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Abstract
Soil heavy metal pollution threatens ecological health and food security. It is significant to classify pollution risk
management and control zones, which can effectively cope with soil pollution and scientifically carry out soil remediation
projects. In this study, based on 665 soil samples collecting from Ningbo (southeast China), single pollution index and
Nemerow composite pollution index (NCPI) were measured to assess soil pollution risk, and self-organization mapping
model was applied to classify management and control zones. Results showed that the heavy metal pollution in the northwest
part was more serious, while the east part was less polluted. Although more than 75% soil samples had negligible risks, the
Hg and Cu pollution was greatly influential and notable as their polluted samples accounted for 24.21% and 12.48%
respectively. Moreover, about 55.34% soil samples and more than half study region had pollution grades, and NCPI values
were obviously high with the center of northwest study area. Results also showed that the study region could be classified
into four zones with good spatial variabilities. Specifically, Monitored Zone with High-risk Pollution had the highest NCPI
caused by human activities, while Controlled Zone with Severe Pollution had relatively high NCPI caused by industrial and
agricultural production. Protected Zone with Ecological Conservation and Restricted Zone with Potential Pollution had low
NCPIs attributing to historical or natural factors. Our study implies that the classified zones can provide fundamental and
momentous information for establishing appropriate priorities of heavy metal risk management and control.
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Introduction

With the fast development of urbanization and indus-
trialization, the rapid growth of Chinese economy has
accelerated the resource consumption and the ecological
environment deterioration (Wang et al. 2019). Such situa-
tion poses a great threat to the soil environment, one of
which is the severe heavy metal pollution. According to a

national survey of soil pollution in China, the overall soil
environmental pollution was noteworthy. The heavy metal
concentrations of 19.4% soil samples collected from agri-
cultural land were higher than the maximum safe con-
centration, and more than 23 million hectares of agricultural
land were polluted by heavy metals (NSPCIR 2014). Apart
from damaging the soil quality, the heavy metals in soil can
not only deteriorate underground water and atmospheric
environment, but also lead to decreased food production
and unhealthy agricultural products (D’Emilio et al. 2013).
At present, soil heavy metal pollution has become increas-
ingly prominent and widespread in China. Cd is determined
as one of the priority control heavy metals, whose pollution
is the most serious in Guangxi Province, Zhejiang Province,
and Guangdong Province (Sun et al. 2020). Industrial
regions particularly mining areas are more severely polluted
by heavy metals than agricultural regions, and those in the
southeast China are severer than those in the northwest
China (Yang et al. 2018). And the natural source,
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atmospheric deposition, industrial activities, and agri-
cultural inputs are major pollution sources of heavy metals
(Liang et al. 2017). As a whole, the heavy metal pollution in
soil has expanded from local to region, from single pollu-
tion to compound pollution, from point source pollution to
non-point source pollution.

In an effort to availably control serious soil heavy metal
pollution and monitor soil environmental quality, Chinese
government has already implemented many soil environ-
ment protection policies. For instance, the Arrangement of
Soil Environmental Protection and Comprehensive Man-
agement in 2013 required governments to take responsi-
bilities to determine priority protection areas and rank soil
environmental qualities (State Council of PRC 2013). And
the Action Plan for the Prevention and Control of Soil
Pollution in 2016 asked for classification managements to
ensure the safety of agricultural products (State Council of
PRC 2016). Under this circumstance, numerous work has
been done about soil heavy metal pollution, including
sampling points design (Chu et al. 2010; Li et al. 2016),
pollution sources analysis (Keshavarzi and Kumar 2019; Lü
et al. 2018), pollution risks assessment (Huang et al. 2018;
Zang et al. 2017). To be specific, single factor, Nemerow,
and geo-accumulation indexes were commonly applied to
comprehensively assess the level of heavy metal pollution
(Zhang et al. 2018). Likewise, the Hakanson ecological risk
index and USEPA model were widely applied to assess the
potential ecological risk and human health risk in Soil-
Plant-Human System (Pan et al. 2016). However, these
efforts mainly focused on the spatial pattern and pollution
assessment of soil heavy metals (Marrugo-Negrete et al.
2017; Mu et al. 2019), while few can further take the pol-
lution management and control into consideration.

It is of vital significance to manage and control heavy
metal pollution in soil. Classifying risk management and
control zones can determine the priority for integrated
management and then put forward targeted strategies, which
plays a fundamental role for the regional pollution risk
control of heavy metals in soil (Chen et al. 2014). Related
studies established an evaluation and zoning method for risk
control based on heavy metal pollution grade of agricultural
land (Wei et al. 2018). Aiming at polluted areas with high
background value of heavy metals, a systematical approach
of ecological risk evaluation and classification was con-
ducted (Yu and Wu 2018). In addition, some spatial tech-
nologies, such as geographic methods and clustering
methods, were effectively applied to improve spatio-
temporal zoning of soil environmental functions (Jia et al.
2015). Nevertheless, those existing studies mainly con-
centrated on the zoning theories and methods rather than
empirical researches.

Although a few previous studies carried out risk man-
agement and control for heavy metals based on soil

pollution assessment, the data sources were spatially single
continuous variables that were mainly measured data of
heavy metals in soil. And the mostly used methods were
spatial interpolation or multivariate statistics. Moreover, the
classified management and control zones might be not
workable and actionable in a county where administrative
units were the basic management units. In this study, we
selected a typical industrial city in southeast China as the
case study area and collected 665 soil samples in order to
measure the contents of eight soil heavy metals and assess
the pollution risk of soil heavy metals. Based on SOM
model, the assessment results were combined with multi-
source data (i.e., discrete natural, socio-economic and
environmental variables) relating to heavy metal pollution
and accumulation to classify different pollution risk man-
agement and control zones. Therefore, the research goal is
to classify reasonable and practical zones based on collected
multi-source discrete data. And specific aims are to explore:
(i) what is the current status of soil heavy metals, (ii) how to
assess heavy metal pollution in soil, and (iii) how to classify
pollution risk management and control zones.

Materials and Methods

Study Region

The study area is Ningbo city in Zhejiang province, which
is located in the south of Yangtze River Delta, southeast
China (Fig. 1). It covers six districts including Jiangbei
District, Zhenhai District, Haishu District, Jiangdong Dis-
trict, Yinzhou District, and Beilun District. Ningbo city has
diverse soil types, dense roads and rivers, and abundant
resources. Besides, there are ~85 minerals in Ningbo city,
including eight metal minerals (e.g., Pb, Cu, Fe, and Ag)
(Liu et al. 2016; You 2017). Ningbo city has well-
developed petrochemical, electronic, metallurgy, building
materials, and textile industries. In recent years, however,
along with the rapid economic development, the environ-
mental pollution has become increasingly serious. Particu-
larly, soil heavy metal pollution caused by industrial wastes
from polluting enterprises had a significant impact on soil
quality, crop safety, and lives of local residents (Li et al.
2018; Liu and Borthwick 2011). Thus, it is necessary to
identify the pollution risk in soil to protect and improve the
soil environment.

Data

We collected multi-source data, including soil samples,
remote sensing images, land-use data, statistics, and
meteorological data, for the year 2013. Landsat TM images
for calculating Normalized Difference Vegetation Index
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(NDVI) were acquired from the USGS website (http://ea
rthexplorer.usgs.gov/). The digital elevation model (DEM)
data were derived from Geospatial Data Cloud (http://www.
gscloud.cn/search), which provided terrain elevation and
slope information. The road areas and water body areas
were obtained from land-use map provided by Ningbo
Bureau of Natural Resources and Planning. The population
data were derived from Ningbo Statistical Yearbook. The
input data of fertilizer (i.e., nitrogenous fertilizer, phos-
phatic fertilizer, potassic fertilizer, compound fertilizer, and
organic fertilizer) and pesticide were derived from Ningbo
Soil Heavy Metal Pollution Investigation. Precipitation data
were acquired from National Meteorological Information
Center (http://data.cma.cn/). The polluting enterprise data

were acquired from the Ministry of Environmental Protec-
tion Data Center (http://datacenter.mep.gov.cn/).

We collected a total of 665 soil samples using systematic
grid sampling from the study region. Each soil sample was
combined with five subsamples collected from five loca-
tions within five meters. Besides, in order to collect more
representative samples, we increased partial sampling den-
sity based on local features. All soil subsamples were col-
lected at a depth of 0–20 cm with a stainless-steel shovel
and their coordinates were recorded with a differential
global positioning system (GPS) (Fig. 1). After collection,
we air-dried all soil samples in the lab for several days at
ambient temperature and passed them through a 2-mm
nylon sieve for soil properties analysis. Afterward, we

Fig. 1 The specific location of the study region and spatial distribution of soil heavy metal samples
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ground some soil samples to pass through 100 meshes and
stored them in closed polyethylene bags for heavy metal
content analysis. To be specific, according to the agri-
cultural sector standard (NY/T 1377-2007) of the People’s
Republic of China, soil pH was measured in H2O with a
soil/solution ratio of 1:2.5 (m/v) using the Glass Electrode
method (GL, pHS-3C, REX, Shanghai, China). Total con-
centrations of Cr, Pb, As, Cu, Zn, and Ni in soil samples
were acid-digested with HCl-HNO3-HClO4 and analyzed by
the inductively coupled plasma optical emission spectro-
metry (ICP-OES 6300, Thermo Fisher Scientific, Waltham,
MA, USA). Total Cd in soil samples were digested by HF-
HNO3-HClO4 and analyzed by the inductively coupled
plasma mass spectrometer (ICP-MS, Agilent 7500a, Palo
Alto, CA, USA). Total Hg in soil samples were digested by
HNO3-HCl in a water bath and analyzed by the double
channel atomic fluorescence spectrometer. In addition, we
applied reagent blanks and standard reference materials for
quality assurance and quality control. And the recovery
rates of heavy metal elements were from 90 to 110% (Hu
et al. 2017).

Methods

We first described the current status of soil pollution of
eight heavy metals (i.e., Cr, Pb, Cd, Hg, As, Cu, Zn, and
Ni). A series of statistical indexes (i.e., min, max, mean,
median, standard deviation, coefficient of variation, skew-
ness, and kurtosis) were applied to analyze soil heavy metal
characteristics. Based on the variogram calculation, kriging
interpolation method and inverse distance weighted method
were applied to obtain spatially continuous data based on
discrete soil sample data. Subsequently, we applied single-
factor evaluation and comprehensive pollution evaluation to
assess heavy metal pollution of soil samples. Finally, we
applied self-organization mapping (SOM) model to classify
pollution risk management and control zones of soil heavy
metals. Eleven socio-environmental indicators were selec-
ted as the potential heavy metal pollution sources. One-way
variance analysis was applied to evaluate whether the
classified management and control zones could be used to
characterize spatial variability of soil heavy metals.

Single-factor evaluation

Single-factor evaluation is to classify heavy metal pollution
risk and assess soil environmental quality based on rela-
tionships among screening values and intervention values of
soil pollution risk in agricultural land and actual heavy
metal contents in soil. When the content of a soil heavy
metal in agricultural land is equal to or lower than its
screening value of soil pollution risk, the risk to the quality
and safety of agricultural products, crop growth, and soil

ecological environment is low, which can be ignored in
general. Otherwise, the risk is high. Under this circum-
stance, it is indispensable to strengthen the monitoring of
soil environment and agricultural products as well as take
measures for soil remediation to ensure safety utilization.
When the content of a heavy metal in agricultural land soil
is higher than its intervention value of soil pollution risk,
agricultural products are substandard, and agricultural land
pollution risk is high, which should be taken strict control
measures.

According to the Standards (Ministry of Ecology and
Environmental of PRC 2018), five kinds of heavy metals
(i.e., Cd, Hg, As, Pb and Cr) have screening values (Si) and
intervention values (Ii) at different pH values. Combining
with soil heavy metal contents (Ci), we can evaluate soil
pollution risk in agricultural land and divide soil environ-
mental quality into three grades, i.e., Priority Protection I
(Ci ≤ Si), Safety Use II (Si < Ci ≤ Ii) and Seriously Control III
(Ci > Ii). Likewise, since the other three kinds of heavy
metals (i.e., Cu, Ni, and Zn) only have screening values (Si)
at different pH values, combining with soil heavy metal
contents (Ci), we can divide soil environmental quality into
two grades, i.e., Priority Protection I (Ci ≤ Si) and Safety Use
II (Ci > Ii). The agricultural land in Priority Protection I has
negligible risk or even no risk, and the agricultural land in
Safety Use II may have soil pollution with controllable risk,
while the agricultural land in Seriously Control III has high
soil pollution risk.

Comprehensive pollution evaluation

Comprehensive pollution evaluation, which is represented
by Nemerow composite pollution index (NCPI), is applied
to comprehensively analyze and evaluate soil heavy metal
pollution based on maximum and average values of single
pollutiocn index (SPI) of eight soil heavy metals (Hu et al.
2017). Since NCPI takes the maximum value of SPI into
consideration, the effect of most influential heavy metal
cannot be smoothed. For a certain soil heavy metal sample,
SPI and NCPI are calculated as follows:

SPIi ¼ Ci

Si
ð1Þ

NCPIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SPIimaxð Þ2þ SPIi

� �2
2

s
ð2Þ

where i is a kind of heavy metal pollutant, SPIi is SPI of
pollutant i, Ci is the measured concentration of pollutant i, Si
is the evaluation standard of pollutant i (i.e., screening
value), NCPIi is NCPI of pollutant i, SPIimax is the
maximum SPIi, SPIi is the average SPIi of eight heavy
metals. According to evaluation standards, SPIs of different
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ranges can be divided into five grades, i.e., Safety (SPI ≤
1.0), Slight pollution (1.0 < SPI ≤ 2.0), Mild pollution
(2.0 < SPI ≤ 3.0), Moderate pollution (3.0 < SPI ≤ 5.0) and
Severe pollution (SPI > 5.0). Likewise, NCPIs of different
ranges can also be divided into five grades, i.e., Safety
(NCPI ≤ 0.7, indicating clean surroundings), Alert (0.7 <
NCPI ≤ 1.0, indicating slightly clean surroundings), Mild
pollution (1.0 < NCPI ≤ 2.0, indicating pollutants exceed
background and soils start to be polluted), Moderate
pollution (2.0 < NCPI ≤ 3.0, indicating soils have been
polluted moderately), and Severe pollution (NCPI > 3.0,
indicating soils have been polluted severely) (Fig. 2).

SOM model

SOM neural network is an unsupervised learning algorithm
that can simulate the self-organization mapping function of
the human brain’s nervous system. It extracts important
characteristics of input data and then classifies them into
several categories on the basis of similarity factors. The
SOM network can reduce original complex high-
dimensional data to low-dimensional data (e.g., a two-
dimensional network of neurons) without changing the
topological structure (Kohonen 1990, 2006, 2013).

SOM model consists of two parts: one is the input layer
accepting external input data, and the other is the output
layer (or competitive layer) arranged in a two-dimensional
structure (Fig. 3). Each input neuron is linked to each output
neuron, which achieves a full connectivity between the two
layers. We assume to input an n-dimensional vector X= (x1,
x2, x3, …, xn) with n neurons and output a two-dimensional
network with m neurons (n <m). Each input neuron i has a
two-dimensional feature vector X(i)= (X1(i), X2(i), X3(i),
…, Xn(i))

T. We take Wij (i= 1, 2, 3, …, n; j= 1, 2, 3,…, m)
as the connection weight between the ith input neuron and
the jth output neuron. And we set the percentages of input

data used for training and test were 70 and 30%. The pro-
cess of neural network algorithm training works as follows:

Step 1: Initialization. Initialize the weight with a small
random value in the interval [0, 1]. We set the initial
learning efficiency as η(0), the initial area as Ng(0), and
normalize all of the input vector X and the weight vector Wj.
Equations are

X0 ¼ X

X
ð3Þ

W 0
j ¼

W

Wj
ð4Þ

Here, X ¼ Pm
j¼1 xj

� �2� �1
2
, Wj ¼

Pn
i¼1;j¼1 Wij 0ð Þ� �2� �1

2
.

Step 2: Competition. As different discriminant function
values correspond to the calculation of neurons of different
input neurons, competition occurs. The winner of the dis-
criminant function is selected as the competition winner.
Euclidean distance is used as the discriminant function and
calculated as

dj ¼
Xm
j¼1

X0
t �W 0

j

� �2
" #1

2

ð5Þ

Fig. 2 The flowchart of the research

Fig. 3 SOM neural network
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Step 3: Cooperation. Find the minimum distance and
determine the winning neuron g through competitive
learning. Find the domain through the winning neuron to
achieve cooperation between adjacent neurons:

dm ¼ min dj
� � ð6Þ

Step 4: Adaptation. Iterate and adjust the connection
weight. The vectors connected by the winning neuron and
all neurons in winning neighborhood are adjusted to near
the input vector at varying degrees that depend on the dis-
tances between neighborhood neurons and the winning
neuron. And then obtain a new learning rate η(t) and new
domain Ng(t).

Wj t ¼ 1ð Þ ¼ Wj nð Þ þ η tð Þ � X0
t �W 0

j

			 			 ð7Þ

η tð Þ ¼ η 0ð Þ � 1� T�1
� � ð8Þ

Ng tð Þ ¼ int Ng oð Þ � T�1
� � ð9Þ

Here, j ∈Ng(t)‧(0 < η(t) < 1) j, t is the number of archived
iterations, and T is the total number of iterations. When T
reaches 2000, the result of SOM model remains stable.

In this process, set t= t+ 1. Repeat from Step 1 to Step 4
until t= T.

In the present study, we established a series of socio-
environmental indicators for SOM model to realize classi-
fication. There are masses of factors influencing soil heavy
metal, such as soil parent material, atmospheric deposition,
sewage irrigation, agricultural fertilizer and pesticide input,
road density, mineral exploration, polluting enterprise
emission, etc. On account of different sources of soil heavy
metals, the contributions of heavy metals vary from one
pollution source to another (Cheng et al. 2014; Wang et al.
2014; Zhang et al. 2012). The distribution of heavy metals
in the crust is the direct cause of geogenic pollution, and
soil parent material contributes significantly to Cr and Ni
(Zheng et al. 2002). Atmospheric deposition, which can
bring heavy metals into soil from human activities like daily
life and agricultural input, has a great contribution to Cd
(Zeng et al. 2015). Urban and industrial wastewater are
discharged into rivers and soil, and sewage irrigation con-
tributes a lot to Ni (Wang et al. 2014). A great deal of
pesticide, fertilizer, and agricultural film in intensive agri-
culture can cause excessive heavy metals in soil, and agri-
cultural fertilizer and pesticide input have almost the same
contribution to heavy metals. Since the burning of leaded
petrol and wear of automobile tires can lead to heavy metal
pollution in soil and dust, road density contributes greatly to
Pb (Zheng et al. 2002). Since the discharge of three
industrial wastes can cause compound pollution of multiple
heavy metals, mineral exploration and metal smelting

contribute largely to As, Ni, Zn, Cr (Gao and Ji 2018). The
soil heavy metal content around industrial land is high and
is closely related to the distance of polluting enterprises, and
polluting enterprise emission has a significant contribution
to Ni, Zn, Cr (Kim et al. 2019).

As a consequence, eleven socio-environmental indicators
(i.e., NDVI, elevation, slope, NCPI, road density, water
body density, population density, fertilizer input, pesticide
input, precipitation, and polluting enterprise density) were
selected as the potential pollution impact factors. Due to
different physical meanings and units of these socio-
environmental indicators, their order of magnitude has
great differences. In order to eliminate dimensional influ-
ence among indicators, we applied the standardization
method to normalize the eleven indicators. The specific
formula is:

x0 ¼ x� xmin

xmax � xmin
ð10Þ

where x′ is the standardized value, x is the actual value, xmin

is the minimum value within each indicator, while xmax is
the maximum value within each indicator

Results and Discussion

Descriptive Statistics of Soil Heavy Metals and the
Spatial Distribution

There were 665 samples of eight soil heavy metals
respectively (Table 1). Although the content ranges of eight
heavy metals varied greatly, their maximum values were all
far more than soil background values of both Zhejiang
province and China. Particularly, the contents of Hg, Cd,
and Cu varied in a wide range with the maximum being
about 34 times, 15 times, and 9 times of the minimum
respectively. Except for As, both mean and median values
of the other seven heavy metals all exceeded the corre-
sponding two kinds of background values. Taking soil
background values of Zhejiang province as the standard, the
mean values of Cr, Pb, Cd, Hg, Cu, Zn, and Ni were 1.5
times, 2.2 times, 3 times, 6 times, 2.3 times, 1.7 times, and
1.3 times of their corresponding soil background values
respectively. In terms of CV, there were no weak or highly
variations among the eight heavy metals in the study region.
And the eight heavy metals were ranked from high variation
degree to low variation degree as Hg, Cd, Cu, Zn, Pb, Cr,
As, and Ni. In addition, the skewness of all heavy metals
was positive except Ni. And the kurtosis distributions of Zn,
Pb, Cr, Cd, Cu, and As were concentrated to show a peak,
while Hg and Ni were scattered with a flat distribution.

After logarithmic transformation of whole samples, Pb
was normally distributed. After BOX-COX transformation

1110 Environmental Management (2020) 66:1105–1119



of the rest heavy metals, Cd, Hg, As, Cu, Zn, and Ni were
normally distributed except Cr. Therefore, the inverse dis-
tance weighted method was used to interpolate Cr, and the
kriging method was used to interpolate other heavy metals.
According to variogram parameters (Table 2), nugget values
were all greater than zero, indicating the random variation
caused by experimental errors. Hg had strong spatial auto-
correlation (nugget/still ratio was <0.25) with mainly struc-
tural variation affected by natural factors. As and Ni had
moderate spatial autocorrelation (nugget/still ratios were
between 0.25 and 0.75), whose spatial variations were
structural variation and random variation affected by both
natural factors and human factors. Since the nugget/still
ratios of the rest heavy metals were greater than 0.75, their
spatial variations were mainly random variation and orders
of human influences were ranked as Zn > Cd > Pb > Cu.

Spatially, the heavy metal pollution in southeast Zhenhai
district and the junction of Haishu, Jiangbei, Jiangdong, and
Yinzhou districts was more serious, while Beilun district
and west Yinzhou district were less polluted (Fig. 4). First
of all, the core areas of Cr with high values were Haishu
district and southeast Zhenhai district. The content of Cr
spread from core to periphery with a decreasing trend, while
other areas had relatively low Cr content. As to Pb, the
high-value area was located at southeast Yinzhou district
and the boundary of Haishu and Yinzhou district. Likewise,
the content of Pb spread from high-value center to

surrounding areas with a decreasing trend and Beilun dis-
trict had relatively low pollution. Differently, the Cd pol-
lution was generally high with a banded distribution. The
southwest corner of Yinzhou district was the Cd high-value
center and decreased to the northeast. And the boundary of
Yinzhou and Beilun district was another high-value center.
As to Hg, the junction of Haishu, Jiangbei, Jaingdong, and
Yinzhou districts was the core area of high value, which
was similar to Pb. The content of Hg decreased from core to
periphery and reached low-value area in the southeast where
Beilun district had the lowest pollution. The As intensively
concentrated in southeast Zhenhai district and southeast
margin of Yinzhou and Beilun districts, while west Yinzhou
district had very low As content. The high-value areas of Cu
were discrete, which were mainly located in middle Yinz-
hou district, west Beilun district and the junction of Yinz-
hou, Jiangbei, and Haishu districts. The content of Cu was
generally high and decreased from high-value areas to the
southwest. The content of Zn was also generally high, but it
showed a banded continuous distribution and crossed the
whole study region. High-value areas were distributed in
Haishu district and north Yinzhou district, while only a
small part in southeast Beilun district had low value. As to
Ni, high-value areas were distributed in Haishu district,
Jiangdong district, south Zhenhai district, southeast margin
of Yinzhou and Beilun districts, while low-value areas were
distributed in southeast corner of study region.

Table 2 The variogram
parameters of heavy metals

Heavy metals Model Nugget Still Range Aeolotropism Nugget/still ratio

Pb Exponential 0.040 0.041 0.793 Exist 0.962

Cd Gaussian 0.002 0.004 0.425 Exist 0.478

Hg Spherical 0.026 0.130 0.106 Exist 0.197

As Gaussian 3.639 9.055 0.460 Exist 0.402

Cu Gaussian 57.615 68.199 0.090 Exist 0.845

Zn Spherical 196.760 686.020 0.308 Exist 0.287

Ni Gaussian 31.605 83.548 0.379 Exist 0.378

Table 1 Statistical analysis of
eight heavy metals (number of
samples is 665)

Heavy metals Min Max Mean Median SD CV Skewness Kurtosis SBV-
Zhejiang

SBV-
China

Cr 19.90 148.40 79.95 84.40 20.26 25.34 −0.70 1.36 52.90 61.00

Pb 25.00 98.30 51.43 50.20 12.87 25.02 0.85 1.31 23.70 26.00

Cd 0.03 0.46 0.21 0.20 0.07 35.47 1.15 1.94 0.07 0.10

Hg 0.05 1.71 0.54 0.43 0.38 69.06 1.06 0.65 0.09 0.07

As 1.76 13.20 7.21 7.15 1.89 26.24 0.38 0.75 9.20 11.20

Cu 8.92 78.90 39.91 38.70 11.52 28.86 0.76 1.72 17.60 22.60

Zn 44.40 240.00 122.62 116.00 28.71 23.42 1.43 3.41 70.60 74.20

Ni 8.09 55.80 32.13 33.50 8.55 26.63 −0.62 0.65 24.60 26.90

SBV represented soil background value (National Environmental Monitoring Center of the People’s
Republic of China 1990). The unit of CV was % and units of others were mg/kg
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Fig. 4 The spatial distribution of eight soil heavy metal contents, i.e., a Cr, b Pb, c Cd, d Hg, e As, f Cu, g Zn, h Ni
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Assessment of Heavy Metal Pollution in Soil

From the perspective of single-factor evaluation results, a
majority of heavy metal samples were in Priority Protection
I (i.e., negligible risk or even no risk) and only a small
proportion of samples were in Safety Use II (i.e., con-
trollable risk), while no sample was in Seriously Control III
(i.e., high risk) (Table 3). All the samples of Cr, As and Ni
were in Priority Protection I. Most samples of Pb were in
Priority Protection I with proportion of 95.64%, while
4.36% Pb samples were in Safety Use II. Similarly, the
proportions of Cd samples in Priority Protection I and
Safety Use II were 92.63 and 7.37% respectively. As to Hg,
most samples were in Priority Protection I, accounting for
75.79%. The proportion of Hg samples in Safety Use II was
24.21% and the number of samples increased compared
with Pb and Cd. The proportions of Cu samples in Priority
Protection I and Safety Use II were 87.07 and 12.93%
respectively. Analogously, most samples of Zn were in
Priority Protection I with proportion of 97.89%, while only
2.11% Zn samples were in Safety Use II. As a whole, eight
heavy metals could be ranked from more to less polluted as
Hg > Cu > Cd > Pb > Zn > Cr/As/Ni.

Although most soil heavy metal samples were in Priority
Protection I (Table 3), the obvious Hg and Cu pollution
could not be ignored, which would affect comprehensive

pollution evaluation to a large extent (Table 4). It is obvious
that great differences of soil pollution existed among eight
heavy metals. Except Cr, As, and Ni, all the heavy metals
had polluted samples with different proportions. Among
them, the proportion of Hg polluted samples was the largest,
reaching up to 24.21%. Detailly, 16.54% samples were in
Slight pollution Grade, and 5.71% samples were in Mild
pollution Grade, and 1.95% samples were even in Moderate
pollution Grade. And the proportion of Cu polluted samples
ranked the second, whose 12.48% samples were in Slight
pollution Grade. In addition, Pb, Cd, and Zn polluted
samples in Slight pollution Grade accounted for 4.36, 7.37,
and 2.11% respectively.

From the perspective of comprehensive evaluation
results, more than half of samples were not safe (Fig. 5a).
Specifically speaking, 30.38% samples were in Alert Grade,
which needed attention to soil heavy metal pollution.
21.05% samples were in Mild pollution Grade, indicating
that heavy metal pollutants had exceeded background and
soil started to be polluted. And 3.91% samples were even in
Moderate pollution Grade, indicating obvious soil pollution.
Spatially, most areas were not safe, and only a small part in
southeast Yinzhou district and east Beilun district were in
Safety Grade (Fig. 5b). Since polluted soil samples were
concentratedly aggregated in middle east Jiangbei district,
especially the boundary of Zhenhai and Jiangbei district,

Table 3 Soil pollution risk
evaluations and grades of eight
heavy metals

Heavy metals Number
of
samples

Priority Protection I Safety Use II Seriously Control III

Number Proportion (%) Number Proportion (%) Number Proportion (%)

Cr 665 665 100.00 0 0.00 0 0.00

Pb 665 636 95.64 29 4.36 0 0.00

Cd 665 616 92.63 49 7.37 0 0.00

Hg 665 504 75.79 161 24.21 0 0.00

As 665 665 100.00 0 0.00 0 0.00

Cu 665 579 87.07 86 12.93 – –

Zn 665 651 97.89 14 2.11 – –

Ni 665 665 100.00 0 0.00 – –

Table 4 Pollution grade
proportions of SPIs of eight
heavy metals (Number of
samples is 665)

Heavy metals Safety Slight
pollution

Mild
pollution

Moderate
pollution

Severe
pollution

Number of
polluted
samples

Proportion of
polluted
samples

Cr 100.00 0.00 0.00 0.00 0.00 0 0.00

Pb 95.64 4.36 0.00 0.00 0.00 29 4.36

Cd 92.63 7.37 0.00 0.00 0.00 49 7.37

Hg 75.79 16.54 5.71 1.95 0.00 161 24.21

As 100.00 0.00 0.00 0.00 0.00 0 0.00

Cu 87.52 12.48 0.00 0.00 0.00 83 12.48

Zn 97.89 2.11 0.00 0.00 0.00 14 2.11

Ni 100.00 0.00 0.00 0.00 0.00 0 0.00

Except “Number of polluted samples”, the units were %
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almost two-thirds areas of Jiangbei district were polluted.
Moreover, the NCPI had obvious core areas with high
values in the boundary of Jiangbei and Zhenhai district as
well as in the boundary of Jiangbei and Jiangdong district.
In the northwest part of study region, polluted areas were
distributed with the center of Jiangbei district, and crossed
five districts from northeast to southwest. As for Yinzhou
district, the majority of areas were worth attention due to
overwhelming soil samples of Alert Grade.

Classification of Pollution Risk Management and
Control Zones

The eleven socio-environmental indicators of potential
pollution impact factors presented different spatial fea-
tures (Fig. 6). On the whole, the NDVIs were relatively
low. The elevations and slopes had the same tendency,
where the middle parts were low while high values fell on
west corner and southeast part. On the contrary, roads and
water bodies were concentratedly distributed in the
middle-low areas. Specifically, the roadways crisscrossed
all over the study area, while the railways stretched sur-
rounding the urban center. And most of water bodies were
scattered throughout the study area and the main river ran
through the urban center. The population densities were
undoubtedly the highest in the urban center and gradually
decreased from center to edge. The north part of study
region had relatively high fertilizer input, while the west
part had relatively high pesticide input. Since the study
region was in southeast China, precipitations were uni-
versally high especially the south and southwest parts.
The spatial distribution of polluting enterprise density was
similar to population density in marginal areas but
opposite in central areas. And polluting enterprises were
usually sited around the urban center because of con-
venient transportation and relatively inexpensive rents.
The fertilizer input, pesticide input, and polluting

enterprise density were all relatively high close to the
urban center, which were in line with NCPI spatially.

Four pollution risk management and control zones were
classified based on SOM model. The classification accuracy
is 94%. Finally, we obtained four characteristic zones, i.e.,
Monitored Zone with High-risk Pollution in central city
(Zone MHP), Controlled Zone with Severe Pollution in sub-
center of city (Zone CSP), Protected Zone with Ecological
Conservation in marginal city (Zone PEC) and Restricted
Zone with Potential Pollution in suburban city (Zone RPP)
(Fig. 7).

One-way variance analysis could evaluate whether there
existed good spatial variability of soil heavy metals among
four zones. Evaluation results showed that all the heavy
metals had extremely significant differences at the 99%
confidence level (Table 5). It is obvious that SOM model
performed well in classifying pollution risk management
and control zones, i.e., the heterogeneity among four zones
was high, while the homogeneity within each zone was
high. Specifically, mean heavy metal contents in Zone CSP
were generally high, and mean Cr, Hg, As, Cu, Ni contents
were the highest among all zones respectively. Since Zone
CSP was located in core area and vicinities of eight heavy
metal high values, the spatial distributions of mean heavy
metal contents were in line with that of heavy metal high-
value areas (Fig. 4a, d–f, h). In Zone PEC, mean Pb, Cd, Zn
contents were the highest among all zones respectively,
which was consistent with the spatial distribution that one
of towns in this zone was located in core areas of Pb, Cd,
Zn high values. And mean Cr, As, Ni contents were the
lowest among all zones respectively, which was consistent
with the spatial distribution that this zone was located in
Cr, As, Ni low-value areas (Fig. 4a, e, and h). Though
mean heavy metal contents in Zone RPP were generally
low and even the lowest, it was in line with the fact that
they were basically distributed in heavy metal low-value
areas (Fig. 4).

Fig. 5 Pollution grade of soil samples a and NCPI b
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Based on good spatial variabilities, zonal statistics of
socio-environmental indicators were calculated (Table 6).
As a whole, NDVI was the highest in Zone PEC, and
relatively high in Zone CSP and Zone RPP, but the lowest
in Zone MHP. Although both elevation and precipitation
were highest in Zone PEC respectively, elevation was
obviously low in all other zones while precipitation was still
relatively high in Zone CSP and Zone RPP. Slope was
generally high among all zones. And the highest one fell on
Zone PEC while slope in Zone MHP was distinctively low.
NCPI was the highest in Zone MHP but obviously low in
Zone RPP. Road density and water body density had similar
tendencies. Both of them were highest in Zone MHP but
lowest in Zone PEC. Population density was prominently
high in Zone MHP but fairly low in all other zones espe-
cially Zone PEC. Analogously, both fertilizer input and

pesticide input were overall low. Fertilizer input was the
highest in Zone RPP where pesticide input was the lowest.
As to polluting enterprise density, the highest one was in
Zone CSP.

Zone MHP contained five towns with concentrated dis-
tributions. It was located in the central part that was mainly
urban land with a high population density as well as
numerous roads and water bodies. Therefore, all the road
density, water body density, and population density of Zone
MHP were the highest, while other indicators (e.g., NDVI,
elevation, and slope) were the lowest. Due to the heavy
pollution caused by Pb and Hg, the NCPI of Zone MHP was
distinctly the highest. As the main urban area, the heavy
metal pollution is principally caused by longtime human
activities of all sorts, such as incineration of domestic waste,
Hg leak of electronic waste, and residue of Pb-containing

Fig. 6 The spatial distributions of eleven socio-environmental indicators
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gasoline (Men et al. 2018). In this zone, it is necessary to
strengthen supervision as well as take prevention and con-
trol measures. For one thing, we can implement garbage
classification, advocate cars with clean energy, and forbid
vehicles with excessive emission (Pontau et al. 2015). For
another, we can adopt biological or chemical approaches to
eliminate the existing heavy metal pollution (Liu et al.
2018; Song et al. 2017).

Zone CSP had quadruple numbers of towns as Zone
MHP. It was located in the central part with concentrated
distributions, entirely surrounding Zone MHP. And it
comprised major construction land and minor agricultural
land. Similar to Zone MHP, road density and water body
density were high in these towns, indicating convenient
transportation in Zone CSP. It is worth noting that polluting
enterprise density in Zone CSP was far ahead any other
zones. Since agricultural land was one of the main land-use
types, NDVI, fertilizer input, pesticide input, and pre-
cipitation were relatively high in this zone. As a

consequence, the NCPI was relatively high caused by ser-
ious Cr, Cu, Zn, and Ni pollution. As the permitted con-
struction area that is also urban sprawl area, the heavy metal
pollution principally is attributed to industrial and agri-
cultural production, including excessive input of fertilizer
and pesticide, waste water of polluting industry, waste gas
of mineral exploitation and coal combustion (Yang et al.
2018). In this zone, we should conduct improvements from
two aspects. From an agricultural perspective, we can
actively promote organic fertilizer, strictly restrict sewage
irrigation, and rationally plan agricultural land distribution.
From an industrial perspective, we can inspect enterprises
with probable pollution, reorganize enterprises with existent
pollution and close enterprises with exorbitant pollution.

Zone PEC covering five towns distributed scatteredly on
the edge of study region, which was contrary to the former
two zones. Owing to the large area of forestland, it had
extremely low population density, fertilizer input, pesticide
input, and polluting enterprise density but dramatically high

Fig. 7 Spatial distribution of
pollution risk management and
control zones based on
SOM model

Table 5 One-way variance
analysis and mean values of soil
heavy metals of four zones

Zones No. of
samples

Soil heavy metals

pH Cr Pb Cd Hg As Cu Zn Ni

Zone MHP 0 – – – – – – – – –

Zone CSP 354 5.41 88.22 53.79 0.20 0.70 7.68 43.02 125.14 35.15

Zone PEC 25 5.15 47.52 55.11 0.25 0.36 5.26 38.46 130.19 18.82

Zone RPP 286 5.48 72.54 48.18 0.21 0.37 6.79 36.18 118.83 29.55

Variance
analysis

F 1.724 105.932 16.857 6.349 78.770 33.983 30.559 4.767 80.830

Prob > F 0.179 0.000 0.000 0.002 0.000 0.000 0.000 0.009 0.000

There was no sample in Zone MHP. The units of mean values of Cr, Pb, Cd, Hg, As, Cu, Zn, and Ni
were mg/kg

1116 Environmental Management (2020) 66:1105–1119



NDVI, elevation, slope and precipitation. Although envir-
onmental indicators were high and social indicators were
low, there still existed soil heavy metal pollution to some
extent because of positive NCPI caused by Pb, Cd, and Zn
pollution. As the prohibited construction area within the
ecological red line, the heavy metal pollution may derive
from historical or natural factors, such as high heavy metal
in earth crust, downwind waster gas of polluting enterprise
transmitted through wind and rainfall (Pan et al. 2017). In
this zone, we should focus on ecological protection to dis-
pose existing pollution and prohibit polluting activities. We
can plant applicable vegetation to decontaminate heavy
metals in soil. For instance, planting poplars has a great
purification effect on Cd. Moreover, we can control the dust
of building operations and the discharge of downwind
polluting enterprises (Vareda et al. 2019).

Zone RPP covering twenty towns had large areas that
were separated by Zone CSP. It was distributed across the
whole study region mainly in the east, where land-use types
were very complex including agricultural land, forestland,
and construction land. Although the fertilizer input and
contents of As and Ni in these towns were relatively high,
the NCPI was unexpectedly low indicating relatively low
heavy metal pollution risk. As the restricted construction
area, the relatively high contents of As and Ni may be
caused by the three industrial wastes of polluting enter-
prises. In this zone, we should lay emphasis on ecological
conservation to strictly restrict the increase of polluting
enterprises and intensively supervise discharge of existing
enterprises (Li et al. 2019; Vareda et al. 2019).

Conclusion

In order to better classify reasonable and practical pollution
risk management and control zones, we applied the self-
organizing mapping (SOM) model in an industrial devel-
oped city. The results showed that heavy metal pollution
was serious due to high contents of eight heavy metals (i.e.,
Cr, Pb, Cd, Hg, As, Cu, Zn, and Ni). Spatially, heavy metal
pollution was principally concentrated in southeast Zhenhai
district and the junction of Haishu, Jiangbei, Jiangdong, and
Yinzhou districts. Furthermore, although more than 75%
heavy metal samples had negligible risks, the notable Hg
and Cu pollution could greatly affect comprehensive soil
pollution, which should not be overlooked. More than 50%
of the study region were polluted at varying degrees, where
the center of middle east Jiangbei district was the most
obvious polluted area. Our study implies that the pollution
of classified four risk management and control zones, i.e.,
Monitored Zone with High-risk Pollution, Controlled Zone
with Severe Pollution, Protected Zone with Ecological
Conservation and Restricted Zone with Potential Pollution,
might be attributed to human activities, industrial and
agricultural production, historical or natural factors,
respectively. Our study further sheds light on the prevention
and control of heavy metal pollution, which can provide a
solid foundation for decision-making on risk management
and control of environmental pollution, as well as provide
theoretical and methodological guidance for improving
public governance theory, enhancing land environment
quality and safeguarding human health.
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