SCIENTIFIC REVIEW

Milligan–Morgan (Open) Versus Ferguson Haemorrhoidectomy (Closed): A Systematic Review and Meta-Analysis of Published Randomized, Controlled Trials

Muhammad I. Bhatti² · Muhammad Shafique Sajid^{1,} · Mirza K. Baig¹

Published online: 26 January 2016 © Société Internationale de Chirurgie 2016

Abstract

Objective The purpose of this article is to systematically analyse the randomized, controlled trials (RCTs) comparing Ferguson or closed haemorrhoidectomy (CH) versus open haemorrhoidectomy (OH) or Milligan–Morgan haemorrhoidectomy in the management of haemorrhoidal disease (HD).

Methods RCTs on the effectiveness of CH and OH in the management of HD were analysed systematically using RevMan[®], and combined outcome was expressed as odds ratio (OR) and standardized mean difference.

Results Eleven CRTs encompassing 1326 patients were analysed systematically. There was significant heterogeneity among included trials. Therefore, in the random effects model, CH was associated with a reduced postoperative pain (SMD, -0.36; 95 % CI, -0.64, -0.07; z = 2.45; p = 0.01), faster wound healing (OR, 0.08; 95 % CI, 0.02, 0.24; z = 4.33; p < 0.0001), lesser risk of post-operative bleeding (OR, 0.50; 95 % CI, 0.27, 0.91; z = 2.27; p < 0.02) and prolonged duration of operation (SMD, 6.10; 95 % CI, 3.21, 8.98; z = 4.13; p < 0.0001). But the variables such as pain on defecation (SMD, -0.33; 95 % CI, -0.68, 0.03; z = 1.82; p = 0.07), length of hospital stay, post-operative complications, HD recurrence and risk of surgical site infection were similar in both groups.

Conclusion CH has clinically measurable advantages over OH in terms of reduced post-operative pain, lower risk of post-operative bleeding and faster wound healing.

The provisional abstract of this study has been presented as poster at the 101th Annual Congress of the Association of Surgeons of Great Britain & Ireland in Harrogate on 30th April–2nd May 2014. The abstract is published with citation Br J Surg 2015; 102 (S1); 249.

² Department of General & Colorectal Surgery, NHS Foundation Trust, Queen Elizabeth Hospital, King's Lynn, Gayton Road, King's Lynn, Norfolk PE30 4ET, UK

Introduction

The prevalence of haemorrhoidal disease (HD) ranges, according to different studies, from 4.4 to 86 % [1–4]. Surgical excision of advanced haemorrhoids in the form of haemorrhoidectomy has been reported with numerous complications. The major complications include sphincter dysfunction (up to 25 %), in 75 % cases pain, severe enough to eliminate patients from professional life for up to 3 weeks, bleeding in 5–15 % patients, and a 30 % risk of recurrent disease [4]. Despite these complications, haemorrhoidectomy is still considered an effective treatment of third-degree and fourth-degree haemorrhoids [5]. It can be performed by the

Muhammad Shafique Sajid surgeon1wrh@hotmail.com

¹ Department of General, Endoscopic & Laparoscopic Colorectal Surgery, Western Sussex Hospitals, NHS Foundation Trust, Worthing Hospital, Washington Suite, North Wing, Worthing, West Sussex BN11 2DH, UK

open or closed technique [6, 7]. In Europe, the Milligan– Morgan procedure or open haemorrhoidectomy (OH) [6] is more frequently practised, whereas in the United States of America the closed haemorrhoidectomy (CH) procedure, as described by Ferguson and Heaton [7], is the most popular [8]. CH is purported to be a less painful procedure and associated with faster wound healing due to primary wound closure [6, 9–11]. However, the conflicting outcomes following both procedures have been debated in the published literature and several controversies with regards to post-operative pain still need clarification. The purpose of this article is to systematically analyse the randomized, controlled trials (RCTs) comparing CH versus OH in the management of HD.

Methods

Relevant prospective randomized, controlled trials (irrespective of type, language, gender, blinding, sample size or publication status) on CH versus OH for the management of HD until May 2014 were included in this review. The Cochrane Colorectal Cancer Group (CCCG) Controlled Trial Register, the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, Medline, EMBASE and Science Citation Index Expanded were searched until May 2014 using the medical subject headings (MeSH) terms "third-degree haemorrhoids", "fourthdegree haemorrhoids", "prolapsing haemorrhoids" and "haemorrhoidal disease" in combination with "open haemorrhoidectomy", "Ferguson haemorrhoidectomy", "closed haemorrhoidectomy", "Milligan-Morgan haemorrhoidectomy" and "surgical haemorrhoidectomy" were searched. Boolean operators (AND, OR, NOT) were appropriately utilized to narrow and widen the search results. The published titles from the resultant search were scrutinized closely, and their suitability was determined for potential inclusion into this study. The references from selected published articles were also checked as a further search tool to find additional studies. For inclusion in the meta-analysis, a study had to meet the following criteria: (I) randomized, controlled trial; (II) comparison between CH and OH; (III) evaluation of post-operative pain; (IV) main outcome measures reported preferably as an intention-to-treat (ITT) analysis; and (V) trials in surgical patients who had undergone procedure for third-degree and fourth-degree haemorrhoids. Two reviewers using a predefined meta-analysis form extracted data from each study which resulted in satisfactory inter-observer agreement. The extracted data contained information regarding the name of the authors, title of the study, journal in which the study was published, country and year of the study,

treatment regimen, length of the therapy, testing sample size (with sex differentiation if applicable), the number of patients receiving each regimen and within the group the number of patients who succeeded and the number of patients who failed the allocated treatment, the patient compliance rate in each group, the number of patients reporting complications and the number of patients with absence of complications in each arm.

The software package RevMan 5.2.12 [12, 13], provided by the Cochrane Collaboration, was used for the statistical analysis. The odds ratio (OR) with a 95 % confidence interval (CI) was calculated for binary data, and the standardized mean difference (SMD) with a 95 % CI was calculated for continuous variables. The random effects model [14, 15] was used to calculate the combined outcomes of both binary and continuous variables. Heterogeneity was explored using the chi² test, with significance set at p < 0.05, and was quantified [16] using I^2 test, with a maximum value of 30 % identifying low heterogeneity [16]. The Mantel-Haenszel method was used for the calculation of OR under the random effect models [17]. In a sensitivity analysis, 0.5 was added to each cell frequency for trials in which no event occurred in either the treatment or control group, according to the method recommended by Deeks et al. [18]. If the standard deviation was not available, then it was calculated according to the guidelines of the Cochrane Collaboration [12]. This process involved assumptions that both groups had the same variance, which may not have been true, and variance was either estimated from the range or from the p value. The estimate of the difference between both techniques was pooled, depending upon the effect weights in results determined by each trial estimate variance. A forest plot was used for the graphical display of the results. The square around the estimate stood for the accuracy of the estimation (sample size), and the horizontal line represented the 95 % CI. The methodological quality of the included trials was initially assessed using the published guidelines of Jadad et al. and Chalmers et al. [19, 20]. Based on the quality of the included randomized, controlled trials, the strength and summary of the evidence were further evaluated by GradePro® [21], a tool provided by the Cochrane Collaboration.

Results

The PRISMA flow chart explaining the outcome of electronic database search and methodology of included studies selection is given in Fig. 1. Eleven randomized, controlled trials [22–32] encompassing 1326 patients undergoing CH

or OH for third-degree and fourth-degree haemorrhoids were retrieved from the electronic databases. Six hundred and sixty-three patients underwent CH and 663 patients underwent OH. The characteristics and treatment protocol adopted in included studies are given in Tables 1 and 2, respectively.

Methodological quality of included studies

The methodological quality of included trials (Table 3) was assessed by the published guideline of Jadad et al. and Chalmers et al. [19, 20]. Five trials [25, 26, 29–31] were of poor quality due to lack of adequate randomization technique, absence of blinding, lack of power calculations and in-adequate methods of concealment. Remaining six trials [22–24, 27, 28, 32] were considered of good quality due to adequate methodology following analysis of reported quality variables. Based on the quality of included randomized controlled trials, the strength and summary of

evidence was further evaluated by GradePro[®] [21], a statistical tool provided by the Cochrane Collaboration [Fig. 2].

Post-operative pain score

Six included trials contributed to the combined calculation of this variable as shown in Fig. 3. There was significant heterogeneity [Tau² = 0.14, chi² = 18.97, df = 5, (p = 0.002); $I^2 = 74$ %] among trials. In the random effects model (SMD, -0.36; 95 % CI, -0.64, -0.07; z = 2.45; p = 0.01), the CH was associated with lower pain score post-operatively.

Duration of operation

Seven included trials contributed to the combined calculation of this variable as shown in Fig. 4. There was significant heterogeneity $[Tau^2 = 14.99, chi^2 = 873.05,$

Table 1 Characteristics of included studies

Trial	Country	Year	Age in years	Follow up in months	Disease stage
Arbman et al.	Sweden	2000	48(21-80)	12	II-IV degree haemorrhoids
СН					-
ОН					
Arroyo et al.	Spain	2004	43.5	12	I-IV degree haemorrhoids
СН					
ОН					
Carapeti et al.	UK	1999	46(36-75)		Degree of haemorrhoids was not reported
СН			44(27-68)		
ОН					
Gaj et al.	Italy	2007		6	III-IV degree haemorrhoids
СН	-				-
ОН					
Gencosmaoglu et al.	Turkey	2002	39.5(26-63)	19.5(4-40)	III-IV degree haemorrhoids
СН			40.5(27-68)		
ОН					
Ho et al.	Singapore	1997	45 ± 1.7	8.7 ± 0.2	III-IV degree haemorrhoids
СН					
ОН					
Johannsson et al.	Sweden	2006	53(27-82)	12	Degree of haemorrhoids was not reported
СН			52(22-82)		
OH					
Mik et al.	Poland	2008		18	III-IV degree haemorrhoids
СН					
OH					
Rehman et al.	Pakistan	2011	48.5(17-87)	6	III-IV degree haemorrhoids
СН					
OH					
Uba et al.	Nigeria	2004		3	II-III degree haemorrhoids
СН					
ОН					
You et al.	South Korea	2005	41(25–74)	12	II-IV degree haemorrhoids
СН					
OH					

df = 6, (p = 0.00001); I^2 = 99 %] among trials. In the random effects model (SMD, 6.10; 95 % CI, 3.21, 8.98; z = 4.13; p < 0.0001), the CH was associated with longer duration of operation.

Pain on defecation

Four included trials contributed to the combined calculation of this variable as shown in Fig. 5. There was significant heterogeneity [Tau² = 0.09, chi² = 10.90, df = 3, $(p = 0.01); I^2 = 72 \%$] among trials. In the random effects model (SMD, -0.33; 95 % CI, -0.68, 0.03; z = 1.82; p < 0.07), the pain scores were statistically similar following both CH and OH.

Length of hospital stay

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 6. There was significant heterogeneity [Tau² = 0.35, chi² = 105.88, df = 10, (p = 0.00001); $I^2 = 91$ %] among trials. In the random effects model (SMD, -0.36; 95 % CI, -0.73, 0.01; z = 1.89; p < 0.06), the length of hospital stay was statistically similar following both CH and OH.

Table 2 Treatment protocol adopted in included studies

Trial	Closed haemorrhoidectomy group	Open haemorrhoidectomy group
Arbman et al.	Jack knife position	Lithotomy position
	Elliptical incision and scissors dissection Partial open sphincterotomy	Pear shaped incision and scissors dissection up to dentate line where pedicle was ligated
	Wound closed with 5/0 polyglycolic acid continuous	Wound was left open
	suture	Regional anaesthesia and standard analgesia
	Regional anaesthesia and standard analgesia	
Arroyo et al.	Local anaesthetic in haemorrhoidal cushion	Same as except wound was not closed
	Diathermy dissection to base then pedicle ligation	Standard post-operative care in both arms
	Wound closure with 3/0 polyglycolic acid continuous suture	General, regional or spinal anaesthetic was used depending upon patient choice
Carapeti et al.	Procedure protocol was not reported	Procedure protocol was not reported
Gaj et al.	Not available	Not available
Gencosmaoglu	Local anaesthetic with adrenalin in haemorrhoidal	Local anaesthetic in haemorrhoidal cushion
et al.	cushion	Diathermy dissection to base then ligation of the pedicle
	Diathermy dissection to base then pedicle ligation	Wound was not closed
	Wound closure with 3/0 polyglactin continuous suture	
Ho et al.	Procedure was performed under general or spinal anaesthetic	Diathermy dissection to base but base was not ligated Wound was not closed
	Diathermy dissection to base then pedicle ligation	
	Wound closure with 3/0 polyglactin continuous suture	
Johannsson et al.	Diathermy or scissors for dissection	Procedure protocol was not reported
	Pedicle ligation by ligature	Wound was not closed
	4/0 polyglycolic acid for wound closure	Both sphincters were identified
	Both sphincters were identified	6 patients had sphincterotomy
	5 patients had sphincterotomy	One patient had anal dilatation
	Local anaesthetic was used in selected patients	Local anaesthetic was used in selected patients
Mik et al.	Not available	Not available
Rehman et al.	Procedure protocol was not reported	Procedure protocol was not reported
Uba et al.	Wound closed with 5/0 chromic catgut	
You et al.	Procedure was performed under general or spinal anaesthetic	Diathermy dissection to base but base was not ligated Wound was not closed
	Diathermy dissection to base then pedicle ligation	
	Wound closure with 3/0 polyglactin continuous suture	

Post-operative complications

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 7. There was significant heterogeneity [Tau² = 0.57, chi² = 24.97, df = 9, (p = 0.003); $I^2 = 64$ %] among trials. In the random effects model (OR, 0.81; 95 % CI, 0.44, 1.48; z = 0.69; p = 0.49), the risk of post-operative complications was similar in both groups.

Post-operative bleeding

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 8. There was no heterogeneity [Tau² = 0.12, chi² = 7.17, df = 6, (p = 0.31); $I^2 = 16 \%$] among trials. In the random effects model (OR, 0.50; 95 % CI, 0.27, 0.91; z = 2.27; p = 0.02), the risk of post-operative bleeding was higher following OH.

Trial	Randomization	Power calculations	Blinding	Concealment	Intention-to-treat
Arbman et al.	Random numbers allocation	Not reported	Not reported	Not reported	Not reported
Arroyo et al.	Random allocation	Not reported	Not reported	Not reported	Not reported
Carapeti et al.	Consecutive patients	Yes	Not reported	Not reported	Not reported
Gaj et al.	Not reported	Not reported	Not reported	Not reported	Not reported
Gencosmaoglu et al.	Random allocation	Not reported	Not reported	Not reported	Not reported
Ho et al.	Not reported	Not reported	Yes	Not reported	Not reported
Johannsson et al.	Random numbers in envelops	Yes	Not reported	Yes	Yes
Mik et al.	Not available	Not available	Not available	Not available	Not available
Rehman et al.	Random allocation	Not reported	Not reported	Not reported	Not reported
Uba et al.	Not reported	Not reported	Not reported	Not reported	Not reported
You et al.	Random number generation	Yes	No	Yes	Not reported

Table 3 Reported quality variables in included studies

Surgical site infection

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 9. There was no heterogeneity [Tau² = 0.0, chi² = 3.76, df = 4, (p = 0.44); $I^2 = 0$ %] among trials. In the random effects model (OR, 2.21; 95 % CI, 0.66, 7.39; z = 1.28; p = 0.20), the risk of post-operative surgical site infection was similar in both groups.

Delayed wound healing

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 10. There was significant heterogeneity [Tau² = 1.90, chi² = 34.02, df = 7, (p = 0.0001); $I^2 = 79$ %] among trials. In the random effects model (OR, 0.08; 95 % CI, 0.02, 0.24; z = 4.33; p < 0.0001), the risk of delayed wound healing was higher following OH.

Recurrence

Eleven included trials contributed to the combined calculation of this variable as shown in Fig. 11. There was no heterogeneity [Tau² = 0.00, chi² = 1.22, df = 3, (p = 0.75); $I^2 = 0$ %] among trials. In the random effects model (OR, 0.91; 95 % CI, 0.56, 1.48; z = 0.38; p = 0.70), the risk of HD recurrence was similar in both groups.

Discussion

Based upon the findings of this review CH was associated with a reduced post-operative pain, faster wound healing, lesser risk of post-operative bleeding but prolonged duration of operation. The variables such as pain on defecation, length of hospital stay, post-operative complications, HD recurrence and the risk of surgical site infection were similar in both groups. Therefore, it is fair to conclude that CH has shown clinically measurable advantages over OH for reduced post-operative pain, lower risk of post-operative bleeding and faster wound healing. Findings of this review are contradictory to previously published meta-analysis of six randomized, controlled trials [33]. Study published by Ho et al. in 2007 advocated the faster wound healing and failed to demonstrate other potential advantages of CH. However, current review of eleven randomized, controlled trials on 1326 patients validated the previously reported variable of faster wound healing in addition to the lower post-operative pain, reduced risk of post-operative bleeding with slightly longer duration of operation.

The included randomized, controlled trials evaluated post-operative pain as primary or secondary outcomes according to the pre-trial analysis strategy. The use of postoperative pain as primary or secondary endpoints following CH or OH was well targeted because the post-operative pain is a major burden of morbidity in patients undergoing HD surgery. This outcome was thoroughly investigated and adequately reported in included randomized, controlled trials. However, present review still has some limitations. Studies included in this review that recruited a small number of patients may not have had sufficient power to reveal small differences in outcomes. Due to fewer numbers of patients and fewer trials on this subject, it is still unwise to generalize the results of this study to all groups of patients undergoing HD surgery. Six included studies were of poor methodological quality. The major methodological flaws in included trials were the lack of a uniformed and standardized pain measuring tool. The surgeons performing procedure were of variable experience

Closed haemorrhoidectomy for haemorrhoidal disease

Patient or population: patients with haemorrhoidal disease

Settings: Inton Closed beamarchaidactamy

Duration of operation Standardised mean difference Follow-up: 2-24 months Postoperative pain Standardised mean difference				Assessed		
Postoperative pain Standardised mean difference		The mean duration of operation in the intervention groups was 6.1 standard deviations higher (3.21 to 8.98 higher)		924 (7 studies)	⊕⊕⊕⊝ moderate	SMD 6.1 (3.21 to 8.98)
Follow-up: 2-24 months		The mean postoperative pain in the intervention groups was 0.36 standard deviations lower (0.64 to 0.07 lower)		809 (6 studies)	⊕⊕⊕⊝ moderate	SMD -0.36 (-0.64 to -0.07
Pain on defecation Standardised mean difference Follow-up: 2-24 months		The mean pain on defecation in the intervention groups was 0.33 standard deviations lower (0.68 lower to 0.03 higher)		507 (4 studies)	⊕⊕⊕⊝ moderate	SMD -0.33 (-0.68 to 0.03)
Length of hospital stay Standardised mean difference Follow-up: 2-24 months		The mean length of hospital stay in the intervention groups was 0.36 standard deviations lower (0.73 lower to 0.01 higher)		1326 (11 studies)	⊕⊕⊕⊜ moderate	SMD -0.36 (-0.73 to 0.01)
Operative complications S	Study populat	ion	OR 0.81	1326	000	
Odds ratio Follow-up: 2-24 months	95 per 1000	164 per 1000 (96 to 263)	(0.44 to 1.48)	(11 studies)	moderate	
M	Moderate					
14	47 per 1000	122 per 1000 (70 to 203)				
Bleeding S	Study populat	ion	OR 0.5	1326	0000	
Odds ratio Follow-up: 2-24 months	13 per 1000	60 per 1000 (33 to 104)	(0.27 to 0.91)	(11 studies)	moderate	
M	Moderate					
25	5 per 1000	13 per 1000 (7 to 23)				
Wound infection S	Study populat	ion	OR 2.21	1326	0000 0000	
Odds ratio Follow-up: 2-24 months	per 1000	10 per 1000 (3 to 32)	(0.66 to 7.39)	(11 studies)	moderate	
M	Moderate					
0	per 1000	0 per 1000 (0 to 0)				
Delayed wound healing S	Study populat	ion	OR 0.08	1326	@@@@	
Odds ratio Follow-up: 2-24 months	54 per 1000	42 per 1000 (11 to 116)	(0.02 to 0.24)	(11 studies)	moderate	
M	Moderate					
23	31 per 1000	23 per 1000 (6 to 67)				
Recurrence S	Study populat	ion	OR 0.91	1326	0000	
Odds ratio Follow-up: 2-24 months	5 per 1000	59 per 1000 (37 to 93)	(0.56 to 1.48)	(11 studies)	moderate	
M	Moderate					
0	per 1000	0 per 1000 (0 to 0)				

GRADE Working Group grades of evidence High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate. Very low quality: We are very uncertain about the estimate.

Fig. 2 Summary and strength of the evidence from trials analysed on GradePro®

Fig. 3 Forest plot for post-	~		СН	.		OH	.		Std. Mean Difference	Std. Mean Difference
	Study or Subgroup	Mean	SD	lotal	Mean	SD	lotal	weight	IV, Random, 95% Cl	IV, Random, 95% Cl
CH versus OH. Standardized	Arbman 2000	65	34.8	38	54	34.8	39	14.8%	0.31 [-0.14, 0.76]	
mean differences are shown	Arroyo 2004	55	14.8	100	65	14.8	100	18.9%	-0.67 [-0.96, -0.39]	_ -
with 95 % confidence intervals.	Gaj 2007	55	14.8	80	65	14.8	80	18.0%	-0.67 [-0.99, -0.35]	
CH closed haemorrhoidectomy,	Ho 1997	50	15	33	50	17	34	14.1%	0.00 [-0.48, 0.48]	
OH open haemorrhoidectomy	Johannsson 2006	29	11.25	110	33	10.75	115	19.4%	-0.36 [-0.63, -0.10]	
	You 2005	35	15	40	43	12.5	40	14.8%	-0.57 [-1.02, -0.13]	
	Total (95% CI)			401			408	100.0%	-0.36 [-0.64, -0.07]	•
	Heterogeneity: Tau ² = Test for overall effect:	0.09; Cł Z = 2.45	ni² = 19. (P = 0.1	.24, df= D1)	: 5 (P =	0.002);	² = 749	%		-1 -0.5 0 0.5 1 Favours CH Favours OH

Fig. 4 Forest plot for duration of operation following CH versus OH. Standardized mean differences are shown with 95 % confidence intervals. *CH* closed haemorrhoidectomy, *OH* open haemorrhoidectomy

		СН			OH		9	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Arbman 2000	29	8.3	38	24	8.3	39	14.4%	0.60 [0.14, 1.05]	•
Arroyo 2004	29	0.5	100	24	0.5	100	14.2%	9.96 [8.94, 10.99]	+
Gaj 2007	29	0.5	80	24	0.5	80	14.2%	9.95 [8.81, 11.10]	+
Gencosmaoglu 2002	45	8	40	35	7	40	14.4%	1.32 [0.83, 1.80]	•
Ho 1997	10	0.9	33	9.1	0.7	34	14.4%	1.11 [0.59, 1.62]	•
Rehman 2011	48.25	0.5	130	38.76	0.5	130	13.8%	18.92 [17.27, 20.58]	+
You 2005	25.2	7	40	16.5	4.5	40	14.4%	1.46 [0.97, 1.96]	•
Total (95% CI)			461			463	100.0%	6.10 [3.21, 8.98]	•
Heterogeneity: Tau ² = 1	4.99; Ch	j² = 8	73.05,	df = 6 (i	P < 0.	00001)); I ^z = 99%		
Test for overall effect: Z	= 4.13 (F	° < 0.	.0001)						Favours CH Favours OH

Fig. 5 Forest plot for pain on defecation following CH versus OH. Standardized mean differences are shown with 95 % confidence intervals. *CH* closed haemorrhoidectomy, *OH* open haemorrhoidectomy

		СН			OH			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Arroyo 2004	50	179	100	85	179	100	29.0%	-0.19 [-0.47, 0.08]	
Gaj 2007	50	179	80	85	179	80	27.7%	-0.19 [-0.51, 0.12]	
Ho 1997	40	20	33	40	25	34	21.4%	0.00 [-0.48, 0.48]	
You 2005	37	15	40	52	15	40	21.9%	-0.99 [-1.46, -0.52]	
Total (95% CI)			253			254	100.0%	-0.33 [-0.68, 0.03]	•
Heterogeneity: Tau ² =	: 0.09; C	hi² = 1	0.90, d	f=3(P	= 0.01	1); l² = ī	2%		
Test for overall effect:	Z=1.82	(P =	0.07)						-1 -0.5 0 0.5 1 Favours CH Favours OH

Fig. 6 Forest plot for length of			СН			ОН			Std. Mean Difference	Std. Mean Difference
hospital stay following CH	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
versus OH. Standardized mean	Arbman 2000	2.1	1.2	38	2.2	1.2	39	9.1%	-0.08 [-0.53, 0.36]	
differences are shown with	Arroyo 2004	1	0.5	100	1	0.5	100	9.9%	0.00 [-0.28, 0.28]	
95 % confidence intervals. CH	Carapeti 1999	1	0.5	18	1	0.5	17	7.9%	0.00 [-0.66, 0.66]	
closed haemorrhoidectomy, OH	Gaj 2007	1	0.5	80	1	0.5	80	9.8%	0.00 [-0.31, 0.31]	
open haemorrhoidectomy	Gencosmaoglu 2002	2.8	0.7	40	2.9	0.9	40	9.2%	-0.12 [-0.56, 0.32]	
	Ho 1997	1.5	2.7	33	2	0.75	34	8.9%	-0.25 [-0.73, 0.23]	
	Johannsson 2006	2	1.75	110	1.5	2	115	10.0%	0.26 [0.00, 0.53]	
	Mik 2008	30.8	0.5	34	30.9	0.5	29	8.8%	-0.20 [-0.69, 0.30]	
	Rehman 2011	2.8	0.7	130	2.9	0.9	130	10.0%	-0.12 [-0.37, 0.12]	
	Uba 2004	3	0.5	40	5	0.5	39	7.2%	-3.96 [-4.73, -3.19]	(
	You 2005	2	5	40	5	12.5	40	9.1%	-0.31 [-0.75, 0.13]	
	Total (95% CI)			663			663	100.0%	-0.36 [-0.73, 0.01]	
Heterogeneity: Tau² = 0.35; Chi² = 105.88, df = 10 (P < 0.00001 Test for overall effect: Z = 1.89 (P = 0.06)							1001); P	'= 91%		-0.5 -0.25 0 0.25 0.5 Favours CH Favours OH

Fig. 7 Forest plot for post- operative complications	Study or Subaroup	CH Events	Total	OH Events	Total	Weight	Odds Ratio M-H. Random, 95% Cl	Odds Ratio M-H. Random, 95% Cl
following CH versus OH. Odds ratios are shown with 95 % confidence intervals. <i>CH</i> closed haemorrhoidectomy, <i>OH</i> open haemorrhoidectomy	Study or Subgroup Arbman 2000 Arroyo 2004 Carapeti 1999 Gaj 2007 Gencosmaoglu 2002 Ho 1997 Johannsson 2006 Mik 2008 Rehman 2011 Uba 2004 You 2005 Total (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z	Events 5 2 0 10 5 3 12 11 30 12 6 .53; Chi [≠] : 96 .53; Chi [≠] :	Total 388 100 18 80 40 33 110 34 130 40 40 663 = 24.97 = 0.49	Events 10 3 0 15 0 5 2 60 18 11 129 7, df = 9 (F)	Total 39 100 17 80 40 34 115 29 130 39 40 34 115 29 130 39 40 663 29=0.00	Weight 10.5% 6.8% 12.9% 3.4% 8.3% 11.3% 7.8% 15.5% 11.0% 10.5% 10.0% 03); I ² = 6-1	M-H, Random, 95% CI 0.44 [0.13, 1.44] 0.66 [0.11, 4.04] Not estimable 0.62 [0.26, 1.48] 12.55 [0.67, 235.00] 0.58 [0.13, 2.65] 2.69 [0.92, 7.92] 6.46 [1.30, 32.17] 0.35 [0.21, 0.60] 0.50 [0.20, 1.26] 0.47 [0.15, 1.41] 0.81 [0.44, 1.48] 4%	M.H. Random, 95% Cl
	restion overall ellect. Z	- 0.09 (F	- 0.49	/				Favours CH Favours OH

Fig. 8 Forest plot for post-		СН		OH			Odds Ratio	Odds Ratio
operative bleeding following	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
CH versus OH. Odds ratios are	Arbman 2000	1	38	4	39	6.6%	0.24 [0.03, 2.22]	
shown with 95 % confidence	Arroyo 2004	0	100	0	100		Not estimable	
intervals. CH closed	Carapeti 1999	0	18	0	17		Not estimable	
haemorrhoidectomy, OH open	Gaj 2007	0	80	0	80		Not estimable	
haemorrhoidectomy	Gencosmaoglu 2002	0	40	0	40		Not estimable	
	Ho 1997	3	33	2	34	9.2%	1.60 [0.25, 10.25]	
	Johannsson 2006	4	110	2	115	10.6%	2.13 [0.38, 11.88]	
	Mik 2008	3	34	3	29	11.0%	0.84 [0.16, 4.51]	
	Rehman 2011	27	130	57	130	48.3%	0.34 [0.19, 0.58]	
	Uba 2004	2	40	6	39	11.1%	0.29 [0.05, 1.53]	
	You 2005	0	40	1	40	3.3%	0.33 [0.01, 8.22]	
	Total (95% CI)		663		663	100.0 %	0.50 [0.27, 0.91]	•
	Total events	40		75				
	Heterogeneity: Tau ² = 0	.12; Chi²:	= 7.17,	df = 6 (P :	= 0.31)	; I² = 16%		
	Test for overall effect: Z	= 2.27 (P	= 0.02))				Favours CH Favours OH

Fig. 9 Forest plot for surgical		СН		ОН			Odds Ratio	Odds Ratio
site infection following CH	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
versus OH. Odds ratios are	Arbman 2000	0	38	1	39	14.0%	0.33 [0.01, 8.44]	
shown with 95 % confidence	Arroyo 2004	0	100	0	100		Not estimable	
intervals. CH closed	Carapeti 1999	0	18	0	17		Not estimable	
haemorrhoidectomy, OH open	Gaj 2007	0	80	0	80		Not estimable	
haemorrhoidectomy	Gencosmaoglu 2002	0	40	0	40		Not estimable	
	Ho 1997	0	33	0	34		Not estimable	
	Johannsson 2006	3	110	0	115	16.5%	7.52 [0.38, 147.30]	
	Mik 2008	4	34	0	29	16.6%	8.70 [0.45, 168.87]	
	Rehman 2011	2	130	2	130	37.4%	1.00 [0.14, 7.21]	
	Uba 2004	2	40	0	39	15.5%	5.13 [0.24, 110.36]	
	You 2005	0	40	0	40		Not estimable	
	Total (95% Cl)		663		663	100.0%	2.21 [0.66, 7.39]	•
	Total events	11		3				
	Heterogeneity: Tau ² = 0).00; Chi ²÷	= 3.76,	df = 4 (P	= 0.44)	; l² = 0%		
	Test for overall effect: Z	= 1.28 (P	= 0.20)				0.005 0.1 1 10 200
								Favours CH Favours OH

Fig. 10 Forest plot for delayed		СН		ОН			Odds Ratio	Odds Ratio
wound healing following CH	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
wound healing following CH versus OH. Odds ratios are shown with 95 % confidence intervals. <i>CH</i> closed haemorrhoidectomy, <i>OH</i> open haemorrhoidectomy	Study or Subgroup Arbman 2000 Arroyo 2004 Carapeti 1999 Gaj 2007 Gencosmaoglu 2002 Ho 1997 Johannsson 2006 Mik 2008 Rehman 2011 Uba 2004 You 2005 Total (95% CI) Total events	Events 1 10 0 0 0 12 0 0 12 0 0 12 0 0 11 10 34	Total 38 100 18 80 40 33 110 34 130 40 40 40 663	Events 9 60 1 40 0 0 1 9 33 235 235	Total 39 100 17 80 40 34 115 29 130 39 40 563	Weight 11.6% 17.4% 9.0% 17.4% 9.0% 17.4% 9.1% 11.6% 16.2% 100.0%	M-H, Random, 95% Cl 0.09 [0.01, 0.75] 0.07 [0.03, 0.16] 0.30 [0.01, 7.81] 0.01 [0.00, 0.10] Not estimable 0.62 [0.28, 1.34] Not estimable 0.00 [0.00, 0.06] 0.09 [0.01, 0.71] 0.07 [0.02, 0.24]	M-H, Random, 95% Cl
	Heterogeneity: Tau ² = 1 Test for overall effect: Z	.90; Chi²: = 4.33 (P	= 34.02 < 0.00	, df = 7 (F 01)	' < 0.00)01); I² = 7	79%	0.005 0.1 1 10 200 Favours CH Favours OH

Fig. 11 Forest plot for		СН		ОН			Odds Ratio	Odds Ratio
recurrence following CH versus OH. Odds ratios are shown with 95 % confidence intervals. <i>CH</i> closed haemorrhoidectomy, <i>OH</i> open haemorrhoidectomy	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
	Arbman 2000	12	38	16	39	27.5%	0.66 [0.26, 1.69]	
	Arroyo 2004	0	100	0	100		Not estimable	
	Carapeti 1999	0	18	0	17		Not estimable	
	Gaj 2007	0	80	0	80		Not estimable	
	Gencosmaoglu 2002	0	40	0	40		Not estimable	
	Ho 1997	0	33	0	34		Not estimable	
	Johannsson 2006	20	110	18	115	49.3%	1.20 [0.60, 2.41]	
	Mik 2008	2	34	2	29	5.9%	0.84 [0.11, 6.40]	
	Rehman 2011	5	130	7	130	17.4%	0.70 [0.22, 2.27]	
	Uba 2004	0	40	0	39		Not estimable	
	You 2005	0	40	0	40		Not estimable	
	Total (95% CI)		663		663	100.0%	0.91 [0.56, 1.48]	•
	Total events	39		43				
	Heterogeneity: Tau ² = 0.00; Chi ² = 1.22, df = 3 (P = 0.75); i ² = 0%							
	Test for overall effect: Z = 0.38 (P = 0.70)							0.2 0.5 1 2 5
								Favours CH Favours OH

and operator dependent pain score differences were not reported adequately. Therefore, a major multicentre, high powered, randomized, controlled trial is mandatory to validate the findings of this review and until then current study may assist colorectal surgeons in decision making about which technique should be adopted to perform haemorrhoidectomy for third-degree and fourth-degree haemorrhoids.

Authors Contribution Study conception: Mr MS Sajid, MBBS, MBA, MSc, FRCS, Specialist Registrar Colorectal Surgery; Mr MK Baig, MBBS, MD, FRCS, Consultant Colorectal Surgeon. Design: Mr MS Sajid, Mr MI Bhatti, MBBS, FRCS, Specialist Registrar Colorectal Surgery. Literature search: Mr MS Sajid, Mr MI Bhatti. PRISMA flow chart for study selection: Mr MS Sajid, Mr MI Bhatti, Mr MK Baig. Data acquisition: Mr MS Sajid, Mr I Bhatti. Data confirmation: Mr MK Baig. Data analysis: Mr MS Sajid, Mr MK Baig, Mr I Bhatti. Data interpretation: Mr MS Sajid, Mr MK Baig, Mr WFA Miles, Mr MI Bhatti. Proofreading of the article: Mr MK Baig.

Final approval of the version to be published: Mr MS Sajid, Mr MI Bhatti, Mr MK Baig.

Compliance with ethical standards

Conflict of Interest None to declare.

Disclosures All authors have read the manuscript and agreed for submission. We also declare no conflict of interest, no financial disclosure needs be declared and we do not have any political interest in the publication of this article. We are happy to transfer all publishing rights to CD and associated companies for this article if accepted for publication.

References

- 1. Dal Monte PP, Tagariello C, Sarago M et al (2007) Transanal haemorrhoidal dearterialisation: nonexcisional surgery for the treatment of haemorrhoidal disease. Tech Coloproctol 11:333–338
- 2. Jayaraman S, Colquhoun PH, Malthaner RA (2007) Stapled hemorrhoidopexy is associated with a higher long-term

recurrence rate of internal hemorrhoids compared with conventional excisional hemorrhoid surgery. Dis Colon Rectum 50:1297–1305

- 3. Carapeti EA, Kamm MA, McDonald PJ et al (1998) Double-blind randomised controlled trial of effect of metronidazole on pain after day-case haemorrhoidectomy. Lancet 351:169–172
- 4. Wałega P, Scheyer M, Kenig J et al (2008) Two-center experience in the treatment of hemorrhoidal disease using Dopplerguided hemorrhoidal artery ligation: functional results after 1-year follow-up. Surg Endosc 22:2379–2383
- Wexner SD (2001) The quest for painless surgical treatment of hemorrhoids continues. J Am Coll Surg 193:174–178
- Milligan ET, Morgan CN, Jones LE et al (1937) Surgical anatomy of the anal canal and the operative treatment of haemorrhoids. Lancet 2:1119–1124
- Ferguson JA, Heaton JR (1959) Closed hemorrhoidectomy. Dis Colon Rectum 2(176):179
- Wolfe JS, Munoz JJ, Rosin JD (1979) Survey of haemorrhoidectomy practices: open versus closed techniques. Dis Colon Rectum 22:536–538
- Khubchandani IT, Trimpi HD, Sheets JA (1972) Closed haemorrhoidectomy with local anesthesia. Surg Gynecol Obstet 135:955–957
- Shaikh AR, Dalwani AG, Soomro N (2013) An evaluation of Milligan-Morgan and Ferguson procedures for haemorrhoidectomy at Liaquat University Hospital Jamshoro, Hyderabad, Pakistan. Pak J Med Sci 29:122–127
- Pokharel N, Chhetri RK, Malla B et al (2009) Haemorrhoidectomy: Ferguson's (closed) vs Milligan Morgan's technique (open). Nepal Med Coll J 11:136–137
- Higgins JPT, Green S (eds) Cochrane handbook for systematic reviews of interventions version 5·3·. http://www.cochrane-hand book.org. Accessed 30 May 2015
- Review Manager (RevMan) [Computer program] (2008) Version 5.0. The Nordic Cochrane Centre. The Cochrane Collaboration, Copenhagen
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188
- DeMets DL (1987) Methods for combining randomized clinical trials: strengths and limitations. Stat Med 6:341–350
- Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558
- 17. Egger M, Smith GD, Altman DG (2006) Systematic reviews in healthcare. BMJ Publishing, London
- Deeks JJ, Altman DG, Bradburn MJ (2001) Statistical methods for examining heterogeneity and combining results from several

studies in meta-analysis. In: Egger M, Smith GD, Altman DG (eds) Systemic reviews in health care: meta-analysis in context, 2nd edn. BMJ Publication group, London

- Jadad AR, Moore RA, Carroll D et al (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12
- Chalmers TC, Smith H Jr, Blackburn B et al (1981) A method for assessing the quality of a randomized control trial. Control Clin Trials 2:31–49
- Cochrane IMS http://ims.cochrane.org/revman/otherresources/ gradepro/download. Accessed 30 May 2015
- 22. Arbman G, Krook H, Haapaniemi S (2004) Closed vs. open hemorrhoidectomy-is there any difference? Dis Colon Rectum 43:31-34
- Arroyo A, Pérez F, Miranda E et al (2004) Open versus closed day-case haemorrhoidectomy: is there any difference? Results of a prospective randomised study. Int J Colorectal Dis 19:370–373
- Carapeti EA, Kamm MA, McDonald PJ et al (1999) Randomized trial of open versus closed day-case haemorrhoidectomy. Br J Surg 86:612–613
- Gaj F, Trecca A, Crispino P (2007) Transfixed stitches technique versus open haemorrhoidectomy. Results of a randomised trial. Chir Ital 59:231–235
- Gençosmanoğlu R, Sad O, Koç D et al (2002) Hemorrhoidectomy: open or closed technique? A prospective, randomized clinical trial. Dis Colon Rectum 45:70–75
- Ho YH, Seow-Choen F, Tan M et al (1997) Randomized controlled trial of open and closed haemorrhoidectomy. Br J Surg 84:1729–1730
- Jóhannsson HO, Påhlman L, Graf W (2006) Randomized clinical trial of the effects on anal function of Milligan-Morgan versus Ferguson haemorrhoidectomy. Br J Surg 93:1208–1214
- Mik M, Rzetecki T, Sygut A et al (2008) Open and closed haemorrhoidectomy for fourth degree haemorrhoids-comparative one center study. Acta Chir Iugosl 55:119–125
- Khalil-ur-Rehman Hasan A, Taimur M et al (2011) A comparison between open and closed hemorrhoidectomy. J Ayub Med Coll Abbottabad 23:114–116
- Uba AF, Obekpa PO, Ardill W (2004) Open versus closed haemorrhoidectomy. Niger Postgrad Med J 11:79–83
- You SY, Kim SH, Chung CS et al (2005) Open vs. closed haemorrhoidectomy. Dis Colon Rectum 48:108–113
- Ho YH, Buettner PG (2007) Open compared with closed haemorrhoidectomy: meta-analysis of randomized controlled trials. Tech Coloproctol 11:135–143