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ABSTRACT / The risk tropospheric ozone poses to forests in
the United States is dependent on the variation in ozone ex-
posure across the distribution of the forests in question and
the various environmental and climate factors predominant
in the region. All these factors have a spatial nature, and
consequently an approach to characterization of ozone risk
is presented that places ozone exposure–response func-
tions for species as seedlings and model-simulated tree and
stand responses in a spatial context using a geographical
information systems (GIS). The GIS is used to aggregate

factors considered important in a risk characterization, in-
cluding: (1) estimated ozone exposures over forested re-
gions, (2) measures of ozone effects on species’ and stand
growth, and (3) spatially distributed environmental, genetic,
and exposure influences on species’ response to ozone. The
GIS-based risk characterization provides an estimation of
the extent and magnitude of the potential ozone impact on
forests. A preliminary risk characterization demonstrating
this approach considered only the eastern United States and
only the limited empirical data quantifying the effect of ozone
exposures on forest tree species as seedlings. The area-
weighted response of the annual seedling biomass loss
formed the basis for a sensitivity ranking: sensitive—aspen
and black cherry (14%–33% biomass loss over 50% of their
distribution); moderately sensitive—tulip popular, loblolly
pine, eastern white pine, and sugar maple (5%–13% bio-
mass loss); insensitive—Virginia pine and red maple
(0%–1% loss). In the future, the GIS-based risk characteriza-
tion will include process-based model simulations of the
three- to 5-year growth response of individual species as
large trees with relevant environmental interactions and
model simulated response of mixed stands. The interactive
nature of GIS provides a tool to explore consequences of the
range of climate conditions across a species’ distribution,
forest management practices, changing ozone precursors,
regulatory control strategies, and other factors influencing
the spatial distribution of ozone over time as more informa-
tion becomes available.

Ecological risk assessment has been defined as a
process that evaluates the likelihood of adverse effects
resulting from exposure to one or more stressors (US
EPA 1992a). For a risk to exist, the stressor(s) must have
the ability to cause one or more adverse effects and
cooccur with or contact an ecological component (e.g.,
species, population, community, ecosystem) long
enough and at sufficient concentrations to cause the
identified adverse effect(s).

Assessing the risk to forests from tropospheric ozone
requires quantification of the phytotoxic effects of
ozone at the appropriate biological level (e.g., indi-

vidual species, population, or community) under ambi-
ent exposure characteristics and the identification of
the types of uncertainties associated with these effects.
Defining which of these effects are adverse requires
knowledge of the extent and magnitude of the effect,
exposure characteristics over the appropriate landscape
scale (e.g., watershed, region, national), and the conse-
quences of these effects to society. This determination
requires input from both science and the public.
Although Webster’s Dictionary defines ‘‘adverse’’ as
‘‘opposed to one’s interest or welfare; harmful or
detrimental,’’ the evaluation process for adverse ozone
effects should take into account both societal and
ecological values and should recognize that not all
effects are equally important. Tingey and others (1990)
suggested adverse effects could be classified into one or
more of the following categories: (1) economic produc-
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tion, (2) ecological structure, (3) genetic resources,
and (4) cultural values. Within each of these categories
there might be a number of measurable adverse effects
to forests whose protection would be the goal of a
secondary National Ambient Air Quality Standard
(NAAQS). The secondary NAAQS sets the permissable
level of tropospheric ozone to prevent adverse effects to
forests, among other welfare resources.

Suter (1990) describes the activities involved in an
ecological risk assessment after the adverse effect(s) or
assessment end points are identified. First, the problem
is defined. This entails choosing measurement end
points for the selected assessment end points and
describing the environment and the hazard, which in
this case means estimating the magnitude and spatial
variation of ozone exposure over forests and the cooccur-
ring relevant environmental conditions. Problem defini-
tion is followed by a formal analysis of the measured
effects, including integration of the exposure, environ-
ment, and effects data to estimate the magnitude and
spatial extent of stressor impact.

Forests can be assessed at many biological levels,
most of which we do not understand sufficiently to
quantify the impact of tropospheric ozone. At the
species level, however, in terms of both individuals and
populations, we can identify a number of assessment
end points. For the purposes of illustrating the GIS-
based approach for a risk characterization, we use
productivity as the assessment end point. Productivity
has social relevance and can be related to the economic
value of timber products, recreation, and carbon seques-
tration. Equally important, productivity can also be
related to ecological values through individual species’
growth rates and the resulting community species com-
position and genetic diversity in the loss of sensitive
individuals or species. Productivity ismeasurable through
growth or change in biomass at the individual and
population levels, which has been shown to be affected
directly and indirectly by ozone exposure (Pye 1988,
Miller and others 1989). For the assessment end point
of productivity, the relevant measurement end point
then is a change in growth rates and biomass. A limited
amount of data that quantifies growth and biomass
changes for seedlings and saplings exposed to tropo-
spheric ozone is currently available; these data were
used in our preliminary assessment described in this
paper.

For the spatial characterization of ozone impact to
forests, a geographical information system (GIS) can be
used to integrate both empirical data of growth effects-
based exposure–response functions and model simula-
tions of long-term growth effects of ozone exposure
with geographical data of the species’ distribution,
regional ozone exposure, and climate/environmental

factors across forested areas. In its simplest form, GIS
technology is computerized mapping and map analysis
that provides the ability to integrate data from various
sources and spatial/temporal scales. Conceptually, data
within the GIS exist as layers of spatially coincident
digital maps with each map layer representing one
particular theme such as species distributions, esti-
mated ozone exposures, or an influencing environmen-
tal factor (Figure 1). A geographic context is useful for
risk characterization because of the spatial variation of a
regional air pollutant such as ozone, as well as the
variations in climate and land use that directly influence
a tree’s ability to absorb and detoxify ozone. The
GIS-based risk characterization offers a means to estab-
lish a ranking of species’ sensitivities based on area-
weighted growth response, and a spatial context for the
extent and magnitude of ozone’s impact on individual
forest species.

To illustrate the GIS-based approach, we have used
the eastern United States (the conterminous states east
of the 100th meridian) as the study area. The eastern
United States contains 10 forest types and a substantial
number of forest tree species (Eyre 1980) and resource
uses. Our example of the risk characterization is based
on change in biomass (productivity) of eight tree
species as seedlings.

Methods

Assessment Structure

The GIS provides the framework for integrating the
several sets of data representing ozone exposure and
effects, including: (1) estimated ozone exposure (includ-
ing precursor emissions, meteorology, landscape fea-
tures), (2) species distribution, (3) species density, (4)
influential environmental factors (biotic and abiotic),
and (5) species’ exposure–response functions for the
selected measurement end point (Figure 1). The data
exist at various spatial and temporal resolutions and are
taken from the published literature and geographical
and land-use data bases. In the GIS, a grid of 20-km-
square cells measuring 140 cells north–south by 135
cells east–west (18,900 cells total) was generated and
superimposed over the study area. Each cell is consid-
ered as a homogenous unit for any given factor, and so
each cell contains one value for each of the above-listed
data.

In the GIS, the exposure–response function is com-
bined with the geographic data layers (estimated ozone
exposure over the region, spatial distribution of each
species, and relevant environmental and genotypic
data) to generate a data layer that depicts the potential
risk of the forest species in a spatial context (Figure 1).
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Estimation of Ozone Exposure over Forests

Characterization of ozone exposure has typically
involved the use of descriptive statistics to describe
ozone behavior at monitored sites within broad geo-
graphic regions (Pinkerton and Lefohn 1987, Wolff and
others 1987, Logan 1988, Lefohn and Lucier 1991).
This approach would be acceptable for assessing ozone
risk in forests only if the set of monitored sites were
representative of forested areas in the region and if
exposures were relatively homogenous throughout these
forested areas. However, most monitored ozone sites

are located in urban or near-urban areas, and observa-
tions suggest that monitored values are representative
of rather specific and limited areas rather than broad
geographic regions (National Research Council 1991).
Nationally, approximately 79% of all ozone monitoring
sites are classified as residential, commercial, or indus-
trial (i.e., urban or near-urban); 17% are classified as
agricultural; 3% are classified as desert or mobile; and
less than 2% are classified as being forested (US EPA
1986). Figure 2A shows how relatively few monitoring
sites in the eastern United States exist in forested areas.
Because of this situation, tropospheric ozone exposures
for most forested areas must be estimated.

We used an ad hoc method based on factors that
influence ozone formation and transport to estimate
monthly to seasonal ozone concentrations in nonmoni-
tored areas (Hogsett and Herstrom 1991). We have
estimated the three-month, 24-h SUM06 exposure value
(Lee and others 1988). The SUM06 index cumulates all
hourly values equal to or greater than 60 ppb over the
maximum three months of the year. Generally, these
three months are the major growing period for plants,
including June, July, and August or July, August, and
September. Such an index reflects the observation that
plants are affected to a greater degree by higher
concentrations, and the duration of the exposure is
important in the biological response (Hogsett and
others 1988,Musselmann and others 1994). Ourmethod
for estimating seasonal exposure considers more than
the distance between urban and near-urban monitored
sites, the factor used as the basis for most standard
interpolation techniques such as distance weighting
(Watson and Phillip 1985) and kriging (Oliver 1990)
but which has limitations even for ozone estimations in
agricultural areas (Lefohn and others 1987). A GIS is
used to generate a surface of ozone exposure potential
based on ozone precursor and meteorological factors
that influence ozone formation, transport, and attenua-
tion (Figure 3A). We considered several factors to be
influential (Table 1): (1) ozone-forming precursors as
represented by emissions of anthropogenic NOx, (2)
daily maximum temperature, (3) daily cloud cover, (4)
wind direction, (5) elevation, and (6) distance from the
emission source (used with estimated decay rate of
ozone). The emissions data are from 1985 and the
meterological data are year-specific hourly values. The
fact that volatile organic carbon (VOC) concentrations
(anthropogenic and biogenic), and VOC/NOx ratios in
particular, are important in determining the amount of
ozone formed (National Research Council 1991) is
recognized. In this estimation, however, NOx is the only
precursor considered since in our analysis it appeared
to be limiting. Each of the factors is treated as a matrix

Figure 2. A: EPA AIRS ozone monitoring sites (*) across the
eastern US comapped with forested areas (shaded). B: Loca-
tion of the 417 largest anthropogenic NOx emission sources
(counties) in the eastern U.S. Asterisks denote the county
centroid.

W. E. Hogsett and others108



of values or a data layer within the GIS (Figure 1). The
417 largest emitting counties are used as sources,
accounting for approximately 70%of the total anthropo-
genic NOx emissions in the study area (Figure 2B).
Population centers are considered as the origin of all
NOx emissions. Ozone is ‘‘formed’’ based on amount of
NOx, temperature, cloud cover, and stagnant air masses
and is dispersed from each population center (US
Department of Commerce 1992) based on decay rate
(distance from emission source) and wind direction.
Combined, the layers yield the unitless exposure poten-
tial surface (EPS), which consists of a grid of regularly
spaced relative values 20 km apart. The density of these
exposure potential values is far greater than the density

of monitored ozone sites (which can be hundreds of
kilometers apart); thus, assuming the surface is a
reliable indicator of relative ozone exposure, the ability
to capture trends and variation of exposure between
monitored sites is theoretically improved.

The relationship between the maximum three-
month, 24-h SUM06 (Lee and others 1988) ozone
values from each monitored site (Figure 3A) and the
corresponding exposure potential (PES) values (Figure
3B) is used to translate the unitless PES values at each
10-km cell into a SUM06 estimate. This is accomplished
by calculating the ratio of the monitored SUM06
exposure to the PES value at every monitored site and
interpolating these ratios across the study area such that
each cell receives an estimate of the SUM06/PES ratio.
The interpolated SUM06/PES ratio at each cell is
multiplied by the PES value for that cell to produce an
estimate of SUM06 exposure for that cell. At every
monitored site the SUM06/PES ratio times the PES

Figure 3. A: 1988 ozone monitoring site locations (294) and
calculated three-month, 24-h SUM06 at each site. B: Ozone
exposure potential surface EPS, generated using factors given
in Table 1. Increasing potential for high ozone exposure is
indicated with increasing degree of shading.

Table 1. Ozone precursor emissions and
meteorological factors used to generate ozone
exposure potential surface

Factor Source
Spatial and

temporal scale

1. Anthropogenic
NOx

US EPA
(1992a)

Estimates of annual
county totals 1985
(tons per year)
(assumes equal
monthly emission
values)

2. Daily wind
direction

Earthinfo
(1992a)

Hourly values
measured at 273
major airports
(values interpolated
to each 10-km cell
using inverse
distance squared)

3. Daily cloud cover Earthinfo
(1992a)

Hourly values
measured at 273
major airports
(values interpolated
to each 10-km cell
using inverse
distance squared)

4. Daily maximum
temperature

Earthinfo
(1992b)

Daily maximum value
measured at 5100
sites (values
interpolated to each
10-km cell using
inverse distance
squared)

5. Elevation Loveland and
others (1991)

Mean elevation
resampled to 1-km
resolution

6. Distance from
emission source

ESRI Determined by the
GIS software
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yields the monitored value; hence the technique honors
the monitored values and the PES is ‘‘pinned’’ to the
actual exposure surface at each monitored site. The
PES serves to identify the trend in ozone exposure one
would expect between monitored sites due to the
combination of influencing factors that make up the
PES. Thus, by adding information to the estimation
process, the PES serves as the ‘‘plausible model of
variation’’ that all interpolation techniques try to cre-
ate.

The monitored values for 1988 and 1989 are used in
combination with the exposure potential values for
those same years to produce estimates of ozone expo-
sure for each of the two years across the study area
(Figure 4). The estimated exposure values hold true to
the assumptions used in generating the surface of

ozone exposure potential. That is, areas surrounding
and downwind of large sources of ozone-forming precur-
sors are predicted to have greater ozone exposure than
outlying areas. This is depicted by the ozone plumes
around Dallas-Fort Worth and Houston, Texas; Cincin-
nati, Ohio; Indianapolis, Indiana; and others. Between
these major urban areas the predicted values are gener-
ally much lower. The variation between years is evident
using the SUM06 indicator; 1988 was a year of much
higher ozone exposure than 1989 (Figure 4). This
year-to-year variation in ozone exposure will be re-
flected in growth response effects.

Exposure–Response Functions

A wide variety of measures have been used to
describe the response of tree species to ozone exposure,
including visible foliar injury, biomass partitioning,
photosynthetic capacity, leaf fall. For this preliminary
assessment illustrating the GIS-based approach, we have
chosen change in growth as the measurement end
point, and in particular, total biomass change as a
function of ozone exposure. The information can come
from two sources: (1) empirical data (seedling or large
tree exposure studies from chambers or field) and (2)
model simulations (process-based whole tree models
for seedlings or large trees and stand composition
models). Empirical data are statistical exposure–
response models describing changes in species biomass,
leaf dynamics, etc. In this preliminary assessment, we
have relied exclusively on empirical data, specifically,
seedling exposure–response studies.

Exposure–response functions are derived from pub-
lished growth response data where possible (i.e., field
exposure studies with well-characterized ozone expo-
sures, and combinations of ozone and other stress, such
as drought) (Schafer and Heagle 1989, Qui and others
1992, Karnosky and others 1995, Neufeld and others
1995) and from recently completed field exposure
studies (Hogsett unpublished, Karnosky unpublished,
Neufeld unpublished). The total biomass response
function is expressed for each species with the Weibull
model (Rawlings and Cure 1985) (Table 2). These
response functions are for seedlings and are from field
exposure studies conducted in open-top exposure cham-
bers (Hogsett and others 1985). The data are limited to
the conditions under which the experiments were
conducted and, in a few instances, are from multiple-
year exposures (loblolly pine, ponderosa pine, and
Douglas fir). Unfortunately, many of the earlier pub-
lished studies of tree response either did not have
enough treatment levels to develop exposure–response
functions or did not report the ozone exposure data
necessary to calculate a SUM06 value.

Figure 4. Estimated ozone exposure as three-month, 24-h
SUM06 across the eastern United States for 1988 (A) and
1989 (B).
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Species Distribution

In the GIS, the study area grid surface was overlaid
with a ‘‘mask’’ to block out nonrange, urban, and
agricultural areas that likely do not contain a given tree
species. The mask is constructed from individual spe-
cies distribution maps (Little 1971) and then further
delimiting the species’ range using AVHRR satellite
imagery identifying forested areas (Loveland and oth-
ers 1991). Species density can also be included as a
further delimiter of the geographic extent of the
species using the forest inventory data (FIA) where
available (Hansen and others 1992, Woudenberg and
Farrenkopf 1995). As information becomes available,
those influential environmental factors can also be
included as a data layer and their influence reflected in
the spatially distributed exposure–response function.

Results and Discussion

The GIS-based risk characterization approach is
illustrated using seedling exposure–response biomass
data for eight species of eastern forest tree species and
the estimated ozone exposures for 1988 and 1989, two
very different years regarding ozone exposure.

Spatial Estimates of Annual Biomass Loss

Spatial estimates of biomass loss were conducted for
quaking aspen (Populus tremuloides), black cherry (Prunus
serotina), tulip poplar (Liriodendron tulipifera), sugar
maple (Acer saccharum), red maple (Acer rubrum), lob-
lolly pine (Pinus taeda), virginia pine (Pinus virginiana),
and eastern white pine (Pinus strobus) using estimated
ozone exposure values over these species’ distributions

Table 2. Weibull model parameters for exposure–response functions for 11 tree species as seedlings including
exposure treatment and duration

Species/family Site Sourcea

Exposure
duration
(days)

Experimental SUM06 value
for treatment (ppm-h)

1b 2 3 4 5

Aspen—wild Oregon 112 0.2 16.1 72.1 102.8
Aspen 259 Michigan Karnosky and others

(1995)
98 0.0 11.5 24.5 32.4 40.3

Aspen 271 Michigan Karnosky and others
(1995)

98 0.0 11.5 24.5 32.4 40.3

Aspen—wild Michigan Karnosky and others
(1995)

98 0.0 11.5 24.5 32.4 40.3

Douglas fir Oregon 234 0.1 33.4 147.2 207.2 261.5
Douglas fir Oregon 234 0.1 33.4 147.2 207.2 261.5
Douglas fir Oregon 230 0.1 30.4 60.6 143.0 202.9
Ponderosa pine Oregon 230 0.1 30.4 60.6 143.0 202.9
Ponderosa pine Oregon 280 0.9 39.2 149.4 152.6 321.8
Red alder Oregon 118 0.0 16.0 31.8 73.4 103.6
Red alder Oregon 112 0.1 14.5 29.1 70.1 99.9
Black cherry Smokey Mtn Nat’l Park Neufeld and others

(1995)
76 0.0 1.9 17.1 40.6

Black cherry Smokey Mtn Nat’l Park Neufeld (personal
communication 1995)

140 0.0 0.0c 0.8 18.1 50.2

Red maple Smokey Mtn Nat’l Park Neufeld (personal
communication 1995)

55 9.2 12.0 47.0 125.4

Tulip poplar Smokey Mtn Nat’l Park Neufeld (personal
communication 1995)

184 0.1 0.5 1.4 34.5 88.7

Virginia pine Smokey Mtn Nat’l Park Neufeld (personal
communication 1995)

98 0.0 0.0c 1.9 21.7 51.6

Loblolly GAKR 15–19 Alabama Qui and others (1992)
Lefohn and others (1992)

555 4.9 58.5 301.5 507.0

Loblolly GAKR 15–23 Alabama Qui and others (1992)
Lefohn and others (1992)

555 4.9 58.5 301.5 507.0

Sugar maple Michigan Karnosky (personal
communication 1995)

180 0.0 25.2 27.8 49.8 67.6

E. white pine Michigan Karnosky (personal
communication 1995)

180 0.0 25.2 27.7 49.8 64.2

aSource of biomass and ozone exposure data for species at experimental sites other than Corvallis, Oregon.
bTreatment 1 is charcoal-filtered exposure.
cTreatment 2 is half times ambient exposure with SUM06 5 0 ppm-h.
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for the years 1988 and 1989. The two years are used in
the assessment in order to bracket the range of re-
sponse as a result of year-to-year variation in ozone
exposure. The year 1988 represents the highest ozone
exposure year in the decade of the 1980s, and 1989
represents a lower than average year of exposure (Lee
and others 1994).

Maps of the spatial distribution of biomass loss for
each species were generated using the GIS. The maps
indicate the relative spatial risk each species is subject to
based on the spatial distribution of ozone exposure.
Selected maps are shown to illustrate the range of
response among the species considered and the varia-

tion in response within a species with genotype and
exposure year (Figures 5–8 below). These are obvious
sources of growth response variation, but serve to place
some initial bounds in this preliminary characteriza-
tion. Relative predicted total biomass loss (RPBL) was
calculated for each 20-km cell in the study area using
two input parameters: (1) the estimated three-month
SUM06 exposure value for each 20-km cell for the years
1988 and 1989 (Figure 4), and (2) the exposure–
response Weibull model parameters for each species
(Table 2). The additional three species (ponderosa
pine, Douglas fir, and red alder) in Table 2 are all
western forest species and are included for comparabil-
ity with the eastern tree species used in this illustration
of the risk characterization approach.

The relative predicted biomass losses based on the
seedling-derived exposure–response functions ranged
from 0 to greater than 35% per year (Table 2). The
range of response between species is dramatic (Figure
5). Black cherry and red maple have approximately the
same range across most of the eastern United States,
and both are present in most forest types; however,
neither is the dominant species in any forest type. Both
species have the same growth strategy, but black cherry
is predicted from seedling growth response functions to
exhibit annual losses in total biomass of greater than
20% over almost all of its range with 1988 exposure
values (Figure 5A), whereas red maple is predicted to
have annual losses of less than 2% over the same range
and exposure (Figure 5B). The spatial variation in
response for two pine species, eastern white pine and
loblolly pine is shown in Figure 6. Loblolly pine is
predicted to have less than 3%–6% loss annually over
80% of its range (Figure 6A). Eastern white pine, on the
other hand, has more response variation across its
range (Figure 6B). It may experience greater than 15%
annual losses under 1988 exposure levels in small
localized areas through western Pennsylvania, eastern
Ohio, and down through the Appalachian Mountains
(less than 10% of the species coverage), but biomass
losses ,10% are predicted for more than 50% of its
area. For all species there were localized areas in its
range that would be predicted to have relatively greater
losses and risk.

The variation in biomass loss as a function of year-to-
year ozone exposure is shown in Figure 7 with growth-
response data of a wild population of aspen seedlings as
an example. The biomass losses are substantially greater
across the species distribution during 1988 compared to
1989 (Figure 7). For black cherry, total biomass losses of
greater than 30% are predicted for more than 90% of its
area in 1988 (Figure 5A), whereas with 1989 exposures

Figure 5. Map of predicted relative biomass loss (PRBL) for
black cherry (A) and red maple (B) with 1988 ozone expo-
sure. PRBL calculated for each 20-km cell based on estimated
ozone exposure value (three-month SUM06) and Weibull
parameters for each species’ response function.
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less than 10% of its distribution is predicted to have
biomass losses of even 20% (map not shown).

The variation in the response due to genotypic
differences is illustrated in Figure 8 with two different
clones of quaking aspen from Michigan having differ-
ent sensitivities to ozone (Karnosky and others 1995).
The biomass loss in the sensitive clone 259 (Figure 8A)
is dramatically greater across the species distribution
than a relatively insensitive clone 271 (Figure 8B).

Variation in growth response to ozone exposure can
result from different climates and growing environ-
ments (e.g., drought, nutrient level), pest/pathogen
interactions, exposure intensity and dynamics, and

genetics (Hogsett and others 1988). Presently, there are
no empirical data to quantify the alteration in growth
response as a function of these influential factors. Later
risk characterizations using these same GIS-based tech-
niques and process-basedmodel simulations will be able
to refine these losses and their spatial distribution as a
function of growing environment, genetics, or particu-
lar temporal distributions of ozone concentrations typi-
cal of certain forested areas.

Area-Weighted Total Biomass Loss

The area-weighted annual predicted total biomass
losses for the eight eastern US forest species as seedlings
for 1988 and 1989 are shown in Figure 9 with percentile

Figure 6. Map of predicted relative biomass loss (PRBL) for
loblolly pine (A) and eastern white pine (B) with 1988 ozone
exposures. PRBL calculated for each 20-km cell based on
estimated ozone exposure value (three-month SUM06) and
Weibull parameters for each species’ response function.

Figure 7. Variation in aspen seedling biomass loss with
year-to-year exposure variation: 1988 (A) and 1989 (B) esti-
mated exposures. PRBL calculated for each 20-km cell based
on estimated ozone exposure value (three-month SUM06)
and Weibull parameters for each species’ response function.
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distributions of the response included in a box plot. A
predicted biomass loss is taken from each 20-km cell in
the species’ seedling total biomass loss maps, those
values are weighted for area, and the distribution is
plotted showing the 10th, 25th, 50th, 75th, and 90th
percentiles, indicating the percent loss in biomass for
10%, 25%, 50%, 75%, and 90% of that species’ area.
The range in the response is different between species.
For example, the relatively small range of predicted
biomass loss of loblolly pine (4%–7%) across all its area
(10th–90th percentiles) compared to sugar maple (0%–
60%) across all its range. The biomass loss for 50% of

the species’ distribution (50th percentile, Figure 9)
range from 0% for Virginia pine and red maple to 33%
for the sensitive aspen clone 259. Based on the median
value for each species, the relative sensitivity would fall
into three groups based on area-weighted annual bio-
mass loss in seedlings to estimated 1988 exposures
(Figure 9A): (1) sensitive—aspen and black cherry with
annual losses ranging from 14% to 33%; (2) moderately
sensitive—tulip poplar, loblolly pine, eastern white
pine, and sugar maple having annual losses of 5%–13%,
and (3) insensitive—Virginia pine and red maple,
which exhibited annual losses of 0%–1%. Biomass losses
for each of the species predicted for 1989 were signifi-
cantly less (Figure 9B).

Predicted Relative Biomass Loss in Tree Seedlings
and Comparison to Crop Yield Losses

A comparison of relative predicted biomass loss
(RPBL) at a given level of exposure is a first approxima-
tion of ranking a species’ sensitivity to ozone. Table 3
lists 20 studies and 11 species of trees giving their
predicted relative loss in total biomass at three selected
three-month, 24-h SUM06 values. These particular
SUM06 values (16.5, 26.4, and 39.7 ppm-h) were deter-
mined from the percentile distributions of average
predicted relative crop yield losses of all crops (Lee and
others 1994). A three-month SUM06 of 26.4 ppm-h is
the concentration level that would protect 50% of the
crops from yield losses greater than 10%. The total
annual biomass losses with a three-month SUM06 of
26.4 ppm-h is predicted to range from 0% in Douglas fir
(Hogsett unpublished) to 25% in aspen clone 259
(Karnosky and others 1995) (Table 3). As with the
ranking suggested by the area-weighted median (50th
percentile) predicted total biomass losses (Figure 9),
the annual biomass losses at 26.4 ppm-h were high in
aspen (10%–25%) and black cherry (16%–21%) rela-
tive to losses of 3%–9% in ponderosa pine, red alder,
tulip poplar, and eastern white pine, and losses of less
than 4% in loblolly pine, Virginia pine, Douglas fir, and
sugar maple.

Another type of comparison is possible using an
average predicted relative total biomass loss for all tree
seedlings (Table 2; 11 species) in this assessment (Fig-
ure 10). A similar average predicted relative yield loss
function and distribution was produced for all crops in
the National Crop Loss Assessment Program (NCLAN)
(Tingey and others 1991, Lee and others 1994). This
averaging of exposure–response across all species is a
means to predict the degree of protection afforded at
various concentration levels of ozone. At 20 ppm-h, 4%
losses in total biomass would be predicted annually in
50% of the tree species studied based on seedling

Figure 8. Variation in aspen seedling biomass loss with
genotype with estimated 1988 ozone exposure. Clone 259 (A)
and clone 271 (B) (Karnosky and others 1995). PRBL calcu-
lated for each 20-km cell based on estimated ozone exposure
value (three-month SUM06) and Weibull parameters for each
species response function.
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response (Figure 10). This is a small number, but as an
annual loss in total biomass of a seedling it could be a
significant factor in seedling survival, forest regenera-
tion, or reforestation (Kormanik 1986). A large portion
of the eastern United States is experiencing three-
month SUM06 of greater than 20 ppm-h (Figure 4).
Annual biomass losses of 10% are predicted in tree
seedlings at three-month SUM06 values of 37 ppm-h
(Figure 10). In comparison, a SUM06 value of 39.7

ppm-h is predicted to protect 75% of the crops from
10% loss in yield (Lee and others 1994).

Future Risk Characterization

Future risk characterizations are planned using the
same GIS-based approach (Figure 1), but including
future additions of empirical exposure–response func-
tions of species, process-based model simulations to

Figure 9. Box plots of annual area-weighted predicted rela-
tive biomass loss for the eight tree species with estimated 1988
(A) and 1989 (B) ozone exposure. The predicted biomass loss
is taken from each 20-km cell in the species’ distribution,
weighted for area, and the distribution plotted showing 10th
(bracket), 25th (lower shaded box), 50th (clear bar in shaded

box), 75th (upper shaded box), and 90th (bracket) percen-
tiles. The percentiles represent the area of the species exhibit-
ing that level or less of biomass loss. OR 5 Oregon site, MI 5

Michigan site, SMNP 5 Smoky Mt. National Park, AL 5

Alabama.
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account for long-term effects, age/size influence, and
environmental factors. Figure 11 illustrates the combina-
tion of these elements in the GIS.

The determination and quantification of long-term
effects of ozone are not easily accomplished via experi-
mental manipulation. To describe these effects, model

simulations at two levels of complexity—a single tree
and mixed-stand response through time are used.

The growth response simulation of a single tree will
rely on TREGRO, a physiologically based growth model
(Laurence and others 1993, Weinstein and others 1991),
parameterized from experimental data. TREGRO pro-
vides a carbon, water, and nutrient balance for the
simulated tree over some time period. In the case of
response functions generated from TREGRO for future
risk characterizations (Figure 11), a series of multiple-
year (three- to five-year) simulations will be conducted
using four to five ozone scenarios, encompassing the
range of estimated ozone exposure from regions rel-
evant to the species, and climate data from across the
species’ region (three sites) to generate response func-
tions that include the influence of spatially distributed
environmental and exposure factors. The question of
multiple environmental factor exposure–response func-
tions is a particularly important one. Since the objective
of the assessment is to provide an integration of the
likely response of a tree or forest type to ozone over its
range, the modification of response by other environ-
mental and biological factors must be addressed. Most
experiments are conducted under conditions that are
conducive for plant growth and response to ozone. It
has been widely reported that the response of a tree to
ozone may be altered by drought, soil fertility, or
temperature, as well as other factors (US EPA 1986,
Hogsett and others 1988). Additionally, the genotype of
the tree is important in determining its response to
ozone (Roose 1991), but this is only rarely assessed.
Simulations offer the opportunity to assess the likely
importance of these interactions with ozone. For in-
stance, a series of simulations may be conducted apply-
ing hypothetical sensitivities to the species under exami-
nation. While the exact response of various genotypes
may not be known, bounds may be placed on the

Figure 10. Average predicted relative biomass
loss from 26 tree seedling studies (Table 2).
Separate regressions were calculated for studies
with multiple harvests and/or cultivars result-
ing in a total of 56 equations from the 26 seed-
ling studies. Each equation was used to calcu-
late the predicted relative yield or biomass loss
at three-month, 24-h SUM06 exposure values of
10, 20, 30, 40, 50, and 60 ppm-h and the distri-
butions of the resulting losses plotted. The solid
line is the calculated Weibull fit at the 50th per-
centile.

Table 3. Predicted annual biomass loss at selected
92 day SUM06 values

Species/family

Predicted annual biomass loss (%)
as a function of SUM06 adj. to

92 days (ppm-h/yr) 5

16.5a 26.4b 37.7c

Aspen—wild 8 14 23
Aspen 259 17 25 36
Aspen 271 0 2 11
Aspen—wild 6 10 15
Douglas fir 0 0 0
Douglas fir 1 2 3
Douglas fir 0 0 0
Ponderosa pine 5 8 14
Ponderosa pine 1 3 6
Red alder 4 7 10
Red alder 5 9 14
Black cherry 13 21 31
Black cherry 10 16 25
Red maple 0 1 1
Tulip poplar 5 8 12
Loblolly, GAKR 15–91 2 4 5
Loblolly, GAKR 15–23 1 1 2
Sugar maple 0 1 12
E. white pine 4 7 10
Virginia pine 1 1 1

a16.5 ppm-h is the level needed to protect against 10% yield loss for
75% of crops (Tingey and others, 1991).
b26.4 ppm-h is the level needed to protect against 10% yield loss for
50% of crops (Tingey and others, 1991).
c39.7 ppm-h is the level needed to protect against 20% yield loss for
50% of crops (Tingey and others, 1991).
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expected response. Model simulations will allow us to
reduce the uncertainty and place bounds on the re-
sponse across the species’ range. The growth response
or changes in biomass of a single tree species will be
passed to the GIS to produce a spatial model of a
species’ growth over time (Figure 11).

Simulated growth rates of individual species to sev-
eral ozone exposure regimes and various environmen-
tal scenarios from TREGRO will be passed to ZELIG, a
forest stand simulator (Urban 1990). Results of the
exposure–response simulations in TREGRO are used to
generate three variables: total tree growth rate, leaf
area, and root/shoot ratio. These variables are passed to
ZELIG, where they are used to modify parameters in
simulations of stand growth and development. The
response outputs from this model will be basal area of
competing species within a stand, e.g., white fir and
ponderosa pine, indicating the species composition of
the stand exposed to ozone in that simulated growing
environment. Stand simulations will be run for ex-
tended time periods (50–100 years) to characterize

changes in stand composition based on species sensitiv-
ity to ozone. Finally, the results from ZELIG will be
incorporated into the GIS analysis to produce a spatial
model of forest species response to ozone (Figure 1).

Uncertainty in Risk Characterization

There are uncertainties attached to each component
involved in the derivation of the risk characterization.
In this preliminary spatial risk characterization, there is
uncertainty associated with: (1) estimation of exposure
in non-monitored areas, (2) climate and meteorology
data, (3) species distribution, and (4) experimentally
derived exposure–response functions for seedlings. Bio-
mass loss for each species in this preliminary assessment
has been predicted using seedling-derived growth re-
sponse functions, and there is an unknown error
associated with seedling versus large tree response to
ozone. Current research is addressing this uncertainty.
In the planned future assessments of long-term effects,
there will be uncertainty associated with the model

Figure 11. GIS-based integrated risk characterization. The
flow diagram illustrates the connections between experimen-
tal data and model simulations of large tree and stand growth
responses with relevant environmental interactions; derived
exposure–response functions for seedlings, trees, and stands;

and how the response functions are integrated in the GIS as
data layers with ozone exposure estimations, species distribu-
tions, and local influential environmental factors to give a
spatial risk characterization of ozone impact on forests at the
seedling, large tree, individual, or stand level.
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simulations. In the integration of these data and model
simulations in the GIS, there is the error associated with
the combination of these components. For instance, in
using literature-based exposure–response functions, the
error associated with the experiment, the sampling, and
the analysis must be recognized. Further, when these
responses are scaled up for future use in a tree
(TREGRO) or a stand model (ZELIG), the uncertainty
must be carried along, and, in fact, expands consider-
ably due to the variations of weather and other factors
that determine tree growth. Thus, in the stand simula-
tion, an examination must be made of the range of
stands that might result from the error associated with
the postulated exposure–response, as well as the varia-
tion in stand that results from stochastic processes
within the stand model itself. Specific examples of
uncertainties that must be considered include the
parameterization of TREGRO and ZELIG, including
responses of trees to ozone, water, and nutrients;
root/shoot allocation patterns; and species sensitivity to
environmental conditions. As the results are passed to
the GIS, associated errors must again be recognized.
Species distributions, temperature, ozone, and other
environmental conditions are estimates and have an
associated error that must be recognized in the spatial
model. With TREGRO and ZELIG, we will examine
uncertainty through sensitivity analysis of the param-
eters, as well as by conducting model runs under
enough conditions to place bounds on the error. For
example, if we take care to generate responses that
include those predicted to occur at levels far above or
below those that might normally be expected to occur,
we may judge the sensitivity of the estimate we are
producing and at least recognize if an error is likely to
have a large effect. Uncertainty associated with expres-
sion of exposure–response as ambient exposure rather
than concentration taken up by canopy (i.e., dose) will
also be considered in these simulations.

A source of error that can be propagated through
the entire assessment is in the estimation of ozone
exposure in forested areas since the exposure–response
models require these estimates. As previously stated, less
than 2% of all ozone monitoring sites are located in
forested areas; hence exposures in forests must be
estimated, and using traditional interpolation to make
these estimates over forests is highly questionable.
While our approach does give results that are intuitively
more appealing than traditional interpolation tech-
niques, and still consistent with known values, there is
no means by which to estimate the certainty of the
prediction in nonmonitored forests. In estimating expo-
sure values there were three components: (1) the actual
monitoring site values for a given year, e.g., 1988; (2)

monthly NOx emisions from annual inventory data for
1985; and (3) meterological data. All three components
have some degree of uncertainty associated with them.
The precursor emissions and meteorological data have
perhaps a greater degree of uncertainty than the moni-
toring sites. The accuracy of emission inventory data
has been questioned (National Research Council 1991),
but without quantification of this uncertainty we have
chosen to use this source as ‘‘best available’’ data in this
assessment. The meteorological data had different tem-
poral scales, e.g., monthly averages for 1985 (solar
radiation) and long-term averages of 30 years (wind
direction), but this does not necessarily introduce any
quantifiable level of uncertainty in the estimate. These
data do reflect typical conditions and interregional
trends, and thus reflect the meterorlogical conditions
that affect ozone formation and transport. Month- and
year-specific meterological data would presumably im-
prove the exposure potential surface; however, the data
are not available and if they were, the computer time
and costs for generating these monthly surfaces might
not be justified with only the slight changes in the
predicted values from such data.

Aside from the accuracy of the exposure–response
estimates and calculations, map interpretation can be a
major source of error in perception. Maps depicting
biomass reduction for the individual tree species imply
a homogeneously dense monoculture forest. Our maps
of species range do not reflect where a particular
species is key ecologically, e.g., dominant or codomi-
nant, or where a particular species is economically
important to the region. The AVHRR satellite data were
used to mask out urban and agricultural areas but other
factors potentially influence the presence/absence of a
species within the range defined by Little (1971). These
include islands of high elevation that might not be
conducive to that particular species or commercial
monoculture tree plantations of a different species.
These problems could be ameliorated by using large-
scale forest stand maps or finer-scale satellite classifica-
tion. Future assessments will incorporate forest inven-
tory assessment (FIA) data to account for county-level
species density to further delimit species distribution
(Hansen and others 1992, Woudenbergand Farrenkopf
1995).

Conclusions

Even with the uncertainties, this preliminary assess-
ment has indicated the usefulness of and potential for a
spatial approach to assessing the extent and magnitude
of the risk that tropospheric ozone presents to the
forested areas of the eastern United States based on
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current estimated ozone concentrations. The maps
provide a visual record of the variation in productivity of
a number of species as a result of the variation in
ambient ozone exposures estimated to occur in forested
areas. The integration of exposure–response functions
allows the estimation of the magnitude of the effect on
biomass and estimatation of the extent of the effect
across the species’ range. Both the maps and the
empirical data on magnitude and extent of effects
provide a means to assess priorities for concern of
impact and future data needs. The GIS-based approach
has the capacity to include, as it becomes available,
those spatial factors influencing ozone response, e.g.,
water availability, nutrient levels, soil types, etc., as well
as including model simulations of response at the
individual level or stand level incorporating these spa-
tial environmental and exposure influences and also
the mechanistic basis for the effect of age and size in the
response.

In particular, this preliminary assessment of the
extent and magnitude of the effect of ozone on tree
species in the eastern United States indicated a wide
range of annual biomass loss with estimated ambient
ozone for each species’ range. Annual biomass losses
ranged from 0%–33%, depending on species and con-
centration of ozone across the range of the species. The
two most sensitive species were black cherry and aspen
with greater than 20% total biomass loss predicted over
greater than 50% of the species range. These are
substantial losses on an annual basis. Four of the eight
species considered (tulip poplar, loblolly pine, sugar
maple, and eastern white pine) were predicted to have
5%–12% annual biomass loss and have a large portion
of their individual ranges experiencing these losses. For
example, eastern white pine has biomass losses of
5%–10% predicted to occur on greater than 50% of its
range.

Based on the estimations of this assessment, it would
also appear that substantial annual biomass losses (10%–
21%) would still be occurring in black cherry and aspen
at the ozone concentration level considered to prevent
10% crop yield loss in 50% of the crops (three-month
SUM06 of 26.4 ppm-h). The four moderately sensitive
species would be predicted to experience annual losses
of 1%–9%, and less than 1% in Virginia pine and red
maple. The relative sensitivities are similar to previous
seedling studies of some of these same species, even
though the study may not have specifically developed
total biomass exposure response (Kress and Skelly 1982,
Reich and Amundson 1988).

These estimations of ozone impact may be high and
may be reduced when consideration of age and size is
incorporated into the estimation, as well as consider-

ation of local environmental factors, but this assessment
does give an indication of the potential spatial impact
with current ambient ozone levels in this region, and
the approach offers a means to illustrate the extent of
the risk through spatially distributed exposure–re-
sponse functions.
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