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Abstract
Biological monitoring is the evaluating changes in the environment using the biological responses with the intent of using
such information in quality control of the ecosystem. Biomarkers and bioindicators are two main components of the
hierarchy of biomonitoring process. Bioindicators can be used to monitor changes of ecosystems and to distinguish alteration
of human impact from natural variability. There is a wide range of aquatic taxa such as macroinvertebrates, fish and
periphyton, planktons which are successfully used in the biomonitoring process. Among them, macroinvertebrates are an
important group of aquatic organisms that involves transferring energy and material through the trophic levels of the aquatic
food chain and their sensitivity to environmental changes differs among the species. The main approaches of assessing
freshwater ecosystems health using macroinvertebrates include measurement of diversity indices, biotic indices, multimetric
approaches, multivariate approaches, Indices of Biological Integrity (IBI), and trait-based approaches. Among these, biotic
indices and multimetric approaches are commonly used to evaluate the pesticide impacts on aquatic systems. Recently
developed trait-based approaches such as SPEcies At Risk of pesticides (SPEAR) index was successfully applied in
temperate regions to monitor the events of pesticide pollution of aquatic ecosystems but with limited use in tropics. This
paper reviews the literature on different approaches of biomonitoring of the aquatic environment giving special reference to
macroinvertebrates. It also reviews the literature on how biomonitoring could be used to monitor pesticide pollution of the
aquatic environment. Thus the review aims to instil the importance of current approaches of biomonitoring for the
conservation and management of aquatic ecosystems especially in the regions of the world where such knowledge has not
been integrated in ecosystem conservation approaches.
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Introduction

Freshwater ecosystems in the world are most vulnerable to a
variety of anthropogenic impacts (Hellawell 2012). Physical
habitat changes due to dam constructions, the input of
agrochemicals from agricultural activities, urbanization
(Kripa et al. 2013), and recreational activities have a

profound impact on aquatic ecosystems (Allan 2004; Bae
et al. 2005; Barletta et al. 2010). Agricultural pollutants
have been identified as the major contributors to aquatic
pollution, worldwide (Gunawardhana et al. 2016; Jaya-
wardana et al. 2017). Excessive use of fertilizers, hormones
and pesticides in crop production often leads to contamination
of waterways with such chemicals (Cooper 1993; Hapeman
et al. 2002; Kripa et al. 2013) and they are most noticeable
when they produce immediate or delayed toxic effects on
aquatic life (Brühl and Zaller 2019; Cooper 1993; Khan and
Law 2005; Zacharia 2011). Consequently, these may cause
the alteration of the species composition in aquatic systems
(Brühl and Zaller 2019; Wang et al. 2007). In addition to that,
Persistent Organic Pollutants and heavy metals can accumu-
late in the aquatic food chains causing impacts on nontarget
species (Cui et al. 2015; Ribeiro et al. 2005).
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A significant measure of a healthy freshwater ecosystem
is the state of the physical-chemical environment and bio-
logical integrity (Bae and Park 2014; Butcher et al. 2003;
Herman and Nejadhashemi 2015; Hughes et al. 2000).
Traditional methods of measuring physical and chemical
water quality parameters were found not accurately repre-
senting the status and disturbance events that took place in
the freshwater systems over time. For example, most pes-
ticide residues in the aquatic environment are not readily
detectable as they often occur at low concentrations and due
to their diffuse and transient nature (Beketov et al. 2009;
Comoretto et al. 2008). Nonetheless, even at extremely low
levels, such chemicals can cause physiological impairments
in aquatic species that are often expressed at the level of the
population. However, biological monitoring has proven to
be most successful in capturing such transient impacts
caused by toxicants at very low concentrations (Barr and
Needham 2002; Sanders et al. 2009). This paper therefore
reviews the literature on various approaches of biomoni-
toring currently being adopted in different regions of the
world, with particular reference to macroinvertebrates and
the pollution of pesticides. Given the inadequacy of bio-
monitoring information and the scarcity of biomonitoring-
related data in some regions of the world, the review seeks
to integrate biomonitoring concepts for environmental
management in regions where they are not adequately
recognized.

Bioindicators and Biomarkers

The environmental stressors can act on various hierarchical
levels of biological organization and most ecologically
relevant ones occur at higher levels, for example, population
or community levels. Population responses to environ-
mental stress are regarded as a primary caution of ecosys-
tem changes due to the alteration of growth and
reproduction of aquatic communities (Orfanidis et al. 2007).
Also, aquatic organisms can respond to contamination at
even very low levels when the contaminants are present in
water or sediments (Wijeyaratne and Pathiratne 2006). The
real bioavailable fraction of pollutants and pollution effects
at low levels can be studied using bioindicators and vali-
dated under both field and laboratory conditions (Hamza-
Chaffai 2014). Moreover, bioindicators reflect the present
state and past trends of additional and accurate information
concerning the environmental behavior (Oertel and Salánki
2003) since it reflects cumulative changes over time. Two
main levels of organization of biomonitoring can be
addressed as biomarkers and bioindicators (Adams and
Greeley 2000; Van der Oost et al. 2003). In general,
bioindicators have intermediate relevance of sensitivity,
high ecological relevance and diagnostic utility (Adams and

Greeley 2000), while biomarkers are pollutant sensitive and
measure potentially much more diagnostically, but its eco-
logical relevance is low (Van der Oost et al. 2003). Aquatic
organisms are often used as bioindicators or biomarkers
since they are exposed to widespread environmental varia-
tions during their life cycle. At first, limnologists used the
presence or absence of selected indicator species for bio-
monitoring programs. However, with the development of
quantitative analytical methods using computers and other
sophisticated techniques, more advanced biomonitoring
techniques have been developed. “Saprobic Index, Saprobic
Valency, Indicative Weight, Trent Biotic Index (TBI), Score
System, and Hilsenhoff Biotic Index” are some of these
common biological indices that have been developed (Resh
and Rosenberg 1993). These biological monitoring studies
using macroinvertebrates include an understanding of
indirect consequences, mechanisms of recovery and relative
pollutant sensitivities.

Bio monitors or bioindicators are living organisms that
can be used to measure contaminants or collect information
on the impacts of contaminants on environmental spatial
and temporal variance. These organisms reflect the bioa-
vailable fraction of pollutants and interest for environmental
managers because of their potential ecotoxicological sig-
nificance (Hamza-Chaffai 2014). Compliance indicators,
diagnostic indicators and early warning indicators are three
classes of bioindicators that are classified based on the
purpose of their use. Deviations from acceptable health
limits of the aquatic ecosystem are revealed by the com-
pliance indicators while diagnostic indicators express the
causes for the deviations in the environment. The early
warning indicators signify the impending decline of the
health of the aquatic ecosystem. Although all three groups
of indicators should be represented in an integrated
assessment of ecosystem health, indicator selection is based
on the purpose and objective of the specific assessment
(Cairns and McCormick 1992; Hamza-Chaffai 2014).

Good bioindicator organisms possess several desirable
characteristics such as clear taxonomy, cosmopolitan dis-
tribution, sufficient abundance, and wide distribution for
replicate sampling. In addition, low genetic and ecological
variability, suitable body size and ease of finding, low
mobility (local indication), long life-span to the comparison
between various ages, well-studied ecology, optimal for
being “actively” monitored, bioaccumulation without death,
higher sensitivity toward stressors to be monitored, the
higher capability for quantification, and standardization are
among the other characters (Füreder and Reynolds 2003;
Hilty and Merenlender 2000; Resh and Rosenberg 1993;
Zhou et al. 2008). However, it is too stringent to choose
bioindicator species with all the characteristics, but it is
more possible to select indicators with suitable character-
istics that serve the purpose of biological evaluation
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(Zhou et al. 2008). Especially, the use of bioindicators are
useful in situations in where the indicated environmental
factor cannot be measured or difficult to interpret (Gerhardt
1999). The commonly used bioindicators for the assessment
of aquatic environment are macroinvertebrates, bivalves,
gastropods, fishes, zooplankton, phytoplanktons, and mac-
rophytes (Hamza-Chaffai 2014; Marbà et al. 2006; Zhou
et al. 2008).

In different levels of biological organization (i.e., mole-
cular, cellular, or physiological levels), biomarkers are
measurable parameters that affect or change the metabolic
regulatory processes due to environmental stressors (Van
der Oost et al. 2003). Another definition for biomarkers is a
measurable biologic system or sample which can induce
variation in cellular or biochemical structures or functions,
components or processes, xenobiotically (Hamza-Chaffai
2014; Van der Oost et al. 2003). Biomarkers occur at a
molecular level followed by cellular, tissue/organ, and
whole-body levels. Higher levels of effects such as indivi-
dual, population, and ecosystem-level are less irreversible,
more detrimental and generally accepted to have ecological
relevance. Hence, routine biomonitoring program needs to
be focused towards on identifying and understanding the
toxic effects which initiated at the sub-organism levels of
molecular, biochemical, or physiological changes when
developing biomonitoring programs.

Examples of biomarkers that are widely studied in
laboratories are metallothioneins (MTs), malondialdehyde,
acetylcholinesterase (AchE) glycogen, and stress on stress
test (Hamza-Chaffai 2014). There are several applications
of biomarkers for detecting the aquatic ecosystem health
(De la Torre et al. 2002; Hamza-Chaffai et al. 2000). De la
Torre et al. (2002) have assessed the effect of prolonged
exposure of urban pollutants on brain AchE activity on
caged Cyprinus carpio and field-captured Cnesterodon
decemmaculatus and demonstrated high sensitivity of
AChE activity as an exposure biomarker. The use of the
marine bivalve Ruditapes decussatu to validate the rela-
tionship between MTs and metals (Cd, Cu, and Zn) under
field conditions is another example of the use of biomarkers
for detecting environmental pollutants. The study showed
that MTs in the digestive gland of R. decussatus reacted to
moderate rises in metal contamination and may be a pro-
mising biochemical metal exposure predictor (Hamza-
Chaffai et al. 2000). A study investigating the activation of
biochemical stress responses in Macrobrachium mal-
colmsonii in response to their exposure to endosulfan,
demonstrated an elevated levels of glutathione S-transferase
and a decreased content of AchE in test prawns. Also,
phosphatases and lactate dehydrogenase levels alterations
were also noted in tissues. This suggested the disruption of
fundamental metabolic activities in research prawns due to
the exposure to endosulfan pesticide (Bhavan and Geraldine

2001). Biomarkers may be used as an early warning system
in environmental quality assessment to diagnose exposure
to environmental pollution in the aquatic environment that
has risen in recent decades (Hamza-Chaffai 2014).

Macroinvertebrates as Indicators

Organisms that live entirely or part of their life cycle in the
bottom substrates such as sediments, debris, logs, etc. in
aquatic ecosystems which are observed by naked eyes are
regarded as benthic macroinvertebrates (Chessman 2003;
Resh and Rosenberg 1993). In terms of species richness and
individual abundance, ~95% of benthic macroinvertebrates
comprise freshwater arthropods (Bae et al. 2005). Chukwu
and Nwankwo (2003) and Roozbahani et al. (2010) showed
that benthic macroinvertebrates diversity can be used as a
good indicator for evaluating the ecological status of the
aquatic system. The advantages of using benthic macro-
invertebrates for biomonitoring are that they are universal
thus can be used in many different types of aquatic systems,
exhibit high species richness and abundance, respond to
wide range of environmental stress. Also, their sedentary or
benthic habitat and long-life cycle compared to other
aquatic organisms such as algae and planktons in freshwater
are useful effect-based indicators for assessing spatial and
temporal analysis respectively and thus sampling may be
less frequent (Bae et al. 2005; Borisko et al. 2007;
Mathuriau et al. 2012). According to Voshell (2002), at
least 60% of the biological indices that have been identified
in running water over the past years, are macroinvertebrates.
Macroinvertebrates are an essential part of the aquatic
environment as they transfer the energy to other trophic
levels in the aquatic food web (López-López and Sedeño-
Díaz 2015) and their degree of sensitivity to environmental
changes differ among various groups. Physico-chemical
conditions of a given location can be predicted using the
morphology, presence/absence, abundance, physiology, or
behavior of these macroinvertebrates (Sharma et al. 2008).
Factors regulating macroinvertebrates in freshwater habitats
are food, current speed, the substratum, riffle depth, vege-
tation, water temperature and conductivity, shade, effects of
altitude and season, liability to drought and floods, com-
petition between species and zoogeography.

In this context, macroinvertebrates are ideal for deter-
mining site-specific impacts because they have restricted
migration, differ in quantity and types of contaminants in
their tolerance levels and are easy to recognize (Sharma
et al. 2006). Further, macroinvertebrate communities
contain board range of species which belong to various
trophic levels and their life cycles generally limited to ~1
year of which most is spent in the water (Agouridis et al.
2015; Hauer and Lamberti 2011). They also exhibit
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pollution sensitivity (Compin and Céréghino 2003) and
provide aggregate impact for different stressors in short
term and long term (Girgin et al. 2003; Sharma and Rawat
2009). Also, suitable taxonomic keys are available to
identify the specimens because of standardized field sam-
pling methods and laboratory processing protocols (Chir-
hart 2003). Water quality degradation is demonstrated by
the presence or absence of sensitive and tolerant organisms
because different taxa have different habitat preferences
and wide tolerances for pollutants (López-López and
Sedeño-Díaz 2015).

Despite the relative advantages of using macro-
invertebrates as indicators of water quality monitoring, it
also has several limitations. Some of these limitations
include the difficulty of quantitative sampling as their
distribution is nonrandom in riverbed because some
invertebrates life cycles are showing seasonality and the
effects of natural and catastrophic drift (López-López and
Sedeño-Díaz 2015). Another limitation is macro-
invertebrates exhibit limited spatial dispersal ability in
response to environmental changes or stresses frequently
occurring in the aquatic environment. As a result, organ-
isms located at the edge of their natural aquatic habitat are
more vulnerable to environmental stress than those at the
center of their distribution. It, therefore, limits the use of
universal biological assessment based on the same species/
taxa response.

“Hilsenhoff’s Biotic Index”, “Invertebrate Community
Index”, “Biological Monitoring Working Party Score
(BMWP)”, “Macroinvertebrate Water Quality Index”,
“Average Score per Taxon”, “Percent Model Affinity”, and
“EPT Richness Index” are few of the commonly used
indices which integrated macroinvertebrates composition to
assess the quality of aquatic environment in different
regions of the world (Kripa et al. 2013). However, many of
these protocols and biological monitoring methods are
developed based on the taxa relevant to regions of northern
hemisphere of the world including North America and
Europe. However, few countries in Asian and African
regions make use of such indices after modifications for
biomonitoring. But these indexes with European threshold
values did not well explain the stress on the aquatic system
(Cornejo et al. 2019; Rasmussen et al. 2016). According to
Morse et al. (2007) inadequate knowledge on macro-
invertebrate fauna and their aquatic stages in most Asian
countries, scarcity of necessary equipment, and lack of
support and understanding of biomonitoring by the
respective authorities are some of the challenges to the
introduction of biomonitoring techniques for water quality
monitoring. Though research on tropical streams has been
increasing over the last two decades, there is still a lack of
knowledge on aquatic fauna and ecological understanding
(Al-Shami et al. 2011; Gopal 2005).

Different Approaches of Biomonitoring

There are many different biomonitoring techniques
employed for biological monitoring of aquatic ecosystems
addressing many different organizational levels (Bonada
et al. 2006; Mandaville 2002). Available resources and the
issue being addressed depend on the selection of suitable
biomonitoring techniques. “The diversity indices, Biotic
indices, Multimetric approaches, Multivariate approaches,
Indices of Biological Integrity (IBI), Functional Approaches
and macroinvertebrate trait-based approaches” are the
approaches used for assessing the freshwater ecosystem
using macroinvertebrates (Li et al. 2010).

Diversity Indices

Diversity indices reflect the combined effect of species
richness (number of species), evenness (homogeneity of
distribution abundances among species) and abundance
(total number of species) of a community to environmental
variations. Abundance indicators are used to provide
information about the condition of a freshwater environ-
ment by evaluating key or sensitive macroinvertebrates such
as the EPT index (Johnson et al. 2012). Stream health based
on species distribution or qualitative measure of diversity
found within the ecosystem is measured using species
richness (Wan et al. 2010). High diversity, even distribution
among species and the high number of individuals in a
community represent undisturbed environments. Diversity
indices that developed based on species richness, evenness,
and abundance at the community level are Shannon-Wiener
Index, Simpson Index, Margalef’s and Menhinick’s Indices,
and Pielou evenness etc. (Andem et al. 2013; Roozbahani
et al. 2010). These indexes can be used as an indicator of
disturbed aquatic environment comparing with reference
aquatic environments (Schäfer et al. 2011a).

There are also several limitations of the use of diversity
indices in community ecology (Okpiliya 2012). In com-
munity ecology, the use of diversity indices has been highly
criticized because diversity does not transmit any informa-
tion on a community’s actual species composition
(Rosenzweig 1995). Diversity of species is a population
overview measure which does not take into account indi-
vidual species’ uniqueness or possible ecological sig-
nificance (Sanders 1968; Risser and Rice 1971; Whittaker
1972). A community can have a high diversity of species,
but mainly common or undesirable species are included. A
community, on the other hand, may have low species
diversity, but it is composed of particular, uncommon, or
highly desirable species. For instance, Sanders (1968),
Risser and Rice (1971), and Whittaker (1972) stated that the
Simpson index as a measure of diversity is that the
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abundance of the two or three most abundant species in a
population is too heavily affected. So the Simpson index
gives the uncommon species very less weight and the
common species more weight.

Biotic Indices

Biotic indices evaluate river health based on certain
taxonomic groups (Bioindicator) to sensitivity and tol-
erance for environmental variations of eutrophication,
organic pollution, pesticides, heavy metals, and pH in the
community through numerical scores or single index.
According to Perry (2005), the abundance of pollution
sensitive organisms indicates the stream healthiness as
the sensitivity and tolerance of indicator assemblages are
different according to the environmental characteristics.
The advantages of this indices are used simple calcula-
tions and utilize only one stressor or metrics to evaluate
stream health. The disadvantage is that biotic indices do
not utilize the combined effects on multiple stressors
within the aquatic ecosystem (Fierro et al. 2017; Herman
and Nejadhashemi 2015). Several biotic indices have
been developed for particular regions, but many of these
indices can be used with modifications in other regions.
Examples of region-specific indices are “Nepalese Biotic
Score and National Sanitation Foundation Water Quality
Index” in India (Sharma et al. 2008; Sharma et al. 2006)
“Trent Biotic Index (TBI)” and the “Biological Mon-
itoring Working Party (BMWP) score” for the UK
(Hooda et al. 2000), the “Belgian Biotic Index” for Bel-
gian rivers, the “South African Scoring System” for
southern Africa, the “Zambian Invertebrate Scoring
System” for Zambia, the “Namibian Scoring System” for
Namibia, the “Okavango Assessment System” used in
Okavango Delta, Botswana, and the “Tanzanian River
Scoring System” for Tanzanian rivers (Shimba and Jonah
2016). BMWP score has been widely used in other
regions in the world (Kumar et al. 2013; Romero et al.
2017; Uherek and Pinto Gouveia 2014; Varnosfaderany
et al. 2010).

Multimeric Approaches

Multimetric indices (MMIs) have been used as standard
tools for presenting single “Multimetric” value for the
biological condition of water body of various structural and
functional metrics of an ecosystem, describing a specific
assemblage such as fish, macroinvertebrates, or periphyton
(Blocksom 2003; Stoddard et al. 2008). MMIs are highly
recommended since it provides robust, quantitative mea-
sures, and sensitive insights toward the responses to natural

and human-induced stressors from regional to continental
level (Stoddard et al. 2008; Zhou et al. 2016). Structural and
functional metrics used in Multimetric approaches include
“taxa richness, taxonomic composition, relative abundance,
dominance, pollution tolerance, functional feeding groups,
life history strategies, and behavioral habits” (Ferreira et al.
2011). Examples of MMIs are “Index of Biotic Integrity”
and “Benthic Index of Biotic Integrity”. In the sense of
natural variability, biotic integrity, and associated indices
reflects aquatic system’s ability to sustain characteristic
functional and structural populations, to resist loss of this
function and structure due to disturbance, and to recover
from such disturbance (Perera et al. 2012). The dis-
advantages associated with use of such indices are their
complexity of calculations in determining the stream health
(Fierro et al. 2017).

Multivariate Approaches

Multivariate approaches are effective for predicting the
relationship between bioindicators (absence or presence of
site-specific fauna patterns) and environmental character-
istics using statistical analysis (Ordination analyses and
cluster analyses or combination of these) under the major
environmental stress to the reference site (López-López and
Sedeño-Díaz 2015; Niemi and McDonald 2004). Predictive
models are required in multivariate methods that relate the
physicochemical properties of an aquatic ecosystem with
bioindicator organisms, which are represented under refer-
ence conditions. Widely used such multivariate techniques
are RIVPACS (River Invertebrate Prediction and Classifi-
cation System) which was first implemented in the UK and
its derivative models AusRivAS (Australian Rivers
Assessment System), BEAST (BEnthic Assessment Sedi-
ment), and ANNA (Assessment by Nearest Neighbor
Analysis) (Davies 2000; Li et al. 2010; López-López and
Sedeño-Díaz 2015). Other similar approaches include
LIMPACT (LIMnology and imPACT) in Germany, the
integrated evaluation system SERCON in Scotland and the
Rapid Bioassessment Protocols in the USA (Neumann et al.
2003). The advantages of this approach are the representa-
tiveness of the various stressors and can be used to evaluate
the stream health beyond the sampling points. Dis-
advantages are the complexity of developing the approach,
which require expert knowledge (Herman and Nejadha-
shemi 2015).

Functional Approaches

A functional approach is a proper approach for reflecting
ecological integrity based on the information on both
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structure and function of the aquatic ecosystem. This
approach is focused on similar biological characteristics
(life cycle, reproductive characteristics, mobility, modes
of resistance, food, feeding, and breathing habits) and
ecological characteristics (temperature preferences,
trophic stage, biogeographic distribution, longitudinal
zoning, substratum, organic pollution tolerance, and cur-
rent velocity) which are susceptible to the local environ-
mental gradient (Charvet et al. 1998; Jayawardana and
Westbrooke 2010; Menezes et al. 2010; Poff et al. 2006).
Moreover, this approach better detects anthropogenic
impacts than traditional methods such as diversity indices
or chemical methods (Tomanova et al. 2008). The
increased sensitivity and mechanistic linkage of biotic
responses to environmental conditions are intrinsic feature
of such indices and they aid in ecological risk assessment
by providing useful information relevant changes of
structure and function of the aquatic ecosystem (Culp
et al. (2011). The disadvantages of this approach are less
sensitivity to sampling effort, taxonomic resolution level,
and large-scale spatial taxonomic differences (Bonada
et al. 2006).

Indices of Biological Integrity (IBI)

Macroinvertebrates occupy the entire aquatic system of
sediments, water columns and submerged substrates of
streams, rivers, lakes and wetlands and may represent the
biological integrity of the entire aquatic system (Chirhart
2003). IBI was first developed for communities then subse-
quently been modified for aquatic macroinvertebrates, ter-
restrial macroinvertebrates, and algae (Chirhart 2003). IBI
developed using a combination of univariate and biotic indi-
ces to detect the impacts of anthropogenic disturbances on the
aquatic environment. Metrics in IBI denote changes in a
predictable way of quantifiable attributes which are the bio-
logical assemblage of different levels of anthropogenic stress
on the ecosystem. The total number of taxa or the number of
“EPT taxa” (Ephemeroptera, Plecoptera, and Trichoptera) is a
typical example of the metrics used in IBI macroinvertebrates.
Each metric value is based on a comparison of anthropogenic
disturbances with little to no effect (Karr 1991). Attributes
used to the development of IBI fall into four categories
namely “Richness measures”, “Tolerance measures”, “Com-
position measures”, and “Trophic structure measure”. Inclu-
sion of one or more metrics from each of these categories
improves the predictability of IBI (Chirhart 2003; Karr and
Chu 1998). A “RIVPACS (River Invertebrate Prediction and
Classification System)” is an example of IBI, which is a
particular case of IBI and multivariate approaches. The
advantage of this approach is that it is proven to be very
adaptable in different regions (Karr and Chu 1998).

Macroinvertebrate Traits Based Approaches

Trait-based macrobenthic indicators are being developed in
recent years to overcome the problem of less sensitivity of
taxonomy based indicators to specific stressors related to the
aquatic ecological impairment (Knillmann et al. 2018; Liess
et al. 2008; Reynoldson et al. 1997; Schäfer et al. 2007).
Generally, taxonomy based indicators do not identify spe-
cific stressors responsible for impairment but respond to
multiple stresses associated with such impairments (Schäfer
et al. 2011a). In recent years Biotic indicators based on
biological traits such as generation time, body size and
mode of reproduction along with physiological traits such
as physiological sensitivity have been developed to identify
specific effects of identified stresses (Liess et al. 2008).
SPEcies At Risk (SPEAR)pesticides approach is a recently
developed trait-based approach which incorporate macro-
invertebrate traits sensitive to pesticide contamination for
monitoring pesticide contamination (Knillmann et al. 2018;
Schäfer et al. 2007). SPEARsalinity is another trait-based
indicator developed for South East Australia to assess the
impacts of salinization of rivers (Schäfer et al. 2011a).
SPEARorganic indicator is a trait-based indicators which was
developed to assess the impact of organic toxicant on the
trait composition of invertebrate communities in streams of
Europe and Siberia (Beketov and Liess 2008).

In order to establish trait-based indicators in biomoni-
toring, it is important to compile the trait information for
taxa present in the area under consideration. These data
bases have been well developed in most of the Europe or
North America regions. However, such data bases are not
available for most regions of the Southern hemisphere and
Asia (Schäfer et al. 2011a).

Pesticide Pollution Monitoring

Pesticides are widely used for securing agricultural pro-
duction and has worldwide applications. However, impacts
of the chemicals applied to crop fields may not only act on
target pest populations but also have impacts on nontarget
species. According to Kaoga et al. (2013), over 95% of
applied insecticides and herbicides on the field end up in
nontarget areas. Most frequently pesticides applied into
crop fields may travel through the land as surface runoff or
leach through soil and end up in aquatic systems (Mutuku
et al. 2014). In the aquatic environment, pesticide residues
accumulate and are found to affect aquatic species in var-
ious ways. Specifically, it has been found that pesticides
may cause the decline of species in the aquatic environment
(Schäfer et al. 2007; Scha ̈fer et al. 2012). The use of pes-
ticides is expected to increase due to climate change in the
future and it is considered to be an important cause of the
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loss of biodiversity in the world (Beketov et al. 2013).
Increase in temperature and change in precipitation patterns
caused due to climate change can increase crop pests. As a
consequence, increased use of pesticides is anticipated in
the form of higher quantities, concentrations, frequencies
and various varieties or forms of products used (Delcour
et al. 2015; Schäfer et al. 2011a). Runoff, leaching, spray
drift, preferential flow through soil macropores, or a com-
bination of these processes from agricultural areas are
regarded as a nonpoint source of aquatic pesticide con-
tamination (Loewy et al. 2011; Phillips and Bode 2004).
Among them, the main route by which pesticides are
transported to the aquatic environment is runoff, but the rate
depends on the types of soil, the physicochemical properties
of the pesticides, the timing and rate of application, and the
precipitation after application of the pesticide (Phillips and
Bode 2004). Abiotic factors (photodecomposition by sun-
light or hydrolysis by water) can lead to degradation of
pesticides or adsorb to the sediments or organic matter
whereas biotic factors of uptake, metabolization, and
accumulation in organisms determine the fate of pesticides
in the aquatic environment (Schäfer et al. 2011b). Exposure
through contaminated food sources and uptake from over-
lying water through body walls or respiratory surfaces are
the main routes of pesticide entry to bodies of aquatic
species (Reynoldson 1987).

Pesticides can be classified as organochlorines (OCPs),
organophosphates (OPPs), carbamates (CMs), pyrethroids,
and inorganics according to their active ingredients and
these synthetic pesticides have been used since the 1940s to
control insects around the world. Low cost, broad-spectrum,
and persistence nature are reasons for OCPs widely used in
the past. The high lipophilic nature, and low biodegrad-
ability of OCPs facilitate them to bioaccumulate and bio-
magnifies in the aquatic food chains causing lethal or sub
lethal effects. Most OCPs are banned in the world due to
such harmful effects (Keithmaleesatti et al. 2009), however,
OCPs residues are still detected in certain areas of the world
due to its persistent nature as well as due to the continuation
of application of such pesticides in some regions of the
world (Rathore and Nollet 2012).

OPPs are the most widely used pesticide in agriculture
worldwide and are considered by the WHO to be one of the
most hazardous pesticides to vertebrate (Ross et al. 2013).
OPPs are easily hydrolyzed and highly toxic to insects
(Chambers et al. 2010). CMs are also commonly used in
agricultural lands, but it is less toxic to insects and the mode
of action is similar to OPPs (Gupta 2006). Pyrethroids are
the most widely used group of synthetic pesticide and it is
highly toxic to invertebrates and fish and capable of killing
invertebrates at ppb levels (Shimba and Jonah 2016).

The bioavailability of pesticides is highly dependent on the
pesticide sorption behavior in the aquatic environment. The

toxicity of most agricultural chemicals is temperature-
dependent (Rathore and Nollet 2012). At high temperatures,
several OPP insecticides exhibit increased toxicity to inverte-
brates, whereas, at low temperatures, pyrethroid insecticides
exposure shows increased toxicity. These temperature effects
may alter contaminant uptake, or biotransformation rates which
result in modification of an organism’s capacity to detoxify
xenobiotics and ultimately influence the toxicity (Willming
et al. 2013). Chemical stability and cation exchange capacity of
organic matter and pH (Gunnarsson et al. 1999; Katagi 2006)
are also found to determine the sorption characteristics of
pesticides in the sediment layer.

The pesticide contamination is found to contribute to the
loss of biodiversity in aquatic systems, but physiological
acclimation or genetic adaptation increases the tolerance of
aquatic biota to pesticides. Simple mutations at a single
locus have been found to cause the development of resis-
tance of invertebrates to toxicants (Becker and Liess 2015).
Adaptation of nontarget aquatic species to insecticides is
less known (Becker and Liess 2017; Liess and Ohe 2005;
Muenze et al. 2015). Weston et al. (2013) disclosed that
moderate levels of resistance to CMs and OPPs (<2-fold
increase in LC50) have been developed by the water flea
“Daphnia magna”. Crustacean “Hyalella Azteca” labora-
tory cultures and wild populations demonstrated 550-fold
resistance to pyrethroid insecticides through mutations in
the voltage-gated sodium channel at the target site for
pyrethroid toxicity (Weston et al. 2013). In nontarget black
flies, high levels of resistance to DDT, and pyrethroids were
also observed (Montagna et al. 2003) in which 355-fold
pyrethroid resistance was developed due to esterase enzyme
activity (Montagna et al. 2012).

The most popular and widely used group of invertebrates
which is used to assessing pesticide pollution of water is
benthic macroinvertebrates. Benthic communities play an
important role in transferring energy from one tropic level to
another. Modern insecticides are found to have adverse impacts
on nontarget aquatic invertebrates in the aquatic habitats (Fri-
berg-Jensen et al. 2003; Schulz and Liess 2001; Wendt-Rasch
et al. 2003). Benthic macroinvertebrates are well suited for
estimating the toxicity of currently used pesticides because the
detection of actual concentrations of pesticides in the envir-
onment is difficult and expensive due to their episodic and low-
concentration levels and the existence of a multitude of sub-
stances (Castillo et al. 2006; Schaf̈er et al. 2011). For example,
“invertebrates Daphnia magna, Hyalella azteca, and Chir-
onomus tentans were about ≥200 times more sensitive than the
fish fathead minnow (Pimephales promels) to the AChE inhi-
biting organophosphorus insecticide chlorpyrifos” (Moore et al.
1998). Macroinvertebrate groups of “Ephemeroptera, Ple-
coptera, and Trichoptera” (commonly known as EPT taxa) are
very sensitive species to pollution while midge larva, pouch
snails and rat-tailed maggots are tolerant to environmental
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contaminants (Agouridis et al. 2015). “Species-at-risk
(SPEAR)” pesticides index is commonly used to indicate
changes in the abundance of the taxa vulnerable to aquatic
pesticide concentrations (Liess and Ohe 2005; Schäfer et al.
2007; Schaf̈er et al. 2011; Rasmussen et al. 2012).

Monitoring of invertebrate community composition is
highly ecologically relevant for detecting pesticide pollution of
the aquatic environment because the pesticide exposure from
agriculture and the macroinvertebrates establishment has
shown a clear exposure effect relationship (Table 1). Studies
comparing the variance of stream macrobenthic communities
based on the pesticide exposure indicated that the benthic
macroinvertebrate fauna in control sites of immediately
upstream of an area of agricultural land and downstream sites
are having a significant difference in sensitive and tolerant taxa
where sensitive taxa showing declining trends in comparison to
control sites (Neumann and Dudgeon 2002; Thiere and Schulz
2004). Another study by Macchi et al. (2018) indicated the

dominance of a single taxon in places of pesticide application.
However, these studies characteristically relied on the com-
parison of sensitive and tolerant taxa in sites located in proxi-
mity, to eliminate the other environmental variations such as
stream size, discharge, substrate characteristics, and riparian
vegetation. Hence these studies raise the question of repre-
sentativeness because they were not adequately representing
broader spatial scales.

The use of various macroinvertebrate-based indices to
evaluate the levels of contamination of pesticides in streams
is widely practiced in temperate regions. However, these are
of limited use for assessing tropical streams and the sensitive
species of macroinvertebrates in tropical regions are largely
unknown. On the other hand, BMWP index which is one of
the most often used biotic indices based on macro-
invertebrates to measure organic pollution (nutrient enrich-
ment) and association with oxygen depletion in streams, has
been successfully used in tropical environments such as

Table 1 Examples of pesticide effects on macroinvertebrate community using biological indices on different regions of the world

Indices used Region Sampling sites Pesticide toxicity
quantification

Relationship between
pesticide toxicity and
biological parameters

Variance in
index and
pesticide toxicity
(R2

adj)

References

Biotic
SPEAR and BMWP/
PAN

Pacific coast of
western Panama

13 Stream sites Toxic units Affected the BMWP/
PAN not the
SPEAR index

0.13 (Cornejo et al.
2019)

Diversity
Shannon–Wiener
index H′ S, total
density

Argentina 1 Stream
6 Sites

Pesticide
concentrations

Highly affected 0.61 Species
richness and 0.59
abundance

(Macchi et al.
2018)

Biotic
BMWP-CR
SPEAR pesticides
ASPT

Coast Rica 1 Stream
3 Sites

Toxic units Affected the ASPT
not the BMWP-CR
SPEAR pesticides

0.6 (Rasmussen
et al. 2016)

Multimetric
EPTR,
RICHTOL,
INTOL_RICH,
MMI

Midwestern
United States

100 Streams Pesticide
concentrations

Moderately affected 0.22 (Schmidt et al.
2018)

Diversity
Community
composition/
abundance

Netherlands 14 Sites
ditches and ponds

Pesticide
concentrations

Highly affected 5.4% Of
community
variance

(Ieromina et al.
2016)

Biotic
SPEARpesticides

France and Finland 29 Streams Toxic unit Highly affected 0.64 (Schäfer et al.
2007)

Biotic
SPEARpesticides

Southeast Australia 24 Streams Toxic unit Highly affected 0.67 (Scha ̈fer et al.
2011)

Biotic
SPEARpesticides

Denmark 14 Streams Toxic unit Highly affected Between 0.4
and 0.68

(Rasmussen
et al. 2012)

Biotic
SPEAR

Central Germany 19 Streams Toxic unit Highly affected 0.59 (Muenze et al.
2015)

Indices used—BMWP/Col Biological Monitoring Working Party Colombia, NLSMI Neotropical Low-land Stream Multimetric Index, ASPT
Average Score per Taxon, H′ Shannon–Wiener index, S taxon richness, EPTR richness of the three dominant sensitive aquatic insect groups
tolerance, RICHTOL average tolerance of all taxa in a sample based on supplemented EPA tolerance values, INTOL_RICH richness of intolerant
taxa, MMI six individual invertebrate metrics: % EPT, Shannon diversity, scraper richness, clinger richness, Ephemeroptera richness, and %
richness of tolerant taxa (scores 8–10)
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Ecuador, Brazil and Costa Rica with slight modification to
the index although it was developed for the temperate regions
(Damanik-Ambarita et al. 2016; Nascimento et al. 2018;
Svensson et al. 2018). SPEAR pesticides index is a widely
used index for pesticide monitoring which is a trait-based
approach to assess responses of macroinvertebrate commu-
nities to pesticides. It has been developed and successfully
applied in different biogeographical regions in Europe,
however, additional researches are needed to the application
of the SPEAR pesticides index through its development in
other regions of the world that are having different climatic,
geographic conditions and/or agricultural practices (Cornejo
et al. 2019; Rasmussen et al. 2016; Schäfer et al. 2013).
Many studies done in temperate countries have shown a
strong negative correlation between pesticide concentrations
in aquatic systems and the SPEAR index but shown poor
correlations in tropical regions (Rasmussen et al. 2012;
Schäfer et al. 2007; Schaf̈er et al. 2011). This weak asso-
ciations recorded in tropical aquatic systems may have been
attributed to the frequent exposure of invertebrates to high
doses of pesticides during the crop cycles during the year that
is released from the crop fields. In addition, the post-
contamination recovery period for pesticides and the vul-
nerability of aquatic phases may differ in tropical taxa
(Rasmussen et al. 2016). Among the other research gaps
related to understanding of effects of pesticides and biomo-
nitoring, a few studies are conducted to explore the syner-
gistic effects of different pesticides on aquatic invertebrates
(Shahid et al. 2019). Therefore, further research is needed to
carryout to understand the synergistic effects of different
pesticides on aquatic biota. In addition to that, lentic systems
are highly vulnerable to pesticide accumulation, but very few
studies were conducted in the lentic aquatic ecosystems to
assess the applicability of these indices (Molozzi et al. 2012).
However, some countries are widely using biological indices,
for example, “SWAMPS index” in Australia (Chessman
et al. 2002), a “Biological Integrity Index” developed for
wetlands of the Missouri River (Haugerud 2003) and
“Multimetric Index” for wetlands in southwest Ethiopia to
assess the lentic systems (Mereta et al. 2013).

In conclusion, use of macroinvertebrates in biological
monitoring is a powerful tool to study changes within the
aquatic system more importantly to assess the effects of
agricultural pesticides. they are an important group
involved in the transfer of energy in the aquatic food chain
to higher levels and are also a good indicator of pollution
in the aquatic environment. although research on tropical
streams has increased over the last two decades, there is
still a knowledge gap on use of macroinvertebrate fauna
for biomonitoring in tropical regions of the world. “biotic
indices” and “multimetric approaches” are widely used to
evaluate the health of aquatic ecosystems worldwide.
review of literature on past studies suggested that bmwp

and ept taxa richness do not correlate well with pesticide
toxicity but largely sensitive to other environmental vari-
ables (Scha ̈fer et al. 2011a). SPEAR pesticide index is
successfully applied in temperate regions to monitor the
effects of pesticides on aquatic ecosystems but with lim-
ited use in tropics. We suggest that future studies should
focus on characterizing the sensitivity and vulnerability of
tropical species and their response to multiple stressors for
use in biomonitoring programs.
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