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Abstract Environmental flows represent a legal mecha-

nism to balance existing and future water uses and sustain

non-use values. Here, we identify current challenges, pro-

vide examples where they are important, and suggest

research advances that would benefit environmental flow

science. Specifically, environmental flow science would

benefit by (1) developing approaches to address streamflow

needs in highly modified landscapes where historic flows

do not provide reasonable comparisons, (2) integrating

water quality needs where interactions are apparent with

quantity but not necessarily the proximate factor of the

ecological degradation, especially as frequency and mag-

nitudes of inflows to bays and estuaries, (3) providing a

better understanding of the ecological needs of native

species to offset the often unintended consequences of

benefiting non-native species or their impact on flows, (4)

improving our understanding of the non-use economic

value to balance consumptive economic values, and (5)

increasing our understanding of the stakeholder socioeco-

nomic spatial distribution of attitudes and perceptions

across the landscape. Environmental flow science is still an

emerging interdisciplinary field and by integrating

socioeconomic disciplines and developing new frameworks

to accommodate our altered landscapes, we should help

advance environmental flow science and likely increase

successful implementation of flow standards.

Keywords Environmental flows � Human influence �
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Introduction

Societies exploit the benefits of freshwater and place

extensive stress on aquatic ecosystems. River modification

was documented as early as 5000 years ago via civilization

of ancient Egypt and Mesopotamia (Wootton 1990). Since

that time, aquatic ecosystems have been channelized,

dammed, dredged, leveed, and pumped to reduce flooding,

promote river commerce, exploit hydropower and meet

industrial, agricultural, and municipal needs. Although

human needs are a necessary component of water use, the

extensive pressures on our global aquatic systems have

become clear with approximately 20 % of all freshwater

fishes now listed as threatened or endangered due to

alteration and destruction of lotic systems (Moyle and

Leidy 1992; Naiman et al. 2002).

Aquatic ecosystems are extremely diverse but are

threatened by human landscape alteration. Freshwaters

systems, despite not only covering a small proportion of the

Earth’s surface, are extremely ecologically diverse (Dud-

geon et al. 2006) but also some of the most heavily affected

by human activity (Malmqvist and Rundle 2002). River

regulation has resulted in over half of global freshwater

resources being used by humans (Jackson et al. 2001),

while more than 50 % of the world’s large rivers are

fragmented by dams (Nilsson et al. 2005). Streamflow
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alteration to freshwater systems, combined with additional

threats, has negatively affected coastal ecosystems (e.g.,

estuaries, salt marshes, and mangrove forests). Over three

billion people (around 40 % of the world’s population) live

within 100 km of a coastline with growth rates estimated at

16 % per decade (Millennium Ecosystem Assessment

2008). In addition to the direct effects of concentrated

human populations, coastal ecosystems are profoundly

influenced by damming and other inland anthropogenic

activities (Montagna et al. 2002).

Anthropogenic threats to aquatic ecosystems are gen-

erally organized into five main categories: overexploita-

tion, pollution, habitat degradation and loss of connectivity,

invasive species, and flow modification (see Fig. 1, Dud-

geon et al. 2006). The relative importance of these factors

is spatially variable and differs among species (Richter

et al. 1997). There is also recognition that multiple stres-

sors often interact to affect aquatic organisms (Miller et al.

1989). The legacy of human alteration of freshwater sys-

tems is extensive (Downs and Gregory 2004), and although

there has been progress in addressing certain issues (e.g.,

water quality improvements in some developed nations;

Allan and Flecker 1993), future changes in climate,

population growth, and continued land-use alteration are

likely to further exacerbate stress on aquatic ecosystems

(Sala et al. 2000). In response to these pressures, freshwater

organisms are exhibiting higher extinction rates than their

terrestrial counterparts (Ricciardi and Rasmussen 1999;

Revenga et al. 2000; Jenkins 2003), with certain species

groups disproportionally affected (e.g., Strayer et al. 2004;

Dudgeon et al. 2006).

The relationship between flow regime and the aquatic

biota is pervasive and multifaceted, to the extent that dis-

charge has been described as a ‘master variable’ control-

ling stream ecosystems and driving ecological processes

(Fig. 1, Hart and Finelli 1999; Power et al. 1995). Both

directly and indirectly, the flow regime affects other reg-

ulatory factors such as water quality and temperature

thereby regulating ecological integrity (Poff et al. 1997).

Discharge is a key driver of physical habitat providing a

template determining both taxonomical and functional

community structure (Poff and Allan 1995; Bunn and

Arthington 2002; Bêche et al. 2006). Disturbance events

promote habitat complexity and patchiness through lateral

and longitudinal connectivity, and natural fragmentation

(Lake 2000). Sediment and solutes are transported through

Fig. 1 Major topics where research advances would benefit environ-

mental flow (e-flow) science: existing environmental frameworks and

implications for highly modified landscapes, interactions of water

quality and quantity, invasive species, identifying the non-use

economic values, and the spatial distributions of attitudes and

perceptions of environmental flows. The primary research recom-

mendations are listed in bullets next to each topic
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the system creating spatial and temporal gradients in

physicochemical conditions. Discharge patterns maintain

the river channel (Gordon et al. 2004) and shape the

transfer of energy throughout the river system longitudi-

nally (e.g., River Continuum Concept, Vannote et al.

1980), laterally (e.g., Flow Pulse Concept, Junk et al.

1989), and vertically (e.g., Hyporheic Corridor Concept,

Stanford and Ward 1993). Discharge also stimulates biotic

processes like nutrient uptake and decomposition (Doyle

et al. 2005) and predator–prey interactions (Hart and Finelli

1999).

There is an obvious link between aquatic biota and

human use via fishing but there are also various non-use

activities affected by environmental flow decisions

including recreation (e.g., canoeing, birding). In North

America, fishing generates $100 billion each year to local

economies (American Sportfishing Association 2011) and

these economic returns have arguably been one of the most

common recreational values quantified relative to envi-

ronmental flows or water use (Loomis et al. 2003; Katz

2006). In European rivers, the link between high flows,

upstream migration (Solomon and Sambrook 2004; Thor-

stad et al. 2008), and recreational angling catches of

Atlantic salmon Salmo salar (Alabaster 1970; Aprahamian

and Ball 1995) has been highlighted, driving an interest in

using artificial water releases to stimulate upstream

movement (e.g., Thorstad and Heggberget 1998; Alfredsen

et al. 2012). However, many other river recreation activi-

ties are growing in popularity with considerable overlap in

participation. For example, Nadel (2005) indicated that

[82 million USA residents hunted, fished, and viewed

wildlife and many of the activities were in combination. In

2003, an estimated 72 million Americans participated in

recreation boating activities and over $200 million was

spent on the purchase of canoes and kayaks (Nadel 2005).

It is anticipated that canoeing alone will increase sub-

stantially by 2050 (Bowker et al. 1999). The perceived

quality of these activities will be affected by environmental

flow designations. Brown et al. (1991) found that of 25

reviewed studies (primarily related to canoeing and

kayaking), all found recreational quality increased with

discharge until some threshold was reached where quality

declined. The thresholds reached varied with activity and

experience level of the recreationist. As river and lake

recreation increases, these activities may benefit local

economies, particularly in rural areas. For example, the

development of recreation trails is a form of tourism with

substantial economic benefit. The Northern Forest Canoe

Trail of New England, USA, attracted 90,000 visitors in

2006 alone and generated approximately 12 million dollars

for local economies (Pollock et al. 2012). The growing

popularity and value of these activities will no doubt

contribute to the increasing complexity of environmental

flow decisions, particularly as pressures increase on our

limited aquatic resources.

Future changes in climate and population growth will

amplify stress on global water resources (Duda and El-

Ashry 2000; Sheffield and Wood 2008; Vörösmarty et al.

2010) making environmental flows an important compo-

nent of management strategies. Environmental flows rep-

resent a legal mechanism that is used to balance providing

for existing water uses, meeting the needs of future uses,

and maintaining aquatic ecosystems and other non-use

values (e.g., recreation). Although the legal framework

varies geographically, environmental flows are defined as

flows necessary to sustain aquatic ecosystems and the

‘human livelihoods and well-being that depend on these

ecosystems’ (Brisbane Declaration 2007). The seemingly

simple question of how much water should be left in an

aquatic system is compounded by a multitude of societal

demands, policies, and needs for advances in our under-

standing of various ecological interactions. The objective

of this paper was to identify the major threats or areas

where scientific advancement would provide the most

benefit to successful implementation of environmental

flows. We identified five major topics where research

would be needed to advance environmental flow science:

existing environmental frameworks and implications for

highly modified landscapes, interactions of water quality

and quantity, invasive species, identifying the non-use

economic values, and the spatial distributions of attitudes

and perceptions of environmental flows (Fig. 1).

Existing Environmental Frameworks

An extensive list of environmental flow frameworks has

emerged with the developing discipline of environmental

or instream flow science. The Instream Flow Council pla-

ces the techniques in three basic categories: standard set-

ting, incremental, and monitoring/diagnostic, although

some hybrids certainly exist (Annear et al. 2004). Standard

setting techniques (e.g., Tennant method) are often policy-

driven and set ‘rules’ to define flow limits (Annear et al.

2004). They are advantageous because of simplicity and

cost; however, there are many disadvantages including

failure to maintain existing fisheries (Stalnaker 1993;

Stalnaker and Wick 2000). Incremental methods (e.g.,

physical habitat simulation) are site-specific field evalua-

tions of alternative flow regimes. Incremental approaches

rely on measurements of river ecohydrological conditions

at incremental discharges to analyze river discharge-stage-

ecological (biotic and abiotic) relationships (Annear et al.

2004). These methods are some of the most widely applied

but can sometimes be costly and time-consuming (Annear

et al. 2004) and have resulted in mixed outcomes when
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evaluated. Gore and Nestler (1988) provide an overview of

some common criticisms. Lastly, monitoring methods (e.g.,

Range of Variability Approach) assess temporal changes in

biotic or abiotic conditions related to flow alteration (An-

near et al. 2004). The methods vary on the focus of the

specific resource component and have been categorized by

Annear et al. (2004): hydrology, biology, geomorphology,

connectivity, and water quality.

Each of the environmental flow frameworks may be

applicable under a variety of societal and geographic set-

tings; however, the relatively recent move toward regional

water planning has emphasized a process that includes

hydrologic properties, stream classification, and biological

responses. This framework is based on the idea accepted by

the ecological community that organisms have evolved

with the natural flow regime (Poff et al. 1997) and that the

relationships between organisms and flow provide a basis

for our understanding of how flow alteration will affect the

biological community. This led to the development of a

subdiscipline focusing on stream classification based on

hydrologic properties (e.g., Belmar et al. 2011; Olden et al.

2012; Reidy Liermann et al. 2012).

Streams are classified by similar hydrologic properties

as a foundation for applying streamflow recommendations

across classes of streams (i.e., negating the need for site-

specific flow evaluations unless a follow-up is needed or

desired). The ecological limit of flow alteration (Poff et al.

2010) is a holistic planning effort (Richter et al. 2012) that

was developed to provide quantitative information to sup-

port environmental flows at a regional scale. In addition to

stream classification, this approach defines the ‘natural

flow regime’ for the region, assesses the level of alteration

to hydrologic conditions, and establishes univariate flow-

ecology relationships as a foundation for societal and

policy discussions (Poff et al. 2010).

Two recent criticisms of the aforementioned process

include: (1) univariate relationships may be insufficient to

develop predictable flow-ecology relationships due to other

environmental factors (e.g., morphology and temperature;

McManamay et al. 2013) and the confounding relationship

among multiple flow components (Davis and Brewer 2014)

and (2) questionable application to rivers and/or regions

that have a highly altered landscape (e.g., Great Plains,

Davis and Brewer 2014), and locations where uncertainty

is high and physicochemical conditions are extremely

unique (e.g., tailwaters; McManamay and Bevelhimer

2013). This leads to the inevitable conclusion that com-

paring the flow regime to ‘natural’ conditions may not be

appropriate or feasible in many highly altered landscapes

of the world and represents an area where future research

efforts would benefit river managers. Often, anthropogenic

development pre-dates available flow data, requiring

modeling approaches to extrapolate from nearby

unregulated catchments (e.g., the River Tay, UK, Birkel

et al. 2014). Further, in many cases, historical or pre-dis-

turbance flows are not an option, because water volume is

limited, overallocated, or is serving multiple purposes (e.g.,

hydropower and recreation). For example, water allocation

in Lake Tenkiller, Oklahoma is over 100 % allocated;

therefore, current water law would prevent anything

resembling the natural flow regime in the lower river. In

addition, the regulatory context may be so complex and

multifaceted that recommendations on the basis of the

natural flow regime are impractical or target the wrong

regulatory entity (e.g., least impactful stressor; Pearsall

et al. 2005).

Needs for Highly Altered Landscapes

The science of environmental flows is intended to balance

the multidimensional nature of shared water resources in a

human-dominated world. Even still, as human population

growth continues and water supplies become limited,

environmental flow science will be challenged to ensure

river flows sustain aquatic ecosystems within highly altered

landscapes. In part, this is due to the scale of the problem

(i.e., the global extent of hydrologic alteration).

Dramatic alterations to waterbodies and their sur-

rounding landscape have left very few rivers in their nat-

ural hydrologic state (Fig. 2). For example, 56 % of stream

miles within the USA have habitats that are estimated to be

at least moderately degraded and 27 % is estimated to be at

least highly degraded (NFHP 2010). River flows have

either been altered directly (i.e., channelization and

impoundment) or indirectly (i.e., landscape modification).

Over 50 % of the global landscape has been transformed or

degraded as a result of human activity (Vitousek et al.

1986). Irrigation is the largest consumer of water around

the world (Postel et al. 1996); however, other major sour-

ces of water loss through land transformation, such as

deforestation, are increasingly recognized as significant

contributors to the global water cycle (Gordon et al. 2004).

Within urban landscapes, extensive impervious surfaces

decrease infiltration of precipitation, leading to episodic

high storm runoff followed by extremely low, or even

intermittent, base flows (Brown et al. 2009). Global esti-

mates of the percent of large rivers regulated by dams

range from 50 %, on average, to as high as 77 % for

specific regions (Nilsson et al. 2005; Lehner et al. 2011).

Large dams tend to stabilize the natural extremities of

hydrographs by diminishing flood flows, elevating base-

flows, and reducing overall variability; thus, extensive dam

regulation is likely to have homogenized regionally distinct

streamflow patterns (Poff et al. 2010), potentially leading

to losses in continental-wide aquatic biodiversity (Moyle

and Mount 2007). Moreover, the effects of flow regulation
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of river systems are cumulative and certainly affect our

estuaries and marine systems (Wilber 1994; Christensen

et al. 1998; Livingston et al. 2000). We conclude that

hydrologic alterations are widespread and will likely

increase in the future regardless of the cause (direct or

indirect alteration).

Although the global state of hydrologic alteration sub-

stantiates the need for streamflow protection, the ubiqui-

tous nature of highly modified landscapes poses

fundamental challenges for environmental flow science.

First, determining environmental flow measures, either as

recommendations for improvement or as thresholds for

protection, is primarily based on our knowledge of natural

ecosystem behavior. However, according to the summary

provided above, natural ecosystems are becoming rare.

More importantly, rivers draining altered landscapes are

likely to function and behave differently than natural sys-

tems (Brown et al. 2009). For example, peak flood events

are periodic, but essential to maintaining floodplain-chan-

nel interactions and scouring sediment in natural streams;

however, peak floods of similar magnitude may occur more

frequently in highly urbanized watersheds and exacerbate

poor habitat conditions by scouring limited quantities of

wood or gravel substrates (Brown et al. 2009). Potential

environmental flow recommendations for urbanized sys-

tems would be to dampen or eliminate peak flows and

increase baseflows as to artificially stabilize the system. For

environmental flow science to adapt, we need to understand

the functionality, processes, and pathways for maintaining

or restoring some desired degree of ecological integrity in

highly altered landscapes.

One of the major challenges of environmental flow

protection and enhancement is identifying quantifiable

objectives, such as key ecological targets and flow

requirements needed to sustain those targets (Richter et al.

2003). These flow requirements may represent adequate

ranges of sustainability (Richter 2009) or thresholds,

beyond which, ecological impairment is expected (Richter

et al. 2012). Out of convenience, the natural flow regime

has been used as the objective, assuming that this repre-

sents both ecological needs and flow requirements. How-

ever, identifying ecosystem needs requires intimate

knowledge of the dependency of ecosystem function on

flows in altered and unaltered systems, and this knowledge

gap has been addressed in various settings through work-

shops based on regional expertise (King et al. 2008). In the

absence of such information, Richter et al. (2012) proposed

a presumptive standard ranging from 10 to 20 % hydro-

logic alteration, beyond which ecological functions may be

impaired. This is highly suitable for regional planning in

areas of limited a priori exploitation; however, it still relies

on the natural flow regime as the baseline to measure

percent alterations. Highly altered landscapes, however,

may already exceed the presumptive standard, as evidenced

by a large number of streams with [25 % hydrologic

alteration in the USA (Carlisle et al. 2011) and the large

areas of Africa, Iberia, eastern Europe, and eastern and

south-central Asia ‘heavily’ or ‘severely’ affected by river

regulation (Grill et al. 2015). Under these conditions, two

options exist: (1) either landscape conditions are improved

and/or dams are removed or (2) environmental flows must

be identified that relate to the sustainability of a few fun-

damental ecosystem components, indicative of functioning

ecosystems. Furthermore, environmental flow prescriptions

may not necessarily be informed by the natural flow

regime, but be catered to maximize conditions for the

target ecosystem components identified, as the natural flow

regime may create more harm than benefit. Due to complex

stressors and balancing multiple objectives, Bayesian belief

networks provide a suitable means to support decision

making regarding a few ecosystem components in light of

limited information (Webb et al. in press).

Another consideration is that in highly altered land-

scapes, channel morphology has been modified to such an

extent that historical flows may not be beneficial, but

potentially harmful (Jackson and Pringle 2010). A recent

tendency in environmental flow science has been to rec-

ommend flows strictly on the basis of hydrologic records

without proper cognizance of the dimensions or morpho-

logical condition of the stream channel. Globally, flood-

plains support a range of human uses (Tockner and

Standford 2002); for example, in Europe, approximately

50 % of the population inhabits former floodplain areas

(Tockner et al. 2009). To support this human use, chan-

nelization and levee construction have disconnected rivers

from their floodplain; thus, floods of historical magnitude

not only cause destruction of human infrastructure, but also

massive losses of limiting habitat features (e.g., large

woody debris, Roni et al. in press). In the River Elbe,

Germany, reduction in floodplain storage due to urban-

ization has been linked to increased flood peak water levels

at lower discharge in comparison to historic flood events

(Becker and Grünewald 2003). River channels of the Great

Plains, USA have changed from widespread, braided

channels to much more narrow and incised channels that

are often disconnected from the floodplains due to bed

degradation, upstream dams, encroachment by salt cedar

Tamarix spp., and adjacent land-use practices. The result-

ing morphology of the stream channels lacks the capacity

to carry historical flow magnitudes (see Fig. 3). Addition-

ally, impoundments trap sediments and bedload; thus, large

discharges from dams that exceed transport capacities are

likely to eliminate fine substrates unless accompanied by

substrate supplementation (Kondolf 1997; Fox et al. 2016).

One of the most publicized large-scale restoration projects

is the Trinity River Restoration Program, California, a
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multifaceted restoration to rehabilitate salmon spawning

habitats in a diverted stream below Trinity Dam, U.S.

Bureau of Reclamation (Trush et al. 2000). A major suc-

cess has been the implementation of environmental flows

that mimic the natural seasonality of the pre-dam flow

regime; however, the full magnitude of historical flows has

not been implemented due to existing diversions (Trush

et al. 2000), but also to avoid flushing valuable substrates

downstream (Wilcock et al. 1996b). Furthermore, to ensure

adequate salmonid spawning habitat and that the channel

would match the new flow regime’s capacity, channel

reconfiguration and gravel augmentation were also

required (Wilcock et al. 1996a). Although regional evalu-

ations of ecological relationships with altered hydrology

can assist in developing water policies for states or basins

(Poff et al. 2010), knowledge of stream channel-hydraulic

interactions are needed when implementing environmental

flows within specific streams. Fortunately, a multitude of

frameworks are available to aid in this process (Annear

et al. 2004).

To date, the field of environmental flows has primarily

focused on the water required to sustain ecosystems within

individual stream reaches. Although this scope has

expanded to consider larger scale dynamics and regional

water policies in recent years (e.g., Poff et al. 2010),

environmental flow science might benefit from greater

interoperability between catchment-scale models (e.g.,

SWAT) and reach-specific water needs. Constraints on the

availability of water to support aquatic ecosystems are

likely to stem from strong human demands occurring in the

watershed upstream. Environmental flow science will

progressively benefit from a synergy between watershed

models at basin scales in conjunction with hydraulic

modeling of flow-channel dynamics. In addition, environ-

mental flow science has understandably focused on pro-

tection and prevention through the development of policies,

with most proactive restoration approaches limited to reg-

ulatory contexts supported by legislation, such as dam

relicensing. Given the widespread extent of altered land-

scape conditions, coarse-scale research that identifies

opportunities to maximize flow enhancement and restora-

tion would be beneficial.

Interactions of Water quality and Quantity

Water quality and quantity are among the key components

of environmental flows (Acreman and Ferguson 2010), and

have considerable, often interactive, effects on aquatic

systems. Although flow magnitude is just one component

of the natural flow regime (Poff et al. 1997), the resulting

effects on water quality and other processes have impli-

cations for ecological integrity (see Fig. 1, Poff et al.

1997). Existing frameworks for understanding effects of

environmental flows at local (e.g., PHABSIM, Milhous and

Waddle 2012) to regional (e.g., ecological limits of

hydrologic alteration, Poff et al. 2010) scales (see also

Tharme 2003) may not be suitable in all locations (e.g.,

tailwaters, McManamay and Bevelhimer 2013).

In arid and highly populated regions, to name a few,

baseflow conditions may be sustained via treated sewage

effluent. The wastewater discharged into these streams may

support ecosystems that would otherwise not exist because

of water limitations (Luthy et al. 2015). However, relying

on effluent to support these ecosystems can have serious

consequences. It is not unusual for polychlorinated biphe-

nyls, polyaromatic hydrocarbons, pesticides, pharmaceuti-

cals, personal care products, metals, and radionuclides to

be present following treatment of sewage (Hughes et al.

2014). Wastewater discharges often contain constituents

that have the potential to alter fish behavior (e.g., Fluox-

etine, fathead minnow Pimephales promelas, Weinberger

and Klaper 2014), reproductive fitness (e.g., steroidal

estrogens, common roach Rutilus rutilus, Hamilton et al.

2014) and larval survival and juvenile production (e.g.,

steroid estrogen, fathead minnow, Schwindt et al. 2014).

Wastewater reuse solutions to water shortages (i.e., recla-

mation of wastewater for repeated irrigation and industrial

use) are increasingly used to conserve water resources

(Levine and Asano 2004). While these practices augment

water supplies and may reduce pollution, they pose alter-

native threats for lotic systems where treated wastewater

may be the primary source of discharge during portions of

the year. In Israel where almost all water is allocated for

human uses, recycling of wastewater provides a mecha-

nism for river recovery (Juanico and Friedler 1999; Tal

2006). However, a wastewater-derived baseflow reduces a

river’s capacity to absorb further pollution loading (Juanico

and Friedler 1999). In the Canadian River, Oklahoma,

wastewater discharge currently supplies much of the

baseflow during the summer months and is one of the last

remaining strongholds for the federally threatened Arkan-

sas River shiner Notropis girardi (Worthington et al. 2014).

Major declines in baseflow lead to the loss of longitudinal

connectivity that over time has important consequences for

the persistence of many riverine populations (Bunn and

Arthington 2002). This effect is particularly evident with

repeated stream drying in fragmented stream systems of the

Great Plains (Perkin et al. 2014). Decreased flows in arid

streams exacerbate the influence of non-native predators on

fish populations, perhaps by creating less favorable habitat

conditions for flow-adapted native species, though the

possible mechanisms remain unclear (Propst et al. 2008).

Lastly, diminished baseflows change the dynamic between

surface water and groundwater interactions (Hynes 1983;

Gordon et al. 2004), especially for hyporheic flows that
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create thermal refugia for fish populations (Power et al.

1999; Sutton et al. 2007). Loss of these refugia created via

groundwater interactions has been related to the decline of

several fishes (e.g., Arkansas Darter, Etheostoma cragini,

Eberle and Stark 2000).

Water quality includes chemical and thermal charac-

teristics and is an important but often neglected component

of environmental flows (Nilsson and Renöfält 2008; Olden

and Naiman 2010). Decreased water quality is one of many

consequences of human-altered flow regimes (Abromovitz

1996; Collier et al. 1996). Water quantity reductions con-

centrate solutes, leading to increased salinity (Bradley et al.

1990) among other constituents. High pulse flows are

capable of flushing waste and pollutants following pro-

longed low-flow periods (Postel and Richter 2003). Heat-

ing capacity, and thus stream temperature, is inherently

linked to the volume of water in a system (Caissie 2006).

Low flows can lead to more frequent high-temperature

events, which can result in reproductive stress in freshwater

mussels (Galbraith and Vaughn 2009), and exceed critical

temperatures for fishes (Sinokrot and Gulliver 2000)

leading to bioenergetic loss (Elliott 1976) or even death

(Fry 1947; Brett 1956). Despite the effects of water tem-

perature on ecological patterns, the thermal regime has

been insufficiently considered in the context of environ-

mental flows (Olden and Naiman 2010). The thermal

effects of dams contribute to the unpredictability of tail-

water systems and represent a challenge for environmental

flow assessments, particularly given the lack of suit-

able frameworks for these ecosystems.

The location of water released from a dam or diversion

alters the thermal regime thereby affecting downstream

biota. Failure to consider temperature effects of dam

releases may lead to failure to replicate natural ecological

processes (King et al. 1998). Altered thermal gradients

below dams can extend for hundreds of kilometers down-

stream (Ellis and Jones 2013). Increased water tempera-

tures below dams have led to accelerated migrations and

earlier spawning of sockeye salmon Oncorhynchus nerka

in the Pacific Northwest (Quinn et al. 1997), while

hypolimnetic cool water releases resulted in reduced

growth, later smoltification and lower production of

Atlantic salmon and anadromous brown trout Salmo trutta

in the River Surna, Norway (Saltveit 1990). Temperature

gradients caused by dam releases also influence spatial

patterns of gizzard shad Dorosoma cepedianum spawning

in the Savannah River, between Georgia and South Car-

olina (Paller and Saul 1996). Alternatively, decreases in

stream temperatures may extirpate native species from

these locations (Haxton and Findlay 2008; Olden and

Naiman 2010). For example, hypolimnetic releases have

led to the development of tailwater trout fisheries below

many dams in systems that were naturally considered to be

‘warmwater’ (e.g., lower Illinois River, Oklahoma, Gua-

dalupe River below Canyon Dam, Texas). Temperature,

however, is not the only physicochemical parameter altered

downstream of dams and diversions.

Water releases may create additional water quality

constraints in tailwater systems (i.e., the stream segment

downstream of a dam). Hypolimnetic releases often result

in downstream anoxia and it can be particularly difficult to

engineer structures at the dam that may improve these

conditions (e.g., lower Illinois River, Oklahoma). In addi-

tion, water releases are still necessary to improve down-

stream conditions, often a source of political and economic

debate, particularly where reservoir waters are over 100 %

allocated. Improvements in water quality at these locations

will need to address water quantity using a framework that

differs from traditional environmental flow approaches

(e.g., water quality analysis simulation program modeling,

Y. Zhou, unpublished data).

The interaction of reduced water quality and quantity

has also severely altered the integrity of coastal ecosystems

worldwide. Coastal ecosystems are unique brackish envi-

ronments that form an interface between freshwater and

marine environments. The ecosystem services provided to

humans by coastal habitats include high productivity

(Millennium Ecosystem Assessment 2008), nutrient

cycling (Basset et al. 2013), reduced magnitude of flood

events (Temmerman et al. 2013), and diminished intensity

of storm surges (Barbier and Enchelmeyer 2014). Coastal

ecosystems often also exhibit high species diversity (Basset

et al. 2013), harbor endemic biota (Marrack et al. 2015),

and form important nursery habitat for fish species (Bertelli

and Unsworth 2014). Coastal habitats are among the most

threatened ecosystems on the planet. For example, at least

35 % of mangrove forests worldwide have been destroyed

(Millennium Ecosystem Assessment 2008). In addition to

the large human populations in coastal areas that have

affected ecosystem dynamics through excessive use of

freshwater and changes in land-use practices (Montagna

et al. 2002; Millennium Ecosystem Assessment 2008),

inland human activities can also impair coastal habitats.

Nutrients and pesticides from intensive agricultural activ-

ities that enter inland streams and rivers through runoff

ultimately reach coastal areas, leading to reduced water

quality with detrimental effects to biota. For example,

nitrogen loading in coastal ecosystems has doubled

worldwide, which has caused severe eutrophication (Mil-

lennium Ecosystem Assessment 2008) and large hypoxic

zones (Ritter and Montagna 1999; Montagna and Froec-

shke 2009). Alternatively, coastal ecosystems also rely on

inlands flows for the delivery of both freshwater and sed-

iment. Damming and other diversions have decreased

streamflow delivery rates to coastal areas by 30 % world-

wide (Millennium Ecosystem Assessment 2008). Reduced
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freshwater inflow to coastal ecosystems alters their unique

environmental characteristics that form the freshwater-

marine transition. The reduction of freshwater delivery to

coastal habitats can reduce ecosystem metabolism, thus

lowering productivity (Russell et al. 2006). Furthermore,

reduced freshwater inflow to coastal ecosystems has shifted

the salinity gradient with more saline waters found further

inland (Millennium Ecosystem Assessment 2008). Few

brackish water organisms are tolerant of high salinity and

the inland intrusion of seawater can profoundly alter the

structure of coastal habitat communities (Sklar and Brow-

der 1998). The large spatial scales that influence coastal

ecosystems present unique challenges for both research and

policy development (Montagna et al. 2002).

Because coastal habitats are heavily influenced by

upland activities, proper ecosystem functioning requires

effective environmental flow standards across large spatial

scales. Increased awareness of a global hydrologic cycle

has led to the realization that environmental flow plans

need to be extended from local to regional scales. Some

states in coastal areas have established environmental flow

standards (e.g., Texas, Opdyke et al. 2014); however, the

development of multi-state environment flow policies

remains in its infancy and data to establish flow-ecology

relationships across broad scales are severely lacking (Poff

and Matthews 2013). In addition, strategies to increase

freshwater inflow rates to coastal ecosystems must

accommodate human needs to gain political support

(Montagna et al. 2002). Researchers have proposed flexible

broad-scale environmental flow plans that can be imple-

mented in a manner that will meet ecological objectives

while avoiding economic loss and land-use conflicts (e.g.,

Overton et al. 2014; Pang et al. 2014; Yang and Yang

2014), including plans catered to coastal habitats. For

example, Sun et al. (2015) proposed an environmental flow

framework that examines spatial and temporal patterns of

inland streamflow on estuarine habitats while considering

human land-use requirements. Unfortunately, widespread

implementation and evaluation of proposed environmental

flow standards remain a major hurdle (Davies et al. 2014).

An additional challenge for developing effective environ-

mental flow standards for coastal ecosystems is their

unique environmental characteristics. Since they form the

freshwater-marine interface and are influenced by both

ocean and inland flow patterns, the ecological response to

freshwater delivery is complex and non-linear in nature

(Montagna et al. 2002). Simply increasing freshwater

delivery rates will not restore proper ecosystem functioning

of coastal habitats without consideration of other elements

of the flow regime (e.g., timing and duration of flows,

Koster et al. 2016).

Increasing water demands require innovative solutions

to balance human needs with ecological needs, given the

interplay between water quantity and quality. Targeted

studies to understand potential enhancement of water

quality while maintaining water quantity and meeting

human demands have shown promise. For example,

methods have been developed to improve water quality

below dams with either minimal (Krause et al. 2005) or

beneficial (Hayes et al. 1998) effects on hydropower

operations. Managing for multiple goals in tailwater sys-

tems (e.g., sport fisheries, biodiversity, and habitat

enhancement) is another issue of interest. How do we

balance human water demands with conservation of

imperiled species, particularly in water-stressed regions?

Ultimately, understanding which components of water

quality and quantity are manageable will be essential to

determining appropriate trade-offs for meeting human and

ecosystem needs. More importantly, policy development

across political boundaries will be necessary to ensure

coastal regions and some interstate large river systems

benefit from environmental flow standards.

Invasive Species

The link between flow alteration and changes in aquatic

communities is well established (Bunn and Arthington

2002; Poff and Zimmerman 2010 and references therein),

although the magnitude and direction of the response are

often difficult to predict (see section above on existing

environmental frameworks). A modified flow regime often

allows for the establishment of non-native aquatic and

riparian species (Stanford et al. 1996; Bunn and Arthington

2002; Poff and Zimmerman 2010). This operates across a

continuum with successful establishment of non-native

species greatest in systems with the highest levels of

human disturbance (Moyle and Light 1996a, b). This has

resulted in several authors suggesting restoration of the

natural flow regime as a mechanism for safeguarding

native species while excluding introduced species (Poff

et al. 1997; Marchetti and Moyle 2001; Brown and Ford

2002; Lytle and Poff 2004). However, it is generally

accepted that flow regime manipulation in isolation is not a

panacea for the restoration and conservation of native

aquatic species (Saunders et al. 1998; Englund and Filbert

1999; Propst et al. 2008).

The multitude of threats to freshwater biodiversity rarely

operates independently (Fig. 1, Dudgeon et al. 2006). For

example, the spread of Tamarix species in the USA has

been linked to the reduction of high-flow events following

river regulation, once established Tamarix stands drive

sediment aggregation and channel narrowing further

altering the hydrological regime and instream habitat (see

Tickner et al. 2001). Therefore, feedbacks between indi-

vidual threats may result in potential unintended
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consequences from restoration, such as restored flow con-

ditions benefiting non-native species (Marks et al. 2010).

Although examples of flow regime restoration leading to

the reestablishment of native species are apparent in the

literature (e.g., Scoppettone et al. 2005; Kiernan et al.

2012), both positive and negative ecological feedbacks

have been observed and predicted (Reich et al. 2010). The

restoration of a more natural flow regime in New Zealand

streams is predicted to allow non-native brown trout Salmo

trutta to colonize areas that provide refuges for the native

roundhead galaxias Galaxias anomalus potentially leading

to the species’ extirpation (Leprieur et al. 2006). Likewise,

increased lateral connectivity in the Willamette River,

Oregon due to re-establishment of high flows is predicted

to negatively affect Oregon chub Oregon ichthys crameri

by increasing dispersal of non-native species into isolated

floodplain populations (Scheerer 2002). In some circum-

stances, the management of non-native species may oppose

the goals of restoring of the natural flow regime. Inten-

tional fragmentation has been used as a mechanism to stop

the expansion of several non-native species (see Table 1 in

Rahel 2013). For example, within Iowa certain dams could

be retained to provide a barrier to the upstream movement

of Asian carp (e.g., big head carp, Hypophthalmichthys

nobilis and silver carp, Hypophthalmichthys molitrix)

(Hoogeveen 2010), despite restoration of long free-flowing

reaches with naturally variable hydrologic regimes being

highlighted for the conservation of native minnow species

in the wider Missouri River basin (e.g., Dieterman and

Galat 2004; Quist et al. 2004). Our challenge moving

forward will be to maintain or increase hydrological con-

nectivity while minimizing the spread of certain taxa

(Rahel 2013).

Biotic responses to restoring the natural flow regime are

dependent on the interaction between hydrology, geomor-

phology, and ecological traits of the in situ species (Sha-

froth et al. 2010). In the San Juan River of Colorado, New

Mexico, and Utah, reservoir releases designed to mimic

historic spring discharge resulted in little change in the

abundance of introduced species particularly among small-

bodied, short-lived, fecund taxa (Propst and Gido 2004).

For management projects, the particular flow regime

components modified (e.g., magnitude, timing) are critical

to the ecological response. In the Colorado River, Arizona,

high magnitude, short duration flood pulses released from

the Glen Canyon dam in March and November limited

Tamarix establishment; conversely, a smaller, prolonged

event in May followed by a steady summer discharge,

designed to increase humpback chub Gila cypha recruit-

ment, produced widespread Tamarix establishment as the

flow coincided with the species’ seed release (Mortenson

et al. 2012). Likewise, the timing of managed flood inun-

dation in Macquarie Marshes, Australia was implicated in

stimulating recruitment of non-native species at the

expense of native fauna (Rayner et al. 2015). It is pertinent

that prior to undertaking flow manipulation, managers have

a firm understanding of the phenology and flow require-

ments of both native and introduced species to determine

the potential implications of restoration actions. This is

highlighted by the fact that few studies have weighed the

relative contributions of flow regime restoration and non-

native species removal to the conservation of native bio-

diversity. However, Marks et al. (2010) demonstrated that

flow restoration had a smaller effect on native fish species

abundance in comparison to removal of non-native species,

which was achieved for a greatly reduced economic cost.

The authors suggest that in areas where non-native species

are still established flow restoration had no effect (Marks

et al. 2010). To both minimize the persistence and spread

of non-native species, while promoting conservation of

native taxa, a structured approach that considers the likely

response of all species within the community to flow

regime restoration is warranted. In many areas, such an

approach may be limited by a lack of basic knowledge of

species’ ecological and life-history requirements in relation

to flow.

Another concern of invasive species as a component of

environmental flows is evaluating their effects on hydro-

logical alteration, especially related to their growth forms

and evapotranspiration potentials. For example, giant cane

Arundo donax transpires 69.3 million m3 of water per year

on the Santa Ana River, California compared to an esti-

mated 23.1 million m3 that would be consumed by native

vegetation (Giessow et al. 2011). Giant cane is expansive

across the lower Rio Grande Valley, Texas and along with

water hyacinth Eichhornia crassipes and hydrilla Hydrilla

verticillata contributed to the Rio Grande River, Texas

ceasing to flow to the Gulf in 2001 (Rister et al. 2011).

Further, in the Mar Chiquita coastal lagoon, Argentina, the

presence of the non-native reef-building polychaete Fi-

copomatus enigmaticus altered both the sediment transport

and water flow in the lagoon (Schwindt et al. 2004).

Non-use Economic Value

Although the capitalist economic system encourages the

overexploitation of natural resources (‘tragedy of the com-

mons’; Hardin 1968), monetary value can still be derived by

conserving ‘nature.’ In fact, the economic value of ecosys-

tem services may equal or exceed the world’s gross domestic

product (Costanza et al. 2014). At the local scale, the con-

servation of natural resources may provide economic bene-

fits that exceed 100 times the cost (Balmford et al. 2002) and

an investment in biodiversity can promote economic growth

via tourism (Freytag and Vietze 2013). For example,
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birdwatching (a completely non-consumptive activity)

generates over $100 billion in revenue each year in the

United States (USFWS 2013). Recreational fishing also

provides over $100 billion each year to state and local

economies through sales of licenses, equipment, bait, food,

etc. (American Sportfishing Association 2011). Sustainable

recreational fishing ensures economic benefit in future years,

thus providing a tangible value for environmental flows. For

example, fishing for Guadalupe bass,Micropterus treculii in

the Edwards Plateau ecoregion, Texas, USA generates over

$75 million and 776 jobs in a sparsely populated region

(Thomas et al. 2014). Likewise, angling for Atlantic salmon

and sea trout in England and Wales attracts visitors to rural

areas, supporting jobs and contributing to the local economy

(Peirson et al. 2001; Aprahamian et al. 2010). However,

game fishes make up only a small percentage of freshwater

fish species and recreational fishing qualifies as a use of

water resources (albeit much less exploitative than com-

mercial fishing). The lack of ‘charismatic megafauna’

among freshwater biota makes conservation efforts chal-

lenging for non-game species. Therefore, improved public

support of environmental flows requires economic value to

be associated with ecosystem services provided by aquatic

organisms and their habitats. Meeting these challenges

require an effective collaboration of ecologists, social sci-

entists, and economists. Two interrelated areas that need to

be addressed to facilitate the implementation of environment

flows are (1) better educating the general public about the

value of biodiversity and (2) accurate economic valuations

of non-use.

Ecosystem services are benefits provided to people by

nature through direct functions and/or esthetics. Freshwater

fishes provide numerous benefits to the general well-being

of humans through nutrient cycling, algae control, and food

web stability (see Holmlund and Hammer 1999). Since

aquatic vegetation is often seasonal or ephemeral, fish are

often analogous to trees in freshwater systems by playing

an important role in long-term nutrient storage (Allen and

Hoekstra 1992). Aquatic plants and invertebrates also

provide ecosystem services via improved water quality (de

Bello et al. 2010). However, the long-term advantages to

human prosperity through the conservation of biodiversity

are largely (almost exclusively) overlooked when installing

impoundments or increasing water withdrawals. Despite an

inherent economic importance, ecosystem services can

only be valued through knowledge. Individuals with

expertise in outreach are essential to providing the general

public with a basic, yet holistic, understanding of fresh-

water ecosystems. Better awareness of the ‘big picture’ will

not only increase public support, but will also improve the

effectiveness of non-use valuation methods through better-

educated responses to surveys. The Environmental Pro-

tection Agency’s (EPA) Healthy Watershed Initiative is an

example of a proactive approach incorporating ecosystem

services, public health and stakeholder involvement for

protecting watersheds and their aquatic resources (EPA

2016).

An accurate valuation of the non-use of natural resources

is challenging through conventional economic assessments.

Kahn (2005) outlines three methods to assess the value of

non-market goods. (1) Revealed preference techniques

provide a value of an environmental amenity throughmarket

value. For example, if two properties are identical with the

exception of one being located near a pristine stream and the

other a degraded stream, the difference inmarket value of the

properties reveals a value of water quality. (2) Benefit

transfer techniques use values from other studies and apply

them to a current problem. For instance, economic losses in

one area resulting from decreased fishing due to decreased

water quality can be used to project losses in another area. (3)

Stated preference techniques use surveys to elicit an indi-

vidual’s willingness to pay for a stated environmental qual-

ity. The most common stated preference for valuing

ecosystem services is contingent valuation. For example,

Hejazi et al. (2013) determined that users of a freewaywould

pay $77 million annually (mean of $1.84 per household) to

conserve natural resources along the route (primarily for

esthetic value). Loomis et al. (2000) used contingent valua-

tion to determine that households living along the Platte

River inColoradowould cumulatively contribute at least $19

million annually to restoration efforts. Contingent valuation

methods have been used to evaluate the non-market value of

bothwetlands (e.g., Brouwer et al. 1999;Grammatikopoulou

andOlsen 2013) and streams (e.g., Brown andDuffield 1995;

Berrens et al. 2000; Barak and Katz 2015). Contingent val-

uation can also be used to value water for recreation versus

consumption (e.g., Loomis 2012; Loomis and McTernan

2014). The accuracy of contingent valuation is often criti-

cized and requires skilled economists to implement effective

surveys (Kahn 2005). In particular, the value of threatened

and endangered species appears to have increased over time

but we need more consistent measures of those values to

avoid criticism (Richardson and Loomis 2009). Neverthe-

less, contingent valuation allows a monetary value (i.e., a

number) to be associated with non-market goods such as

environmental flows (Diamond and Hausman 1994; Franco

and Luiselli 2013).

Human Dimensions

Traditionally, studies addressing human perceptions of the

natural environment assumed that responses are distributed

evenly across the landscape of interest; however, more

recent evidence has suggested that environmental concerns

or perceptions by people represent clustered patterns on the
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landscape. These spatially correlated patterns were influ-

enced by a variety of factors including population density,

demographics, socioeconomics (Brody et al. 2005), and

proximity to the environmental concern in question (Brody

et al. 2004). For example, there was a positive relationship

between the income of farmers and their attitude toward

ecosystem services (Poppenborg and Koellner 2013).

Brody et al. (2004) found perceptions of water quality to

relate to driving distance to the water body. These results

have significant policy implications in that new water

policies would be expected to be perceived differently by

the community depending on the perceptions of the first

stakeholder groups engaged (Brody et al. 2005). Under-

standing the distribution of attitudes and perceptions of

water policies appears to be an important prerequisite to

gaining support for advancing environmental flow science

and for successfully implementing new environmental

policies. Underlying attitudes and perceptions will also

provide some insight to the knowledge base of different

constituencies and sectors; increasing research shows nat-

ural resource/environmental literacy of the public is low

(Koyle 2005).

Some of the spatial variation in people’s perception and

viewpoint of the environment is related to regional dis-

similarities in water law and climate. For example, in the

more arid western USA, the doctrine of prior appropriation

assigns priorities to water rights based on the timing of

permit execution and must meet the definition of ‘benefi-

cial uses.’ Traditionally, ‘beneficial uses’ required water to

be diverted out of the stream channel which prevented

environmental flows from becoming established in many

areas (Clayton 2009). However, many states have expan-

ded the meaning of ‘beneficial use’ to include the envi-

ronment and have relaxed the diversion requirement

(Schempp 2009). In areas where overallocation of resour-

ces has occurred, buying back water for the environment

has been the most acceptable method of reallocating water,

particularly in the USA and Australia (Lane-Miller et al.

2013). In the more humid eastern USA, riparian rights

allow for ‘reasonable water use’ to adjacent landowners but

also provide designations for instream uses in navigable

waters such as swimming, boating, and fishing. However,

even in these regions of greater precipitation, the attitudes

associated with environmental flows and associated

Fig. 2 Altered landscape conditions in the conterminous USA.

Cumulative disturbance index represents potential risk to fish habitats

(NFHP 2015). The right inset depicts two major factors contributing

to the index: cumulative number of upstream dams from NFHP

(2015) (top inset) and urban and agricultural landscapes from MRLC

(2016) (bottom inset)
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pressures on existing policy may diverge during times of

drought (Loch et al. 2010). However, our knowledge of

patch distributions of changing attitudes and perceptions is

limited, making it difficult to move policies forward in

some watersheds or regions.

Certain geographic factors have been well recognized in

determining environmental perceptions (e.g., urban versus

rural environments, Tremblay and Dunlap 1978) though

temporal changes in these trends have also been acknowl-

edged (e.g., Fortmann and Kusel 1990). Spatial distributions

of changing perceptions, particularly in individual catch-

ments, have been much less studied. However, Brody et al.

(2005) studied the perceptions and drivers of community

views of water quality in small catchments in south Texas

and found four distinct groups of perceptions. It is unclear

what spatial scale is most appropriate for examining

changing perceptions of water quantity and how that scale

might align with other disciplines and existing frameworks

associated with environmental flows. However, because of

the increase in geospatial data and spatial modeling capa-

bilities, it is reasonable to incorporate these approaches into

the social sciences and integrate these results with other

environmental flow components (e.g., ecology, hydrology,

and economics). Understanding the spatial changes in val-

ues, perceptions, and attitudes of environmental flows may

assist in better development of the ecological questions (e.g.,

organism focus) and how and when stakeholders are inte-

grated into the process of environmental flow planning.

Lastly, as with non-use, the role of social scientists may be

important to reduce spatial variation in attitudes and per-

ceptions by better educating the general public about current

and future environmental issues.

Conclusions

The future of environmental flow science will rely heavily

on collaboration across disciplines to move forward with

the aforementioned challenges. Environmental flow sci-

ence will benefit from this collaboration by (1) providing a

better understanding of the ecological needs of native

species to offset the often unintended consequences of

benefiting non-native species, (2) developing approaches to

address streamflow needs in highly modified landscapes

where historic flows do not provide reasonable compar-

isons, (3) integrating water quality needs where interac-

tions are apparent with quantity but not necessarily the

proximate factor of the ecological degradation, and (4)

providing more obvious ecological study targets and

locations by understanding the attitudes and perceptions of

local stakeholders. Successful implementation of environ-

mental flow policies will benefit from increasing our

understanding of the spatial distribution of attitudes and

perceptions across the landscape so that we can better

engage the correct stakeholders in the appropriate spatial

context. Further, improving our understanding of the non-

use economic value will create a metric of comparison for

natural resources that will (1) better appeal to city and

regional developers and (2) allow for targeted implemen-

tation of objectives in regions with highly modified land-

scapes (e.g., developing environmental flows for

persistence of remnant fish populations between reser-

voirs). We recognize that the interdisciplinary collabora-

tion required to move forward will be difficult (see NRC

2004); however, scientists working in environmental flow

science already conduct interdisciplinary studies (e.g.,

ecological limits of hydrologic alteration). The research

momentum could be redirected to address additional

components (i.e., altered landscapes with no potential for

historic flows) and better integrate the socioeconomic dis-

ciplines. Combined, we believe these efforts would

Fig. 3 Photograph comparison of the Canadian River (west of

Norman, Oklahoma, USA) in the 1920’s (top panel) and the current

channel (2015) near the same location (bottom panel, N 37� 45.0170
W 093� 15.9840). The photograph in the upper panel was reproduced

with permission from the Research Division of the Oklahoma

Historical Society
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increase the overall success of environmental flow science

and implementation.
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