencies, (Zicovich-Wilson et al. 2004; Prencipe et al.
2004) which are superior to the ones obtainable with
LDA or GGA type functionals (Zicovich-Wilson et al.
2004; Tosoni et al. 2005).

The level of accuracy in evaluating the Coulomb and
Hartree-Fock exchange series is controlled by five
parameters, (Saunders et al. 2003) for which standard
values have been used (6 6 6 6 12).

The DFT exchange-correlation contribution is eval-
uated by numerical integration over the cell volume
(Pascale et al. 2004). Radial and angular points of the
atomic grid are generated through Gauss-Legendre and
Lebedev quadrature schemes. A grid pruning is usually
adopted, as discussed in ref (Pascale et al. 2004). The
impact of the grid size on both the accuracy and cost of
the calculation has been discussed at length in previous
papers (Pascale et al. 2004, 2005b; Tosoni et al. 2005;
Prencipe et al. 2004). For the present calculations a
(75,974)p grid has been used, where the notation (nr,nX)p
is used to indicate a pruned grid with nr radial points and
nX points on the Lebedev surface in the most accurate
integration region (see the ANGULAR keyword in the
CRYSTAL user’s manual; Saunders et al. 2003). This
grid corresponds to 632036 integration points in the unit
cell; the accuracy in the integration can be measured by
quoting the error in the integrated electronic charge in
the unit cell (De=�3.10�6 |e| for a total of 280 elec-
trons). It provides essentially the same frequencies as
larger grids (Pascale et al. 2005b), whereas smaller grids
such as (55,434)p give frequencies that can differ by as
much as 30 cm�1 from the present ones (165572 points;
De=8880.10�6|e|).

The reciprocal space was sampled according to a
regular sublattice with a shrinking factor IS equal to 4,
corresponding to 27 independent k vectors in the irre-
ducible Brillouin zone. The gradient with respect to the
atomic coordinates is evaluated analytically (Doll et al.
2001; Doll 2001); equilibrium atomic positions are
determined (Civalleri et al. 2001) by using a modified
conjugate gradient algorithm as proposed by Schlegel
(1982).
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An all-electron basis set has been used. This basis set
has been indicated as basis set B in ref (Pascale et al.
2005b); it is a 8-511G(d), 8-6311G(d) and 8-411G(d)
contraction for Mg, Si and O, respectively; the exponent
(in bohr�2 units) of the most diffuse sp shells are 0.68
and 0.22 (Mg), 0.32 and 0.13 (Si) and 0.59 and 0.25 (O).
The exponent of the single gaussian d shell is 0.5 (Mg),
0.6 (Si) and 0.5 (O).

As regards the calculation of frequencies, we refer to
a previous paper (Pascale et al. 2004) for a more explicit
formulation of the method; here we simply remind that,
within the harmonic approximation, frequencies at the C
point have been obtained by diagonalizing the mass
weighted Hessian matrix W, whose (i,j) element is de-
fined as Wij ¼ Hij=

ffiffiffiffiffiffiffiffiffiffiffi

MiMj
p

; where Mi and Mj are the
masses of the atoms associated with the i and j coordi-
nates, respectively.

By the way, once the Hessian matrix H is calculated,
frequency shifts due to isotopic substitutions can readily
be calculated, at no cost, by changing the masses Mi, in
the above formula. In the present case, isotopic effects
have been estimated for the substitution of 26Mg for
24Mg, 30Si for 28Si and 18O for 16O.

Energy first derivatives with respect to the atomic
positions, vj = ¶V/¶uj, are calculated analytically for all
uj coordinates (uj is the displacement coordinate with
respect to equilibrium), whereas second derivatives at
u = 0 are calculated numerically using a single dis-
placement:

vj

ui

� �

0

� vjð0; � � � ; ui; � � �Þ
ui

ui=0.001 Å has been used for the present calculations
(see Pascale et al. (2004, 2005b) for the discussion of the
numerical aspects concerning the calculation of the
hessian matrix). Since the energy variations for the dis-
placements here considered can be as small as 10�6–10�8

hartree, the tolerance on the convergence of the SCF
cycles has been set to 10�10 hartree.

The non-analytical correction to the Hessian, that
must be added in the case of ionic compounds to take
long range Coulomb effects due to coherent displace-
ment of the crystal nuclei into account [see Born and
Huang (1954) Sects. 5, 10, 34, 35, and Umari et al.
(2001) Equs. 3 and 6], depends essentially on the
electronic (clamped nuclei) dielectric tensor e¥ and on
the Born effective charge tensor associated with every
atom. The former is evaluated by applying a saw-
tooth finite field along the direction of interest
(Darrigan et al. 2003), and the latter through the use
of well localized Wannier functions (Noel et al. 2002;
Baranek et al. 2001; Zicovich-Wilson et al. 2001,
2002).

The IR intensity of the ith mode is defined as:

Ai / di
@l
@Qi

�

�

�

�

�

�

�

�

2

i.e. they are proportional to the square of the first
derivative of the dipole moment with respect to the
normal mode coordinate Qi times the di degeneracy of
the ith mode. The dipole moment derivative is evaluated
numerically by using the unit cell localized Wannier
functions (Zicovich-Wilson et al. 2001, 2002).

Results and discussion

Structure and elasticity

The crystal structure of forsterite is built up by SiO4 and
MgO6 distorted tetrahedra and octahedra, respectively.
Si polyhedra share vertices with the Mg ones, but not
with one another. There are two symmetry-independent
Mg atoms, named Mg1 (on the inversion centre at 0,0,0)
and Mg2 (Hazen 1976). The Mg1 octahedra share edges
forming rods parallel to the crystallographic c axis, and
the Mg2 octahedra are linked laterally to such rods by
edge-sharing, too (Fig. 1). Si tetrahedra are stuffed
within the [001] channels.

x

y

Mg1
Mg1

Mg1

Mg1
Mg1

Mg2 Mg2

Mg2
Mg2Mg2

Mg2

Fig. 1 View of the crystal structure of forsterite, Mg2SiO4, along
the crystallographic z axis. SiO4 tetrahedra and MgO6 octahedra
(corresponding to the two independent Mg1 and Mg2 atoms) are
emphasized. Oxygen atoms are shown as spheres
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The calculated equilibrium geometry, given in Ta-
ble 1, is in good agreement with experiment. Cell
parameters are slightly overestimated (largest deviation:
0.8% for a), as usual for B3LYP (Becke 1993). The
experimental Si–O and Mg–O distances are very well
reproduced (the largest difference is smaller than
0.025 Å). The Si tetrahedron and the Mg1 octahedron
turn out to be almost regular, according also to experi-
mental data, whereas a larger distortion is shown by the
Mg2 octahedron (e.g., the Mg2–O distances vary from
2.06 to 2.22 and from 2.07 to 2.21 Å in the calculated
and experimental geometry, respectively).

In Table 2 the measured (Isaak et al. 1989) and cal-
culated elastic constants are reported; experimental data
have been extrapolated to 0 K by using the temperature
dependence data provided by the authors of the experi-
mental paper. A very good agreement is observed for the
diagonal components c11, c22 and c33, with differences
smaller than 2%; deviations are larger for some of the
other constants, but they never exceed 7%, confirming
the high quality of the structural and elastic properties
obtained with the present hamiltonian and basis set.

Dielectric properties

The calculated Born effective charge and dielectric ten-
sors are given in Tables 3 and 4, respectively. Born
tensors are essentially diagonal and relatively little
anisotropic, but for O1, for which anisotropy reaches
0.9|e|. The average value of the diagonal elements of the
Mg and O atoms are close to their formal charges
(±2|e|). For Si, the value is slightly smaller than +3|e|.

e0ij is obtained by adding to e¥
ij the ionic contribution

obtained from the frequency eigenvalues, xm, eigenvec-
tors, u(A,i),m, and atomic Born tensors Z*

A,ij:

�0ijðxÞ ¼ �1ij þ
4p
X0

X

m

�Zm;i �Zm;j

x2
m � x2

;

where

�Zm;j ¼
X

ðB;kÞ
�uðA;iÞðB;kÞ Z�ðB;kÞj

X0 is the cell volume, x is the electric field frequency, xm

is the frequency of mode m, A labels the N atoms of the
unit cell and i and j indicate the three x, y and z com-
ponents [thenm and (A,i) span the same set of 3N values].

e¥ is nearly symmetric and its components are about
1/3 of those of e0. e0xx and e0zz are quite similar, whereas
e0yy is larger by about 10%. The components calculated
at T = 0 K are about 3–7% smaller than the experi-
mental ones (Cygan and Lasaga 1986; Shannon and
Subramanian 1989) measured at room temperature.
However, when corrected for the temperature effects by
using the T dependence reported by Cygan and Lasaga
(1986) (see third column of Table 4), they become very
similar to the experimental data.

Infrared and Raman modes, and comparison
with experiment

The reducible representation based on the cartesian
coordinates of the atoms in the unit-cell is decomposed
according to the scheme reported in the Introduction

Table 1 Calculated and experimental geometry of forsterite (Pbnm space group)

This work Exp (Hazen 1976)

Cell parameters
a, b, c 4.79 10.25 6.01 4.746 10.18 5.976
Fractional coordinates (x y z)
Mg2 �0.0084 0.2774 0.25 �0.0086 0.2772 0.25
Si 0.4260 0.0938 0.25 0.4261 0.0939 0.25
O1 �0.2341 0.0911 0.25 �0.2339 0.0919 0.25
O2 0.2247 0.4466 0.25 0.2202 0.4469 0.25
O3 0.2747 0.1625 0.0324 0.2777 0.1628 0.0333
Cation–anion distances
Si–O 1.629 (1) 1.673 (1) 1.653 (2) 1.616 (1) 1.649 (1) 1.633 (2)
Mg1–O 2.095 (2) 2.073 (2) 2.132 (2) 2.085 (2) 2.069 (2) 2.126 (2)
Mg2–O 2.195 (1) 2.063 (1) 2.083 (2) 2.222 (2) 2.166 (1) 2.040 (1) 2.066 (2) 2.208 (2)

Cell parameters, fractional coordinates and cation first neighbor distances are reported (lengths in Å). x, y, z are fractional coordinates
along the a, b, c unit cell vectors, respectively. The numbers of equivalent cation–anion neighbors are given in parentheses

Table 2 Calculated and experimental elastic constants of fosterite (GPa)

c11 c22 c33 c44 c55 c66 c12 c13 c23

Experimental (T = 300 K) (Isaak et al. 1989) 330.0 200.3 236.2 67.1 81.6 81.2 66.2 68.0 72.2
Experimental (T = 0 K) (Isaak et al. 1989) 340.9 208.2 244.4 71.5 85.7 86.0 69.4 70.8 73.7
Calculated 345.3 212.0 241.7 68.0 82.8 81.3 69.1 71.9 78.7

The experimental data at 0 K have been obtained by extrapolation on the basis of temperature gradients (Isaak et al. 1989)
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section and derived automatically by the CRYSTAL
code.

We begin our analysis from the 35 IR active modes;
the present theoretical results are compared to experi-
ment. Four sets of measured data (Reynard 1991; Hof-
meister 1987; Iishi 1978; Servoin and Piriou 1973)
collected in the 1973–1991 period (we are not aware of
more recent papers) and reported in Table 5, have been
considered. Hofmeister provides the full set of 35 peaks,
both for TO and LO; the other sets are incomplete (27
peaks are reported by Iishi, 28 by Servoin et al., 31 by
Reynard). There is a quite general good agreement be-
tween the present results and the various experiments;
however in a few cases definite discrepancies exist, that
can be classified in three groups:

1. Lines are observed in experiments that do not have
any calculated counterpart. In Table 5, 40 lines are
reported (instead of 35, corresponding to the 35 IR
frequencies) because 5 additional entries have
been added for the ‘‘extra experimental peaks’’ not

observed in the calculation. Two of them are reported
by Hofmeister only (line 15 and line 29), one is ob-
served by Hofmeister and Servoin et al. (line 10), and
two are observed in three experiments (line 5, by
Hofmeister, Reynard and Iishi, and line 33, by Hof-
meister, Reynard and Servoin et al.). In the calcu-
lated spectrum there are no peaks in a relatively large
window around these ‘‘extra’’ peaks, that are prob-
ably artefacts resulting from the numerical elabora-
tion of the observed spectrum. This relatively sharp
statement can be formulated on the basis of the
observation that in the calculated spectrum, at vari-
ance with experiment, there is no reason for errors for
the individual frequencies varying by large amount,
as all the frequencies are generated by the same
algorithm and are then affected, roughly speaking, by
the same error (due to the selected hamiltonian,
limitations in the basis set, numerical errors). In the
experiment, on the contrary, many different features
can affect the attribution of a given frequency: low
intensity, peak superposition, background, overtones.

2. Calculated peaks not observed in any of the experi-
mental spectra; this is the case of lines 1, 22, 34 and
36. The calculated TO intensity for the four cases is
very small (0, 0, 18 and 9 in a scale that reaches
2,600), and this could explain why they are not ob-
served. The intensity of the LO modes is however
larger (at least for lines 34 and 36), so that, in prin-
ciple, the LO components should have been detected.

3. There are two LO frequencies (lines 11 and 40) for
which good agreement is observed between our cal-
culated data and Reynard and Iishi (and Servoin
et al. for line 40). Hofmeister’s data for both and
Servoin’s for line 11 are however affected by a very
large error (Dm = 95 and 45 cm�1 respectively); for
this reason these data are not considered in the sta-
tistics given in Table 6.

Table 6 provides statistical indices that permit to
estimate the differences between the various sets of
experimental data (Dme) and between calculation and
experiment (Dm). The jDmej value among experimental
sets ranges from 4.0 to 7.2 cm�1; Dme shows that in some
cases (Reynard vs Iishi and Servoin et al.) differences are
systematic. |Dme|max is as large as 38 cm�1 (remember

Table 3 Atomic Born effective charge tensors

Mg1 Mg2

2:25 0:00 �0:01
0:09 1:75 0:28
0:15 0:24 2:02

0

@

1

A

2:00 0:02 0:00
�0:07 2:33 0:00
0:00 0:00 2:10

0

@

1

A

Si O1

3:13 0:00 0:00
0:01 2:69 0:00
0:00 0:00 2:96

0

@

1

A

�2:37 0:01 0:00
0:01 �1:46 0:00
0:00 0:00 �1:55

0

@

1

A

O2 O3

�1:69 0:07 �0:00
0:13 �2:01 �0:00
�0:00 �0:00 �1:58

0

@

1

A

�1:66 0:07 �0:03
0:10 �1:65 0:20
�0:10 0:21 �1:97

0

@

1

A

The average value of the diagonal elements are +2.01 (Mg1),
+2.14 (Mg2), +2.93 (Si), �1.79 (O1), �1.76 (O2) and
�1.76|e|(O3)

Table 4 Calculated and experimental high frequency and static dielectric tensor components of forsterite

e¥ e0

Calc Exp1 Calc Exp2 Exp3

D% 0 K 298a K 298 K D% 298 K D%

xx 2.564 2.789 �8.1% 6.69 6.93±0.03 6.87±0.07 +0.9 6.97±0.21 �0.6
yy 2.423 2.673 �9.3% 7.15 7.51±0.03 7.39±0.07 +1.6 7.71±0.24 �2.6
zz 2.472 2.726 �9.3% 6.58 6.82±0.04 6.74±0.07 +1.2 7.11±0.21 �4.1

D% is the percentage difference of the e0 calculated data, extrapolated to 298 K, with respect to experiment. Exp1, Exp2 and Exp3 are
refering to Deer et al. (1982), Shannon and Subramanian (1989) and Cygan and Lasaga (1986), respectively
a Values extrapolated to room temperature by using data of Cygan and Lasaga (1986) through the following formula: 1�

@�
@T

� �

p¼ 1:22; 1:69
and 1.24·10�4 K�1 for xx, yy and zz components, respectively
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that data in parentheses in Table 5 are not taken into
account in the statistical analysis, otherwise the largest
discrepancy would have been as large as 95 cm�1).

When compared to these differences among experi-
mental data, the calculated vs experimental indices are
very satisfactory: jDmj ranges from 5.7 to 9.4 cm�1 and
only in the comparison with Hofmeister |Dm|max exceeds
20 cm�1.

On the whole the present results can be considered to
be very satisfactory, because (a) they agree well with
experiment for most of the modes; (b) the full set of
modes is generated, also the ones not available experi-

mentally, due to intensity problems; (c) ambiguous
cases, where double peaks are erroneously reported in
experiments, are clarified.

Similarly to the IR case, there are various sets of
experimental Raman data available in the literature,
ranging from the very old ones by Servoin and Piriou
(1973) and Iishi (1978) (both papers have already been
quoted with reference to the IR spectrum), to the very
recent paper by Kolesov and Geiger (2004). In Table 7
these three sets, the set collected by Chopelas (1991) and
the present calculated data are reported, whereas in
Table 8 statistical indices comparing the various sets are

Table 5 Calculated wavenumbers m (cm�1) and intensities (arbitrary units) of the IR-active TO and LO modes of forsterite

Our work Reyand (1991) Hofmeister (1987) Iishi (1978) Servoin and Piriou
(1973)

TO LO TO LO TO LO TO LO TO LO

N m intensity m intensity m Dm m Dm m Dm m Dm m Dm m Dm m Dm m Dm

B1u

1 207 0 207 0 – – – – – – – – – – – – – – – –
2 278 87 279 1 274 +4 277 +2 276 +2 276 +3 274 +4 278 +1 274 +3 276 +3
3 290 679 313 5 282 +8 307 +6 293 �3 299 +13 296 �6 318 �5 289 +2 316 �3
4 313 5 320 74 – – – – 309 +4 313 +7 – – – – – – – –
5 – – – – 370 – 380 – 365 – 371 – 365 – 371 – – – – –
6 420 1045 426 2 403 +17 410 +16 – – – – – – – – – – – –
7 428 285 461 112 411 +17 451 +10 412 +16 450 +11 423 +5 459 +2 415 +13 454 +8
8 490 337 499 29 472 +18 482 +17 463 +27 482 +17 483 +7 489 +10 474 +16 483 +16
9 514 634 592 1149 501 +13 580 +12 502 +11 573 +19 502 +12 585 +7 501 +13 574 +19
10 – – – – – – – – 543 – 538 – – – – – 531 – 528 –
11 874 2656 1005 4356 869 +5 1008 �3 865 +9 (957) (+48) 885 �11 994 +11 871 +3 (960) (+45)

B2u

12 143 10 144 1 140 +3 143 +1 142 +1 144 �0 – – – – – – – –
13 277 31 277 0 275 +2 278 �1 268 +9 276 +1 280 �3 283 �6 276 +1 277 +0
14 292 817 312 26 283 +9 305 +7 290 +2 308 +4 294 �2 313 �1 290 +2 310 +2
15 – – – – – – – – 300 – 298 – – – – – – – – –
16 350 1049 387 58 341 +9 371 +16 345 +5 375 +12 352 �2 376 +11 350 �0 375 +12
17 403 255 417 43 390 +13 406 +11 398 +5 408 +9 400 +3 412 +5 394 +9 408 +9
18 432 314 453 66 415 +17 439 +14 418 +14 438 +14 421 +11 446 +7 416 +16 442 +11
19 465 212 495 237 456 +9 484 +11 452 +13 488 +7 465 +0 493 +2 456 +9 488 +7
20 517 70 520 28 503 +14 511 +9 504 +13 511 +9 510 +7 516 +4 506 +11 514 +7
21 535 347 588 1070 526 +9 572 +16 520 +14 572 +16 537 �2 597 �9 527 +8 573 +15
22 638 0 638 1 – – – – – – – – – – – – – – – –
23 835 547 843 50 830 +5 841 +2 828 +7 844 �1 838 �3 843 �0 838 �3 845 �2
24 870 1575 966 2272 867 +3 970 �4 865 +5 961 +5 882 �12 979 �13 875 �5 962 +4
25 989 44 999 1421 987 +2 1001 �2 983 +6 996 +3 987 +2 993 +6 983 +6 992 +7

B3u

26 206 6 207 1 199 +7 201 +6 201 +5 201 +5 – – – – – – – –
27 275 26 276 1 274 +1 276 �0 275 +0 276 �0 274 +1 276 �0 274 +0 276 +0
28 294 222 300 14 – – – – 293 +1 298 +2 293 +1 298 +2 – – – –
29 – – – – – – – – 309 – 313 – – – – – – – – –
30 322 32 323 2 316 +6 320 +3 319 +3 321 +2 320 +2 323 +0 318 +4 321 +2
31 388 1089 398 8 374 +14 384 +14 377 +11 388 +10 378 +10 386 +12 378 +11 – –
32 412 1261 473 82 397 +15 463 +10 405 +7 463 +9 403 +9 469 +4 404 +8 469 +4
33 – – – – 420 – 420 – 434 – 430 – – – – – 438 – 438 –
34 476 18 482 134 – – – – – – – – – – – – – – – –
35 513 522 539 9 498 +15 544 �5 505 +8 511 +28 498 +15 544 �5 498 +15 548 �9
36 540 9 563 518 – – – – – – – – – – – – – – – –
37 614 453 660 1178 601 +13 650 +10 601 +13 644 +16 601 +13 645 +15 601 +13 645 +15
38 838 19 838 13 833 +5 839 �1 841 �3 842 �4 838 �0 845 �7 838 +0 840 �1
39 962 1229 971 32 952 +10 961 +10 950 +12 961 +10 957 +5 963 +8 957 +5 964 +6
40 982 1366 1086 4258 971 +11 1089 �3 988 �5 (991) (+95) 980 +2 1086 �0 978 +4 1081 +5

Experimental m values from various sources, and their differences Dm with respect to theoretical results, are given and also used for the
statistical indices in Table 6. N is the line number used in text. Data in parentheses are not considered for statistics (see text for details)

388



given, as already done for the IR experimental and
calculated data. As for the IR case, we had to add lines
in Table 7 for including ‘‘extra’’ experimental peaks with
no correspondence to theoretical results: there are
however only three such cases, all due to Servoin and
Piriou (1973) (see lines 27, 36 and 37; a peak that does
not have any calculated counterpart is also reported by
Chopelas, and is included at line 36 of our table).
Kolesov and Geiger report only 25 out of 36 modes; the
agreement with the other experiments on this reduced set
is very high, as shown by the ‘‘Kolesov and Geiger’’
horizontal entry in Table 8: the mean absolute and
largest wavenumber differences are 1.8 and 7 cm�1,
respectively. The disagreement is slightly larger when
considering the 32 frequencies common to Iishi and
Servoin et al. ( jDmej ¼ 2:1; jDmejmax ¼ 27 cm�1) and even
larger when the comparison is performed with the set
proposed by Chopelas ( jDmej ¼ 3:9; jDmejmax ¼ 35 cm�1),
indicating that there are difficulties in identifying and
locating some of the peaks not included in the ‘‘safe’’ set
of Kolesov and Geiger. In summary, the four experi-
mental sets provide very consistent results for a common
set of 25 modes, with quite small differences; for the
other modes, differences among experiments can be
much larger, and reach nearly 40 cm�1.

Let us consider now the comparison between calcu-
lated and experimental data. Large discrepancies are
often observed for low frequency modes: This is the case
of the first B1g (Servoin et al.), B2g (Iishi) and B3g (Iishi,
Kolesov and Geiger) modes, probably because of
experimental limitations. In other cases (for example

lines 29 and 38, where calculated wavenumbers are lar-
ger by about 20 cm�1 with respect to all experiments),
the differences might reflect limitations of the present
theoretical model, possibly related to the variational
basis set that is not sufficiently flexible. It is however
interesting to notice that these two modes, for which the
largest differences with respect to experiment are ob-
served (apart from the low frequency modes mentioned
above and given in parentheses in Table 7), fall at ex-
actly the same frequency; we wonder whether the
superposition of the two peaks might give interpretation
problems on the experimental side. When the few data in
parentheses are excluded, the agreement between our
data and experiment is quite satisfactory, with jDmj
ranging from 7 to 8 cm�1, and |Dm|max never larger than
31 cm�1. The interesting point about simulation, how-
ever, is that the full set of frequencies is generated, with
roughly the same accuracy, so that interpretation
problems of the experimental spectra can easily be
solved.

The results obtained can also be usefully compared to
those of a pioneering study based on semi-empirical
force-fields (Price et al. 1987). By using the same statistical
indicators as in Tables 6 and 8, the force-field frequencies
give their best performance against experimental ones
with respect to Iishi’s data ( jDmj ¼ 18:8; 18.1, 17.9 and
|Dm|max = 56, 42, 45 cm�1 for TO, LO and Raman fre-
quencies, respectively). These deviations are about dou-
ble those given by our first-principles results, so that the
improvement achieved by quantum-mechanical simula-
tions can be clearly appreciated.

Table 6 Statistical analysis of the differences Dm (cf. the previous table) between the experimental and calculated TO and LO sets of IR
wavenumbers (cm�1)

Reynard (1991) Hofmeister (1987) Iishi (1978) Servoin and Piriou
(1973)

TO LO TO LO TO LO TO LO

Our work
Nm 29 29 30 28 27 27 26 24
jDmj 9.4 7.6 7.8 8.6 5.5 5.7 7.0 7.0
Dm 9.4 6.3 7.1 8.2 2.5 2.3 6.4 5.7
|Dm|max 18 17 27 28 15 15 16 19
Reynard (1991)
Nm 30 28 27 27 27 25
jDmj 4.9 4.1 6.9 6.3 4.0 4.4
Dm �1.9 1.7 �6.5 �3.4 �3.7 �1.3
|Dm|max 16 33 16 25 18 18
Hofmeister (1987)
Nm 28 26 28 25
jDmj 6.4 6.9 4.4 4.3
Dm �4.8 �6.4 �1.0 �2.9
|Dm|max 20 33 12 38
Iishi (1978)
Nm 26 24
jDmj 4.0 4.9
Dm 3.8 4.2
|Dm|max 14 24

Nm is the number of modes considered in the statistics (data in parentheses in Table 3 are not considered), jDmj is the mean value of the
absolute difference, Dm is the average difference, and |Dm|max is the absolute value of the largest difference. Dme values refer to differences
between experimental wavenumbers from different sources
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Concerning the Au inactive modes, the only measured
data come from a single-crystal inelastic neutron scat-
tering experiment limited to the low energy range (Rao
et al. 1988), where just one inactive zone-center phonon
frequency is reported (104 cm�1). This result compares
favorably with 101.5 cm�1, the smallest of our com-
puted Au values.

Mode assignment

Vibrational modes in silicates are usually classified in
two main categories, namely ‘‘internal modes’’ (I), and
‘‘external modes’’ (E). The former ones include the

stretching and bending vibrations of the SiO4 tetrahedra,
that represent the covalent part of the system. E modes
include rotations and translations of the tetrahedra, and
translations of the cations. The site group to factor
group analysis applied to forsterite (Hohler and Funck
1973; Stidham et al. 1976) leads to 36 internal (16
stretching and 20 bending) modes and 45 external (12
tetrahedral rotations, 9 tetrahedral translations and
24 Mg translations) modes. This classification obviously
simplifies the reality, because large mixing can occur
when modes with the same symmetry are at about the
same frequency. This point was stressed by many au-
thors in the past.

Table 7 Calculated and observed wavenumbers m (cm�1) of the RAMAN-active modes of forsterite

N Our work (Kolesov and
Geiger 2004)

Chopelas (1991) Iishi (1978) Servoin
and Piriou (1973)

m m Dm m Dm m Dm m Dm

Ag

1 188 184 +4 183 +5 183 +5 183 +5
2 234 227 +7 226 +8 227 +7 227 +7
3 307 304 +3 304 +3 305 +2 305 +2
4 329 329 �0 329 �0 329 �0 329 �0
5 345 339 +6 332 +13 340 +5 340 +5
6 425 421 +4 422 +3 424 +1 424 +1
7 560 544 +16 545 +15 546 +14 545 +15
8 618 608 +10 608 +10 609 +9 609 +9
9 819 824 �5 824 �5 826 �7 826 �7
10 856 856 +0 856 +0 856 +0 856 +0
11 967 966 +1 965 +2 966 +1 966 +1
B1g

12 225 – – 220 +5 224 +1 197 +28
13 260 – – 274 �14 260 +0 265 �5
14 317 316 +1 318 �1 318 �1 317 +0
15 367 – – 351 +16 – – – –
16 391 – – 383 +8 418 �27 418 �27
17 442 434 +8 434 +8 434 +8 434 +8
18 596 588 +8 582 +14 585 +11 583 +13
19 645 – – 632 +13 632 +13 632 +13
20 835 838 �3 838 �3 839 �4 839 �4
21 866 866 �0 866 �0 866 �0 866 �0
22 979 – – 975 +4 976 +3 976 +3
B2g

23 183 – – 175 +8 (142) (+41) – –
24 253 243 +10 242 +11 244 +9 244 +9
25 324 – – 323 +1 324 �0 324 �0
26 373 – – 365 +8 368 +5 365 +8
27 – – – – – – – 407 –
28 451 434 +17 439 +12 441 +10 438 +13
29 608 588 +20 586 +22 588 +20 585 +23
30 883 882 +1 881 +2 884 �1 881 +2
B3g

31 190 (243) (�53) – – (226) (�36) – –
32 303 – – 286 +17 272 +31 – –
33 322 316 +6 315 +7 318 +4 314 +8
34 381 373 +8 374 +7 376 +5 374 +7
35 421 409 +12 410 +11 412 +9 406 +15
36 – – – 435 – – – 466 –
37 – – – – – – – 484 –
38 609 588 +21 592 +17 595 +14 591 +18
39 927 920 +7 920 +7 922 +5 920 +7

Dm is the difference with respect to the experimental data, used also for the statistical indices given in Table 8. N is the line number used in
text. Data in parentheses are not considered for statistics (see text for details)
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In previous work (Servoin and Piriou 1973; Iishi
1978; Hofmeister 1987; Reynard 1991; Chopelas 1991;
Kolesov and Geiger 2004) the problem of mode
assignment in forsterite was discussed at length, and the
classifications of the various authors agree to a large
extent.

Ab initio simulations provide many tools for estab-
lishing the nature of the atomic motion in a given mode.
These tools have already been used successfully in our
previous studies of pyrope (Pascale et al. 2005b),
andradite (Pascale et al. 2005a) and katoite (Orlando
et al. 2006), and consist essentially in:

• direct inspection of the eigenvectors of the dynamical
matrix;

• isotopic substitution of the various species present in
the unit cell; the larger the frequency shift, the larger
the participation of the substituted atom to the
movement; viceversa, zero frequency shift indicates
that the substituted atom is not participating to the
mode;

• graphical representation of the eigenvectors; as for
our previous studies, animation of all the modes are
available at CRYSTAL web-site (web). In order to
make the animation as clear as possible, manipula-
tions such as rotations of the frame, different per-
spective points of view and polyhedra representations
are possible.

In Table 9 the full set of calculated wavenumbers is
reported, together with the isotopic shifts when one of
the four kinds of atoms (Mg1, Mg2, Si and O) is
substituted by its most abundant isotope. Figure 2a–d

Table 8 Statistics of RAMAN-active modes of forsterite

Kolesov and
Geiger (2004)

Chopelas
(1991)

Iishi
(1978)

Servoin and
Piriou (1973)

Our work
Nm 25 35 33 32
jDmj 7.2 8.1 7.1 8.3
Dm 6.4 6.7 4.6 5.5
|Dm|max 21 22 31 28
Kolesov and Geiger (2004)
Nm 25 25 25
jDmej 1.4 1.8 1.4
Dme 0.2 �1.4 �0.2
|Dme|max 7 7 5
Chopelas (1991)
Nm 33 33
jDmej 3.5 3.9
Dme �1.8 �1.4
|Dme|max 35 35
Iishi (1978)
Nm 32
jDmej 2.1
Dme 1.8
|Dme|max 27

For the explanation, see Table 6. Nm is the number of modes con-
sidered in the statistics (with exclusion of isolated and aberrant
data reported between parenthesis in Table 7)
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Fig. 2 Isotopic shift versus wavenumber m (cm�1) for all vibra-
tional modes of forsterite
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give a more direct evidence of the isotopic shift effects.
Consider for example the case of Mg1 and Mg2, shown
in Figs. 2a, b. Mg1 presents large isotopic shifts (say
larger than 3.5 cm�1, in bold in Table 9) in a wide
wavenumber range from 187 to 540 cm�1, with a smaller
and a larger peak in the 206–293 and 403–513 cm�1

intervals, respectively. For Mg2, shifts are smaller, and
they are spread in a range (260–392 cm�1) which lies at
lower frequencies than in the previous case. This result is
consistent with the Mg1 octahedra being tightly linked
to one another by edge sharing, so as to form rigid [001]
chains (cf. Fig. 1), whereas the Mg2 octahedra are more
loosely connected to the sides of such chains.

Figure 2c shows that silicon is mainly involved in the
high-frequency stretching modes and in the bending
modes around 600 cm�1, although shifts of the order of
3 cm�1 are also observed down to 200 cm�1. Oxygen
(Fig. 2), as expected, is involved in all modes, with an
isotopic shift which is roughly proportional to the mode
frequency.

The analysis based on the isotopic shifts and, even
better, on the animations available on the CRYSTAL
web-site (web), allows us to propose the schematic
classification of modes given in Fig. 3.

The stretching band, ranging from 819 to 989 cm�1

and including 16 modes (No. 66–81), is separated by a
174 cm�1 wide gap from the lowest part of the spec-
trum.The various combinations of the four symmetric
stretchings (coming from four tetrahedra in the unit cell)
are at the low side of the band (modes 68–71); for all
stretching modes the Mg isotopic shift is extremely small
(maximum value: 0.7 cm�1). In principle, the 20 bend-
ing modes of the tetrahedra are expected to follow
(modes 46–65, from 442 to 645 cm�1). In practice, only
a few of them can be interpreted as pure bending modes
of the tetrahedra, according to the animation (web) and
isotopic substitution. For example, a large Mg shift is
observed for modes 57, 54, 52, 49 and 48; the latter, in
particular, presents the largest Mg isotopic shift among
the full set, confirming that mixing is quite important for
frequencies lower than 500 cm�1. For this reason we will
avoid to enter too much into details in this analysis,
performed by using Table 9 and the full set of anima-
tions (web), and whose conclusions are summarized in
Fig. 3. In short, the SiO4 rotation modes range from 183
to 432 cm�1; Mg translation modes are mainly localized

below 300 cm�1; however, as already mentioned, they
give very important contributions to modes up to
540 cm�1. The very low frequency modes can be mostly
interpreted as SiO4 translations; this set of modes (al-
ways quite mixed with other kinds of motions) can be
found up to about 300 cm�1.
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