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Abstract. Nitric oxide is a short-lived free radical that acts at the molecu-
lar, cellular, and physiologic level. Since its discovery almost 20 years ago it
has proven itself as an important element in wound healing. This review
highlights many of the important aspects of nitric oxide in wound healing,
including a review of the basic biology of nitric oxide, its role as part of the
cytokine cascade and as a promoter of angiogenesis, as well as its more
recently elucidated role in apoptosis.

It has been known for over 20 years that arginine enhances wound
collagen synthesis and wound breaking strength during normal and
impaired healing. The exact mechanism of action is not known, but
it is under intense study. One avenue that our laboratory has pur-
sued is to study the expression and activity of the various metabolic
pathways of arginine within the wound (Fig. 1). We know that
wound arginine is metabolized via both the nitric oxide (NO) syn-
thesis pathway and the urea synthesis pathway. The temporal ex-
pression and regulation of these degradative pathways may well
explain the biological and pharmacological effect of arginine on
wound healing. This article examines the current status of knowl-
edge concerning the role of wound nitric oxide synthesis.

Nitric Oxide is a short-lived free radical formed from the termi-
nal guanidino nitrogen atom of arginine. The guanidino nitrogen
accepts five electrons in an oxidation process requiring molecular
oxygen, resulting in formation of NO and citrulline. Nitric oxide
synthases, the enzymes responsible for this conversion, are ho-
modimeric flavoprotein enzymes (130–150 kDA subunits). Tetra-
hydrobiopterin, flavine mononucleotide (FMN), flavine adenine
dinucleotide (FAD), nicotinamide-adenine-dinucleotide phos-
phate (NADPH), and oxygen are required as co-factors for full ac-
tivity [1]. The NO synthases exist in three distinct isoforms, two
constitutive (endothelial and neuronal) isoforms and one inducible
isoform. The constitutive isoforms are permanently active, gener-
ating low concentrations of NO, and they are regulated by intracel-
lular calcium fluxes or exogenous calmodulin. The expression, tran-
scription, and function of the inducible isoform (iNOS) is induced
by a variety of cytokines, growth factors, and inflammatory stimuli

on target cells; their action leads to release of high levels of NO
over and above the amounts generated by the constitutive isoforms.

The high amounts of NO formed by the inducible isoform ac-
count for some of its detrimental effects in inflammatory situations
such as sepsis [2]. The inducible isoform of NO is also expressed
during wound healing, burn injury, endotoxin exposure, arthritis,
and inflammatory bowel diseases.

NO Expression in Healing Wounds

Levels of arginine, a semi-essential amino acid [3], become criti-
cally low after wounding. Arginase levels are high in wound fluid,
and they increase with the age of the wound. Thus arginine com-
petes with iNOS for substrate and may downregulate NO synthesis
during wound healing. Indeed, NO synthesis in macrophages can
be impaired by arginine consumption by arginase [4]. To date there
are no data, however, on the interaction and competition of these
two alternate pathways and their affects on wound healing. It
should be noted that L-hydroxy-arginine and nitrite, the intermedi-
ate and end products, respectively, of NO synthesis, are both strong
arginase inhibitors [5, 6]. Furthermore, urea, the end product of
arginase activity, inhibits NO formation [7]. Distinct cytokines fa-
vor the various degradative pathways. For example, transforming
growth factor-beta (TGF-�) and interleukin-4 (IL-4) increase ar-
ginase and inhibit iNOS activity, whereas gamma-interferon (IFN-
�), IL-1, and lipopolysaccharide(LPS) work inversely [8–10].

Because NO is difficult to measure directly, stable metabolites
are used as surrogates for NO formation. Nitrite and nitrate, two
widely used stable end products, can be measured in wound fluid
[11]. However, these measurements should not be translated as
equimolar formation of NO because non-enzymatic NO formation
can occur [12]. Several other direct or indirect detection methods
can be performed, such as immunohistochemistry, direct measure-
ment of enzyme content and/or activity, peroxynitrite formation in
tissue, gene expression and others. However, no study to date has
investigated arginine kinetics after wounding taking into account
local and systemic arginine metabolism [13, 14].

Before NO was known, Albina et al. investigated arginine me-
tabolism in wounds and demonstrated increased citrulline forma-Correspondence to: Adrian Barbul, M.D., e-mail: abarbul@jhmi.edu
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tion, which was imputed to an arginine deiminase-like activity [15].
Up until that report, this pathway of arginine disposal had been
described only in bacteria and fungi. Subsequently, generation of
NO during wound healing was deduced by demonstrating in-
creased urinary nitrate secretion after wounding [16]. Thereafter
several studies confirmed these data and extended the findings to
healing after burn injury [17, 18]. In these models, urinary nitrate
levels remained elevated until complete healing had occurred.
Later experiments confirmed that the highest NOS activity occurs
during the early phases of wound healing [19].

With a polyvinyl alcohol sponge model in rats, a progressive ac-
cumulation of nitrate/nitrite in wound fluid can be demonstrated,
suggesting sustained NO synthesis [20]. However species-specific
differences in the kinetics of NO formation exist [21]. With the de-
velopment of the inducible NOS isoform–specific antibodies and
primers for transcriptional and translational analysis, it was dem-
onstrated that iNOS expression is highest in the early phase after
acute inflammation. Reverse-transcriptase polymerase chain reac-
tion (RT-PCR) and Northern blotting detect iNOS during the first
5 days in rat models of healing [22, 23].

It is conceivable that the majority of NO synthesis is due to the
inflammatory cells present during the early phase of healing, espe-
cially macrophages [24]. However, fibroblasts, keratinocytes, and
endothelial cells contribute to ongoing NO synthesis, although to a
lesser degree [25, 26]. Therefore the overall time course of iNOS
activity and NO generation during wound healing has to be viewed
as a decreasing curve over time (Fig. 2).

Although the in vitro signals of iNOS induction are well eluci-
dated, little is known of the in vivo signals during wound healing. Of
the numerous cytokines and growth factors secreted and released
into the wound environment, interleukin-1, tumor necrosis factor-
alpha (TNF-�), and INF- � are the most likely inducers of iNOS.
Wound fluid, as a biological reflection of the wound environment,
induces NO synthesis in a variety of cells [27].

Although iNOS expression is high during the early phases of
wound healing, little is known about the downregulation of iNOS
activity at the wound site during the later phases of healing. Pre-
sumably iNOS activity can be downregulated by the resolution of
the inflammatory response or by cytokine signaling. It is likely that
colonized or infected wounds with continued inflammatory re-
sponses would continue to generate large amounts of NO, although
this has not been studied directly [28]. TGF-�1 is one of the strong-
est iNOS inhibitors during wound healing [29]. However even dur-
ing the inflammatory phase of wound healing there is counter-

regulation of NO synthesis, as demonstrated by the presence of an
unknown factor that reduces iNOS activity, but not by substrate
depletion [25].

Mechanism of Action of NO during Wound Healing

Nitric oxide acts via multiple and different mechanisms. Some of its
effects are due to its chemical reaction with oxygen leading to for-
mation of reactive radical species [30]. Others are due to its affinity
with heme or metal-containing enzymes such as the iron in guanyl-
cyclase. At the molecular level, NO has been shown to act as a sig-
naling molecule that operates via guanylate cyclase to activate
cGMP. In addition, NO acts as a cytostatic/cytotoxic molecule in-
hibiting cytochromes and aconitase, as well as ribonucleotide re-
ductase. Nitric oxide also regulates gene expression by reacting
with the thiol binding site of the transcription factor NF-kappa
beta. By nitrosylating NF-kappa beta, NO prevents binding to the
iNOS promoter, suggesting a feedback inhibition mechanism. Ni-
tric oxide has been shown to induce apoptosis via p53 mechanisms
in neuroblastoma cells [31]. Yet, at the same time, NO inhibits ac-
tivation of caspases and thereby prevents apoptosis.

In higher concentrations NO is cytostatic to multiple cell types
including endothelial cells, smooth muscle cells, hepatocytes, and
fibroblasts [32–34]. Depending on the cell type, this effect can be
cGMP dependent [35] or independent [36]. Target enzymes in-
clude the complex I and II of the respiratory chain [37] and ribo-
nucleotide reductase [38], a rate-limiting enzyme in the DNA syn-
thetic pathway. Conversely, NO can stimulate cell proliferation
when added in low concentrations [39, 40]. Recent evidence sug-
gests that NO inhibits ornithine-decarboxylase activity, the rate-
limiting enzyme for polyamine formation, thus reducing cell prolif-
eration [41].

Nitric oxide regulates gene expression [42, 43] and cellular dif-
ferentiation [44, 45]. Regulation of gene expression by NO prob-
ably occurs indirectly, through amplification of other regulatory
mechanisms [46]. For example, although NO is critical for wound

Fig. 1. Arginine metabolism in wounds.

Fig. 2. Time course of NO byproducts (citrulline, ornithine, and NO2) in
wound fluid. Ornithine: dashed line; NO2: solid line; citrulline, dotted line.
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collagen deposition, clear-cut enhancement of collagen synthesis
or gene expression has not been found (see below). Collagen me-
tabolism and accumulation are tightly regulated through the activ-
ity of collagenases and their inhibitors, tissue inhibitors of metallo-
proteinases (TIMP). Inhibiting the collagenolytic pathway can
enhance collagen accumulation. Addition of the NO donor, SNAP,
to rat mesangial cells increases gelatinase A activity [47], whereas
rat fibroblasts collagenase activity is unaffected by SNAP [35]. An-
other potential mechanism of posttranslational collagen regulation
by NO is regulation of protein kinase C (PKC) activity [48, 49]. By
inhibiting PKC activity, NO could potentially downregulate PKC-
related collagen synthesis in fibroblasts.

Platelet deposition and degranulation initiates a cytokine explo-
sion of which NO release acts as both stimulant and inhibitor of the
inflammation cascade. For instance, NO activates the promoter of
the IL-8 gene in a human melanoma cell line. In turn, IL-8 sup-
presses the expression of iNOS in neutrophils [50]. Transforming
growth factor-�1 is another chemoattractant that has been shown
to be integrally related to NO; TGF-� suppresses NO production,
and at the same time NO can lead to the activation of latent TGF-
�1 [51]. Nitric oxide also acts as an immune modulator by attracting
monocytes and neutrophils to the wound. Once neutrophils and
monocytes are called to action, they become integral players in the
cytokine cascade producing TNF-� [52–54]. Nitric oxide affects the
expression of TNF-� directly in human peripheral blood mono-
cytes through a cGMP-independent mechanism [55].

The expression of the monocyte-attracting macrophage chemo-
attractant protein-1, produced by hyperproliferative keratinocytes
at the wound edge, appears to be downregulated by NO at the
wound site [56]. This possibility supports a temporal relationship
for NO in normal wound healing. Nitric oxide is initially involved in
the upregulation of the cytokine cascade, acting as a chemoattrac-
tant for immune regulatory cells; thus it is vital to the early stage of
wound healing. However, the inflammatory phase of wound heal-
ing must move into a proliferative phase for wound healing to prog-
ress to completion. Nitric oxide has been shown to be involved in
this transition, further supporting a temporal role for NO during
normal wound healing.

There is increasing evidence for a functional role of NO in
wound healing. Inhibition of iNOS by competitive inhibitors de-
creases collagen deposition and breaking strength in incisional
wounds and impairs the healing of other wound models [57–59].
When rats are fed an arginine-free diet, wound healing is impaired:
conversely, when humans and animals are fed an arginine-enriched
diet there is improved healing as measured by collagen deposition
and breaking strength [60–62]. Arginine-supplemented rats have
higher levels of NO metabolites in their wound fluid, strongly sug-

gesting that the supplemental arginine is metabolized, at least in
part, via NO synthesis [63]. Finally, use of NO donors also improves
incisional and excisional wound healing in rats [64–66]. The data
demonstrating that NO has a positive regulatory effect on repair is
summarized in Table 1.

The mechanism of action of NO on wound healing remains un-
clear. However, there are data suggesting that at least some effects
of NO on wound healing might be systemically mediated: (1) argi-
nine-free nutrition inhibits LPS-induced NO synthesis in several
organs, not only at the wound site [67]; (2) NO mediates inflamma-
tion-induced edema formation and inhibits cell infiltration into
granulomas [68, 69]; (3) the effect of NO on wound healing is not
only iNOS-mediated because eNOS knock-out mice also demon-
strate impaired healing [70]; and (4) iNOS inhibitors have a high
lethality when present in high concentration [54].

In vitro studies of fibroblasts derived from keloids and hypertro-
phic scars demonstrate low constitutive NOS expression, thus
stimulating higher cell proliferation, which is responsible for the
high cellularity characteristic of these disorders. In vivo, keratino-
cyte proliferation is iNOS-dependent [23] and wound reepitheliali-
sation is also NO-dependent, probably mediated indirectly via vas-
cular endothelial growth factor (VEGF) [71]. Interestingly,
induction of iNOS in keratinocytes is paralleled by induction of
GTP-cyclohydrolase I, the rate-limiting enzyme for tetrahydrobi-
opterin formation, which is essential for full iNOS activity [72]. Ni-
tric oxide has been shown to increase angiogenesis in ischemic mu-
rine tissues, whereas eNOS inhibitors impair angiogenesis in
granulation tissue. Vascular endothelial growth factor, a potent an-
giogenic growth factor, is closely linked to NO; VEGF increases
NO production at the gene expression level [73, 74], and the angio-
genic effects of VEGF appears to be dependent on NO [75, 76]. It
has also been shown that NOS blockade prevents VEGF produc-
tion, VEGF-induced endothelial cell proliferation, and VEGF-
mediated activation of mitogen-activating protein kinase [77].

Endothelial cell migration, endothelial cell adhesion, and endo-
thelial organization are dependent on NO via VEGF [78–81],
which is made primarily by keratinocytes during wound healing
[82]. Nitric oxide increases VEGF expression by keratinocytes, and
iNOS inhibitors can block this process both in vitro and in vivo [83].
Monocyte-induced angiogenesis is NO dependent [84], as is sub-
stance P–mediated angiogenesis [85]. Feedback mechanisms exist
and appear to act by downregulating PKC-induced VEGF expres-
sion [86].

Collagen synthesis correlates with NO synthesis during wound
healing. Matrix synthesis is impaired by iNOS inhibition, whereas
NO administration and iNOS transfection enhance matrix synthe-
sis [55, 61, 87]. Furthermore, wound-derived fibroblasts are char-

Table 1. Studies of nitric oxide (NO) and wound healing.

Treatment NO metabolites
Wound breaking
strength Collagen synthesis Epithelialization

Wound
contraction

iNOS knock-out (excisional model) Decreased — — Decreased Decreased
iNOS knock-out (incisional model) No effect No effect No effect — —
eNOS knock-out — Decreased — Decreased Decreased
iNOS inhibition Decreased Decreased Decreased Decreased Decreased
Arginine feeding Increased Increased Increased — —
Arginine-free diet Decreased —
NO donor Increased Increased Increased —
iNOS transfection Increased Increased Increased — Increased

iNOS: the inducible isoform of nitric oxide; eNOS:

303Rizk et al.: Nitric Oxide and Wound Healing



acterized by a distinct phenotype where endogenous iNOS expres-
sion correlates with increased collagen synthesis [26].

Wound contraction is a major contributor to closure of open
wounds. In excisional wounds closure is delayed by iNOS inhibition
[68]. In vitro studies showed that NO induces a locomotor pheno-
type in keratinocytes [88].

Wound healing is characterized by the organized secretion of
growth factors. This represents a potential target for regulating
wound healing. Little is known about whether NO can directly af-
fect growth factor or cytokine secretion, activation, or time of ac-
tion. Arginine is known to downregulate TNF-� after trauma
thereby affecting outcome [89]. Both TGF-� and EGF directly and
indirectly downregulate NO or the NO-mediated effects [90].

Recently we have examined the possibility that a lack of iNOS
gene expression alters wound cytokine expression. Using non-
isotopic in situ hybridization quantitative analysis, we studied
eNOS, basic fibroblast growth factor (bFGF), TGF-�1, TNF-�,
VEGF, and IL-4 expression in incisional wounds and compared
expression in wild-type and iNOS-KO mice. It was noted that
eNOS and bFGF expression nearly doubled on postoperative day 7
in iNOS-KO incisions and remained two- to threefold elevated
thereafter. In additon, TGF-�1 expression was increased approxi-
mately 50% to 100% in iNOS-KO wounds on postoperative days 5
and 7, and VEGF and IL-4 expression was 25% to 100% higher in
wild-type animals than in iNOS-KO animals at all time points. We
hypothesize that the overexpression of TGF-�1 and eNOS may
represent mechanisms in iNOS-KO mice that compensate for their
loss of functional iNOS, resulting in incisional wound healing
equivalent to controls. The impaired expression of VEGF and IL-4,
on the other hand, may partially explain the delayed excisional
wound healing noted in these animals [91].

Large amounts of NO synthesis at the wound can impair wound
healing. Sterile inflammation, as induced by turpentine sterile ab-
scess, results in increased NO synthesis with subsequent impaired
collagen production. In this setting iNOS inhibition restores colla-
gen synthesis to normal without affecting the overall inflammatory
response (Park et al., unpublished data) (Fig. 3).

Impaired Wound Models

After the discovery that NO is synthesized during wound healing
and that inhibition of its production impairs healing, the next step

was to investigate whether there is a correlation between NO and
the outcome of healing. Several impaired wound models were used
to seek such correlation.

In diabetes at least three studies have demonstrated decreased
formation of NO metabolites in the wound environment [92–94]. It
is not clear whether this decrease is due to the lesser inflammatory
response characteristic of diabetes or to a net decrease in NO for-
mation by all wound cells. L-arginine as well as NO donors can par-
tially reverse the impaired healing of diabetes and in parallel re-
store wound NO levels toward more normal values [61, 87]. More
work needs to be done to confirm whether these agents might serve
as future treatment options.

Malnutrition and radiation-induced injury are other conditions
associated with impaired or delayed healing [95]. Steroids, strong
inhibitors of healing, alter arginine metabolism by impairing both
the iNOS and the arginase pathways [96].

In one study, iNOS knock-out mice demonstrated delayed clo-
sure of excisional wounds, which could be reversed by transfection
with iNOS-cDNA [97]. Surprisingly however, there was no effect
on collagen deposition or breaking strength in incisional wounds in
iNOS knock-out mice [98]. Supplemental L-arginine does not en-
hance wound healing in iNOS knock-out mice, suggesting that me-
tabolism of arginine via iNOS is an essential pathway in the positive
effects of arginine on healing [60].

The eNOS knock-out mice also demonstrated delayed healing in
excisional wound models [67]. Wound fluid extracted from these
wounds, induces a lesser angiogenic response in the cornea angio-
genesis models than in controls, underscoring the importance of
eNOS for neoangiogensis during wound healing.

The Future

In summary, L-arginine can be metabolized via distinct pathways
during wound healing. Experimental animal models demonstrate a
positive effect of NO on wound healing. Human studies are lacking,
especially therapeutic studies. Influence of the arginase pathways
remains to be elucidated.

Résumé. L’oxyde nitrique est un radical libre de courte durée qui agit au
niveau moléculaire, cellulaire et physiologique. Depuis sa découverte il y a
plus de 20 ans, son rôle dans la cicatrisation s’est confirmé. Dans cet article
on souligne la plupart de ses propriétés dans la cicatrisation des plaies et
on fait une revue de la biologie de base de l’oxyde nitrique, son rôle dans la
cascade des cytokines, son rôle prometteur dans l’angiogenèse, et son rôle
élucidé plus récemment dans l’apoptose.

Resumen. El óxido nı́trico es un radical libre de corta vida que actúa a nivel
molecular, celular y fisiológico. Desde su descubrimiento hace casi 20 años
ha probado ser un elemento importante en el proceso de la cicatrización de
heridas. Esta revisión resalta muchos de los más importantes aspectos del
óxido nı́trico en la cicatrización de heridas, incluyendo una revisión de
la biologı́a básica del óxido nı́trico, su participación en la cascada de las
citoquinas, la promoción de angiogenesis y el recientemente descubierto
papel en la apoptosis.
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