
Scale Effects on Spatially Varying Relationships Between Urban
Landscape Patterns and Water Quality

Yanwei Sun • Qinghai Guo • Jian Liu •

Run Wang

Received: 3 May 2013 / Accepted: 23 April 2014 / Published online: 17 May 2014

� Springer Science+Business Media New York 2014

Abstract Scientific interpretation of the relationships

between urban landscape patterns and water quality is

important for sustainable urban planning and watershed

environmental protection. This study applied the ordinary

least squares regression model and the geographically

weighted regression model to examine the spatially varying

relationships between 12 explanatory variables (including

three topographical factors, four land use parameters, and

five landscape metrics) and 15 water quality indicators in

watersheds of Yundang Lake, Maluan Bay, and Xinglin

Bay with varying levels of urbanization in Xiamen City,

China. A local and global investigation was carried out at

the watershed-level, with 50 and 200 m riparian buffer

scales. This study found that topographical features and

landscape metrics are the dominant factors of water qual-

ity, while land uses are too weak to be considered as a

strong influential factor on water quality. Such statistical

results may be related with the characteristics of land use

compositions in our study area. Water quality variations in

the 50 m buffer were dominated by topographical vari-

ables. The impact of landscape metrics on water quality

gradually strengthen with expanding buffer zones. The

strongest relationships are obtained in entire watersheds,

rather than in 50 and 200 m buffer zones. Spatially varying

relationships and effective buffer zones were verified in this

study. Spatially varying relationships between explanatory

variables and water quality parameters are more diversified

and complex in less urbanized areas than in highly urbanized

areas. This study hypothesizes that all these varying rela-

tionships may be attributed to the heterogeneity of landscape

patterns in different urban regions. Adjustment of landscape

patterns in an entire watershed should be the key measure to

successfully improving urban lake water quality.

Keywords Urban landscape pattern � Water quality �
Spatially varying relationship � Ordinary least squares

regression � Geographically weighted regression � Scale

effects

Introduction

The degradation of water quality is a key global environ-

mental issue (Palmer et al. 2004; Zhao et al. 2011). With

rapid urbanization, urban sprawl leads to water quality

degradation. This is due to the increasing presence of

impervious surfaces and human activities in the process of

urbanization within watersheds (Brett et al. 2005; Schoo-

nover et al. 2005; Zhao et al. 2006; Tu et al. 2007; Du et al.

2010; Pinto et al. 2013; Sun et al. 2013). Moreover, many

natural and anthropogenic factors, including precipitation

intensity, soil types, topographical and geological charac-

ters, urbanization, agricultural activities, and industrial and

sewage discharge can affect the water quality (Baker

2003). Water quality has significant correlations with

changes in landscape patterns and human activity (Azous

and Horner 2001; Allan 2004). Water bodies are an

important part of the landscape in urban areas, and water

quality is influenced by the composition of land use types

and spatial configuration of land use patterns within a

watershed or catchments (Sliva and Willams 2001;
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Donohue et al. 2006; Moreno et al. 2006; Hwang et al.

2007; Jung et al. 2008; Guo et al. 2010; Li et al. 2012).

Land use has been one of the key contributing factors for

urban water pollution (Changnon and Demissie 1996;

Mander et al. 1998; Foley et al. 2005; Grimm et al. 2008).

For example, urban and agricultural land uses have a strong

positive influence on nitrogen and sediments loads; on the

other hand, grassland negatively contributes to water

nutrient loads (Basnyat et al. 1999; Wang 2001; Tong and

Chen 2002; Moreno et al. 2006).

Previous studies have mainly focused on the impact of

land use types on water quality at varying spatial scales

using the percentage of land use, such as impervious land,

forestland, agriculture land, and wetland and so on (Sliva

and Willams 2001; Hwang et al. 2007; Jung et al. 2008;

Guo et al. 2010; Li et al. 2012). A number of studies have

shown conflicting results on the impact of land use on

water quality at different scales (Johnson et al. 1997; Sliva

and Willams 2001; Sawyer et al. 2004). We should point

out that most previous studies focusing on the relationship

between land use and water quality were only carried out in

watersheds and subwatersheds. However, due to the com-

plexity and variability in spatial patterns of land uses, the

trend of impacts of land uses on water quality has still not

been explored explicitly.

From an ecological landscape perspective, the spatial

configuration of landscapes may play a critical role in

determining natural habitats, hydrological processes,

energy flows, and nutrient cycles (Alberti et al. 2007).

Recent studies have focused on examining the relationships

between the spatial configuration of landscapes and water

quality at various scales (Amiri and Nakane 2009; Lee

et al. 2009; Shiels 2010; Carey et al. 2011; Jager et al.

2011; Huang et al. 2013; Zhang et al. 2013).

However, the effects of land use types and its spatial

structures on water quality are always simultaneous in a

watershed. Land use types and its spatial structures should

be investigated together in order to examine which factors

exert the most important influence. Guo et al. (2010) pro-

posed a dynamic hypothesis that the impact of land use on

water quality could vary with the expansion of the buffer

size and that there should be an effective buffer zone where

the strongest linkage occurs between land use and water

quality. They also pointed out when beyond or under the

effective buffer zone, the impact of land use on water

quality should become weak or insignificant, given that the

land use characteristics themselves varied with distance.

The primary statistical methods to analyze relationships

between land use and water quality are the conventional

statistical methods, such as Pearson’s correlation, simple

correlation, single linear model, multiple linear regression

model, nonparametric statistical analysis, nonlinear multi-

ple regression, and ordinary least squares regression (OLS)

(Seeboonruang 2012). The conventional statistical methods

are ‘‘global statistics’’ that analyze the average situation for

the whole study area. It is assumed that the relationships

are constant over space. Land use parameters and land-

scape metrics are used as independent variables and water

quality parameters obtained from observed statistical data

act as dependent variables in the regression. These con-

ventional statistical methods utilize global statistics that

analyze the average situation for the whole study area, and

usually, they are unable to explore the local variations in

the relationships between independent variables and water

quality indicators (Tu 2011). In recent years, a simple but

powerful statistical method called geographically weighted

regression (GWR) has been developed based on the OLS

model to explore continuously varying relationships over

space (Brunsdon et al. 1998; Fotheringham et al. 2002).The

‘‘local statistics’’ methods, such as GWR, attempt to cap-

ture spatial variations by allowing regression model

parameters to change over space and can calculate a set of

local regression results including local parameter estimates,

the values of the t test on local parameter estimates, local

R2 values, and local residuals for each regression point.

Given its strong advantage, GWR model has been applied

to explore the spatially varying relationship between land

use and water quality in several previous studies (Tu 2011;

Pratt and Chang 2012; Yu et al. 2013).

In this study, we investigated the spatially varying

relationships between topographical variables, land use

parameters, landscape metrics, and water quality parame-

ters using OLS and GWR models in Yundang Lake, Mal-

uan, and Xinglin Bay of Xiaman City, China. Our

objectives are (1) to determine which of the above-men-

tioned explanatory variables have the largest impact on

water quality; and (2) to analyze scale effects of the rela-

tionships between explanatory variables and water quality

parameters across an urbanization gradient within

watersheds.

Study Area

Xiamen City is situated in the southeast coast of Fujian

province, China. Mean annual precipitation is 1,530 mm,

with significant spatial and temporal differences. Rainfall

distribution in Xiamen City is uneven. The flood season

lasts from April to October, accounting for 80 % of total

annual rainfall. Precipitation gradually reduces from the

northwest (above 2,000 mm) to the southeast (about

1,100 mm) (Lin 2009). Figure 1 shows a location map of

three watersheds in Xiamen, including Yundang Lake,

Maluan Bay, and Xinglin Bay. There is great spatial dif-

ference in the level of urbanization among the three study

watersheds. Yundang Lake is located in the center of
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Xiamen Island, and the water area is up to 1.6 km2. There

is no river flowing onto the lake; it only exchanges regu-

larly with sea water through water gates. The areas around

the water body are highly urbanized and mainly covered by

commercial, residential, and recreational lands. In the early

stages, industrial and residential sewage is drained off into

water body without treatment, causing the water pollution

of Yundang Lake to become increasingly serious. Since

1980s, government had taken some engineering measures

to improve water quality of Yundang Lake. In recent years,

the water quality has improved significantly as a whole, but

parts of waters are still polluted serious. So adjustment of

land use patterns at watershed scale should be the key

measure to successfully improve urban lake water quality

in the next step. Maluan Bay is located at the junction of

Haicang district and Jimei district and has a water area of

2.1 km2. A small stream drains into Maluan bay from west

to east. Water body exchanges the water through gate

during the flux and reflux. The dominant land use types

around the water body are industrial and residential lands.

It belongs to a less urbanized area. Xinglin Bay is located

at the Jimei district and has a water area of 6 km2. The lake

was completely separated with outside sea by dam and only

releases flood water to sea when extreme perception event

happened. The areas around the Xinglin Bay have been

constructing in Xiamen, which are expanding from the

inside to the outside of the island, and it is at the period of

transition from an agricultural landscape to an urban

landscape.

Materials and Methods

Water Quality Parameters

Water quality data were collected and analyzed on a

quarterly basis (four times per year) from each of the 30

selected sampling sites. Water sampling was carried out

quarterly from March 2011 to January 2012 (spring 2011.3,

summer 2011.7, autumn 2011.11, and winter 2012.1).

Generally, sampling time is selected in sunny day and tries

to avoid any antecedent rain for the representation of water

quality data. Thirteen sites for Yundang Lake, ten sites for

Xinglin Bay, and seven sites for Maluan Bay were selected

based on watershed characteristics. Water temperature

(Temp), pH, dissolved oxygen (DO), chlorophyll a (Chl),

salinity (Sal), and conductivity (Cond) were measured with

Multi-Parameter Water Quality Monitoring Equipment

(YSI int.) at three depths of approximately 0.1, 0.5, and

1.0 m. Surface water was collected for measurement of

total organic carbon (TOC), total nitrogen (TN), total

phosphorus (TP), and seven metal elements (including As,

Fig. 1 Sketch map of Yundang Lake, Maluan Bay and Xinglin Bay
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Hg, Pb, Cu, Fe, Zn, and Se). Water quality samples were

measured by the standard analytical method for surface

water quality. TOC-VCPH Total Organic Carbon Analyzer

was used to measure TOC and TN. The ammonium

molybdate spectrophotometric method was used to mea-

sure TP. The atomic fluorescence spectrometric method

was applied to determine As and Hg. The atomic absorp-

tion spectrophotometric method was used to measure Pb,

Cu, Fe, Zn, and Se. We used annual mean values of water

quality parameters as dependent variables.

Land Use Data

Land use information within the watersheds was interpreted

from SPOT5 imagery (2011-4-24) using ArcGIS 9.3 Desk-

top GIS software. This remote imagery covers most parts of

Xiamen city, with a spatial resolution of 2.5 m. According to

watershed characteristics, land use types are classified into

seven broad categories, namely, (1) green land, including

forest and shrub land; (2) agricultural land, including paddy

field and dry land; (3) urban land, including industrial, res-

idential, and recreational land; (4) road land; (5) water areas;

(6) bare land, including bare ground and bare rocks; (7) fish

pond areas, which are controlled ponds for breeding fish.

The orthorectification procedure was utilized to the remote

image in order to correct geometric distortions. Based on

Google Earth map and visual interpretation, land use maps

of three watersheds were finally derived, and the total

classification accuracy was more than 90 %. Land cover

polygons representing different land covers were then con-

verted to a 10.0 m raster grid, which allowed for the mea-

surement of land use composition and landscape metrics

using FRAGSTATS3.3 software.

Explanatory Variables

Topographic, land use composition, and landscape vari-

ables are shown in Table 1. The watersheds were

automatically delineated with the use of a 10.0 m digital

elevation model (DEM) in ArcSWAT extension of ArcGIS

9.1 software (Winchell et al. 2007). The SWAT model

divided the watersheds of Yundang Lake, Maluan Bay, and

Xinglin Bay into 8, 3, and 7 subwatersheds, respectively,

based on the outlet location of each watershed and

upstream rivers (Fig. 2). The riparian areas were created by

buffering the lake/bay 50 and 200 m. The land use com-

position and topographic variables in each of the 18

delineated subwatersheds were calculated using the Spatial

Analyst tools in ArcGIS.

In this study, five landscape metrics at the landscape

level were calculated using the raster version of FRAG-

STATS 3.3 (Table 2) based on 10.0 m-resolution land use

data.

Analysis Methodology

Multivariable OLS and GWR models were developed to

explore the relationship between independent variables and

water quality parameters from global and local perspectives.

The regression coefficients from OLS models can help us to

find the dominant factors of varying water quality at 50,

200 m and watershed scales. The local regression coeffi-

cients at different sampling points from GWR models can

reflect the strength of relationships between explanatory

variables and water quality parameters across an urbaniza-

tion gradient. The dependent variable is a factor calculated

from the fifteen water quality parameters, and the explana-

tory variables are the seven land use composition parame-

ters, three topographical factors, and five landscape metrics.

The Kolmogorov–Smirnov (K–S) goodness of fit test was

used to test for normality of the distribution of the water

quality and independent variables. For water quality

parameters, the TP and Fe were transformed logarithmically

[log(x ? 1)], Cond was removed due to unresolved skew-

edness. For independent variables, the percentages of fish

ponds and agricultural land were removed, because they

were only present in one watershed. At a watershed scale,

the mean subwatersheds elevation, PD, and LPI were

transformed logarithmically, and LSI was transformed,

respectively. At a 200 m buffer scale, the slope standard

deviation was transformed. OLS and GWR were performed

using ArcGIS 9.3. An advantage of running an OLS

regression in ArcMap is the output from the process which

includes the residual for each site, allowing the researcher to

more easily test the residuals for spatial autocorrelation

(Pratt and Chang 2012).

The OLS and GWR model can be, respectively,

expressed as Eqs. (1) and (2):

y ¼ b0 þ
Xp

i¼1

bixi þ e; ð1Þ

Table 1 Explanatory variables used in analysis (McGarigal and

Marks 1995)

Category Variables

Land use composition Percentages of green (VEG), agriculture

(AGR), urban (URB), road (ROA), fish

pond (FIS), bare land (BAR)

Topographical factors Mean subwatershed slope (SLO), mean

subwatershed elevation (ELE), slope

standard deviation (SLO_STD)

Landscape metrics

(landscape level)

Patch density (PD), largest patch index

(LPI), landscape shape index (LSI),

Shannon’s diversity index (SHDI),

Shannon’s evenness index (SHEI)

Environmental Management (2014) 54:272–287 275

123



where xi is the independent; y is the dependent variable;

P denotes the number of independent variables; b0 and bi

represent intercept and coefficient, respectively; e repre-

sents error.

The GWR model allows local rather than global

parameters to be estimated for the location of samples, and

the above model can be rewritten as:

yj ¼ b0ðuj; vjÞ þ
Xp

i¼1

biðuj; vjÞxij þ ej; ð2Þ

where uj and vj are the coordinates for each location j, b0

(uj, vj) is the intercept for location j, bi (uj, vj) is the local

parameter estimate for independent variable xi at location

j. The model is calibrated using an exponential distance

decay function.

wij ¼ exp ð�d2
ij

.
b2Þ: ð3Þ

The weight of site j as it effects site i, Wij, is calculated

using the distance (d) between sites i and j with b acting as

the kernel bandwidth. The weight decreases rapidly when

the kernel is smaller than the distance. Both fixed and

adaptive kernel bandwidth can be chosen for GWR. We

used adaptive kernel bandwidth here, because the density

of sample sites varied across watersheds. The optimal

Fig. 2 Location map of monitoring sites and schematic of watershed delineation for Yundang Lake (YD01-YD08), Maluan Bay (ML01-ML03),

and Xinglin Bay (XL01-XL07)
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bandwidth was determined by minimizing the corrected

Akaike Information Criterion (AICc). Given that multi-

collinearity existed among the explanatory variables, one

explanatory variable acted as the independent variable, and

water quality acted as the dependent variable in the

regression models (Tu 2011). GWR models produce a set

of local regression results, including local residual and R2

results, as well as a global R2 by ArcGIS software (Tu and

Xia 2008). The Global Moran’s I for the residuals from

both OLS and GWR models were calculated to test the

model’s accuracy. If significant spatial autocorrelation

exists in an OLS model, then the model violates the

assumption of randomly distributed and independent

residuals in regression models. The efficiency of the model

is therefore suspect. In addition, the residuals may contain

some geographic information that the model does not

include and is therefore lost (Clark 2007). GeoDa 0.9.5-I

(Beta) analysis software was used to calculate the Global

Moran’s I statistics.

In order to evaluate the variability of water quality data

in each watershed, the coefficient of variations (CV) was

calculated. The CV-value is defined as

CV ¼ SD=MV, ð4Þ

where SD is the standard deviation, and MV is the mean

value.

Results

Spatial Variations in Land Use Composition and Water

Quality Parameters

Obvious heterogeneity of land uses and spatial gradient of

urbanization exist in the three watersheds (Table 3). The

dominant land use types in Yundang Lake watershed are

residential and commercial land (total &60 %), and the

proportion of urban built-up areas can be 96 %, which

indicate that the Yundang Lake watershed is represented as

a highly urbanized area. In the Maluan Bay watershed,

there are larger areas of fish ponds (&24 %); commercial

and industrial lands have been expanding rapidly in recent

years. All this indicates that the Maluan watershed is a

peri-urbanization area. The proportion of urban built-up

area in the Xinglin Bay watershed is about 66 %, and the

bare land in the process of development and construction is

larger than other watersheds (&20 %). Therefore, the

Xinglin Bay watershed is a rapidly urbanized area. Maluan

Bay and Xinglin Bay watersheds are represented as less

urbanized watersheds.

As shown in Table 4, there are significantly differences

in topographical factors and landscape metrics between

three watersheds. Higher mean slope, mean elevation, and

slope deviation are observed in Yundang watershed, and

lower values of such topographical factors are found in

Xinglin watershed. For landscape metrics at landscape

level, the values of LSP and SHDI are higher in Xinglin

Bay and lower in Yundang Lake. The result shows obvi-

ously differences of landscape pattern in three watersheds

and confirms our division of urbanization gradients for

these study areas.

The CVs (%) across different sampling sites, which

range from 1.15 to 83.95 %, indicate that there are large

spatial variations for water quality data (Table 5). In gen-

eral, the spatial variations of Temp, Chl, TOC, Hg, As, Pb,

and Fe in highly urbanized watershed were greater than in

less urbanized watersheds. However, spatial variations of

other water quality parameters like Cond, Sal, pH, DO, TN,

Cu, Zn, and Se in less urbanized watersheds were greater

than those in highly urbanized watersheds. In the Yundang

Lake watershed, the CVs of Chl, TP, Pb, Cu, and Fe

(CV [ 50 %) were greater than the other water quality

parameters. In the Maluan Bay watershed, the CVs of Chl

and Pb were greater than the other water quality parame-

ters. In the Xinglin Bay watershed, the spatial variations of

Pb and the CVs of Cu and Zn were greater than the other

water quality parameters.

Spatial Analysis of OLS Regression Models

Final models were selected when every variable in the

model was significant (P \ 0.05), and the adjusted coeffi-

cient of determination (Adj. R2) is larger than 0.6. As

shown in Table 6, the correlation of explanatory variables

with water quality varied with the spatial scales. The

regression coefficients for explanatory variables indicate

that landscape metrics (such as SHDI and SHEI) and

topographical factors like elevation and slope are the

dominated variables for predicting water quality parame-

ters at three spatial scales, while the correlations between

percentage of land use types and water quality parameters

Table 2 Landscape metrics used in analysis

Metrics (abbreviation) Descriptions

Patch density (PD) Number of patches per unit area (number per

100 ha)

largest patch index

(LPI)

Percentage of the landscape in the largest

patch (unit: %)

landscape shape index

(LSI)

Measures the perimeter-to-area ratio for the

landscape as a whole (unitless)

Shannon’s diversity

index (SHDI)

Based on information theory; indicates the

patch diversity in a landscape (unitless)

Shannon’s evenness

index (SHEI)

The observed Shannon’s Diversity Index

divided by the maximum Shannon’s

Diversity Index for that number of patch

types (unitless)
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are extremely weak compared with other explanatory

variables (|bi | & 0). Thus, the impact of land use com-

position on water quality can be neglected and is not dis-

cussed in the followed sections.

Variation in water quality at the 50 m buffer scale is

dominated with topographical variables. Mean subwater-

shed slope is negatively correlated to the concentrations of

Sal, TOC, Hg, As, Cu, Fe, and Se. However, higher stan-

dard deviation of the slope corresponds to increasing

concentrations of Sal, Hg, As, Cu, and Se. Compared with

topographical variables, the impact of landscape metrics on

water quality is relatively small because of less number of

occurrences and low frequency of the regression

coefficients.

At 200 m buffer scale, landscape metrics becomes the

main factors for most of the water quality parameters,

while topographical variables influence on water quality

weakens.

At the watershed scale, SHDI and SHEI are the main

indicators, and their impacts on water quality strengthen

further. SHEI has a negative correlation with Sal, Hg, As,

and Se while being positively related to Temp, DO, Chl,

and Fe. SHDI has a completely opposite impact on water

quality variation compared with SHEI. However, it should

be pointed out that there are significant correlations

between TN and TP, and landscape metrics and topo-

graphical variables at the watershed scale rather than at 50

and 200 m buffer scales. Specifically, mean subwatershed

elevation has a positive correlation with the concentration

of TN and TP; PD, LPI, SHDI, and SHEI have negative

correlations with the concentration of TN and TP.

The values of Adj. R2 in OLS models could indicate the

ability of explanatory variables to explain water quality

parameters. As shown in Table 6, the values of Adj.R2 at

the watershed scale are generally larger than those at the 50

and 200 m buffer scales, which reflect the scale effects of

dominant factors and the existence of the effective buffer

zone.

Table 7 shows the results of Moran’s I statistics on the

residuals from the OLS model. Significant negative spatial

autocorrelations are observed, Temp at the 50 m buffer

scale (Moran’s I = -0.2, P \ 0.05), Sal at the watershed

(Moran’s I = -0.21, P \ 0.05), DO at the 200 m buffer

and watershed scales (Moran’s I = -0.2, P \ 0.05), Hg at

the 50 m buffer scale (Moran’s I = -0.2, P \ 0.05), and

Fe at the watershed scale (Moran’s I = 0.19, P \ 0.05).

The results indicate that these OLS models might miss the

variables that explain the variation and are unsuitable for

identifying the relationships between explanatory variables

and water quality parameters.

Spatial Analysis of Local GWR Models

In the previous sections, the global relationships at three

spatial scales have been obtained by means of OLS models,

but these results may miss some local relationships and

cannot reflect the spatially varying relationships. There-

fore, the GWR method was applied to explore spatially

varying relationships between explanatory variables and

water quality parameters along the gradient of the urbani-

zation level. As shown in Tables 6 and 7, the global

coefficient of determination (R2) and local parameter

Table 3 Land use composition in the watershed of Yundang Lake, Maluan Bay, and Xinglin Bay in 2011

Watershed Percentages of land use types (%)

Urbanization

types

Commercial/

industrial/

recreational land

Road

land

Green

land

Bare

land

Fish

pond

Residential

land

Agricultural

land

built-

up

area

Yundang

Lake

High urbanization area 19.63 5.64 32.05 4.13 0.00 38.54 0.00 95.86

Maluan Bay Peri-urbanization area 20.36 2.18 26.97 10.94 23.92 15.63 0.00 65.14

Xinglin Bay Rapid urbanization

area

7.67 5.85 27.03 19.44 6.47 25.29 8.26 65.84

Table 4 Topographical factors

and Landscape metrics in the

watershed of Yundang Lake,

Maluan Bay, and Xinglin Bay

Watershed Topographical factors Landscape metrics (landscape level)

Mean

slope

Mean

elevation

Slope

standard

deviation

Patch

density

Largest

patch

index

Landscape

shape

index

Shannon’s

diversity

index

Shannon’s

evenness

index

Yundang Lake 5.86 35 7.99 5.94 18.22 11.8 1.37 0.77

Maluan Bay 3.85 25 6.07 2.27 21.71 13.11 1.73 0.83

Xinglin Bay 3.16 17.6 5.23 5.41 11.63 17.55 1.81 0.87
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Table 5 Statistical summary of

the water quality parameters in

the Yundang Lake, Maluan Bay,

and Xinglin Bay watersheds

Watershed Parameter Min. Max. Mean Std. Deviation CV (%) N

Yundang Lake Temp (�C) 15.02 22.62 20.21 1.68 8.29 13

Cond (ms/cm) 38.34 41.60 39.94 0.89 2.23 13

Sal (ppt) 25.47 26.85 26.42 0.40 1.52 13

pH 7.74 8.10 7.97 0.12 1.46 13

DO (mg/L) 4.27 9.48 6.81 1.27 18.70 13

Chl (lg/L) 0.57 6.34 2.45 1.78 72.63 13

TOC (mg/l) 0.88 2.60 1.98 0.54 27.42 13

TN (mg/l) 1.44 4.28 1.97 0.85 43.30 13

TP mg/l) 0.54 2.41 1.05 0.56 52.98 13

Hg (lg/L) 0.16 0.55 0.30 0.12 40.61 13

As (lg/L) 11.80 20.12 14.72 2.34 15.92 13

Pb (lg/L) 0.09 1.23 0.38 0.31 82.05 13

Cu (lg/L) 0.90 12.72 6.20 3.40 54.88 13

Fe (lg/L) 15.88 82.74 37.83 19.40 51.28 13

Zn (lg/L) 3.24 11.09 5.95 2.37 39.80 13

Se (lg/L) 143.30 243.68 178.89 28.84 16.12 13

Maluan Bay Temp (�C) 21.44 22.12 21.75 0.25 1.15 7

Cond (ms/cm) 29.74 31.69 30.69 0.63 2.05 7

Sa l(ppt) 18.45 19.76 19.09 0.42 2.22 7

pH 8.00 8.59 8.29 0.21 2.50 7

DO (mg/L) 8.27 11.50 9.74 1.27 13.05 7

Chl (lg/L) 6.29 22.13 12.49 6.33 50.66 7

TOC (mg/l) 3.92 8.10 5.22 1.37 26.31 7

TN (mg/l) 1.60 2.16 1.98 0.18 9.22 7

TP (mg/l) 0.77 1.08 0.93 0.15 16.13 7

Hg (lg/L) 0.16 0.32 0.21 0.06 26.48 7

As (lg/L) 10.19 12.72 11.00 0.99 8.97 7

Pb (lg/L) 0.09 0.85 0.33 0.25 77.17 7

Cu (lg/L) 3.65 7.94 5.80 1.49 25.74 7

Fe (lg/L) 14.49 26.02 19.16 3.73 19.45 7

Zn (lg/L) 4.27 10.37 6.12 1.97 32.23 7

Se (lg/L) 125.28 152.36 136.36 9.23 6.77 7

Xinglin Bay Temp (�C) 22.12 23.90 22.94 0.54 2.35 10

Cond (ms/cm) 1.99 3.55 2.69 0.40 15.00 10

Sal (ppt) 1.02 3.34 1.69 0.70 41.55 10

pH 8.31 9.66 9.07 0.39 4.30 10

DO (mg/L) 7.30 16.26 12.52 2.57 20.49 10

Chl (lg/L) 23.26 45.13 33.11 6.69 20.20 10

TOC (mg/l) 4.98 9.65 6.27 1.31 20.90 10

TN (mg/l) 2.40 7.56 3.49 1.57 44.92 10

TP (mg/l) 1.66 4.26 2.42 0.83 34.36 10

Hg (lg/L) 0.07 0.13 0.09 0.02 23.16 10

As (lg/L) 1.85 2.34 2.06 0.17 8.49 10

Pb (lg/L) 0.54 4.93 1.62 1.32 81.92 10

Cu (lg/L) 0.64 6.44 2.30 1.85 80.54 10

Fe (lg/L) 76.42 139.14 114.86 20.13 17.52 10

Zn (lg/L) 3.29 30.10 9.42 7.91 83.95 10

Se (lg/L) 5.31 10.19 7.19 1.26 17.50 10
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estimates from GWR models are summarized. The local

parameter estimates can be used to reflect the relationships

between the independent variable and dependent variable

at different sampling sites. The global R2 values from

GWR model reflect the ability of explanatory variables to

explain the spatial variation in the water quality parameters

at all sampling sites. There are 180 (12 times 15) GWR

models in this study. We are not able to present all the

results from GWR models due to space limitations. The

two key water quality parameters of DO and Chl were

selected to examine the spatially varying relationships. DO

is the most important indicator of the health of a water

body and its capacity to support a balanced aquatic eco-

system. Chlorophyll is a commonly used parameter for

monitoring phytoplankton biomass and nutrient status. It

can help track and predict deadly algae blooms. Nutrient

enrichment leads to increased production of organic matter

and resulting in low levels of dissolved oxygen which is

killing marine life (Pelley 1998).

As shown in Table 8, the values of global R2 in GWR

models range from 0.003 to 0.998, and the median value is

larger than 0.6. The local parameter estimates from GWR

models are shown in Table 9. Topographical variables and

landscape metrics have a wider range of values. Wider

ranges of values imply that explanatory variables might

have a larger impact on water quality variations.

A clear spatially varying relationship exists along the

gradient of the urbanization level as shown in Figs. 3 and 4.

Figure 3 shows the spatial pattern of local parameter esti-

mates from GWR models for DO and mean subwatershed

Table 6 Multivariable

regression models for

explanatory variables and water

quality parameters at the

watershed, 50 and 200 m buffer

scales

Scales Parameters Topographical indicators Landscape metrics

ELEV SLOPE SLOPE_STD PD LPI LSI SHDI SHEI Adj. R2

50 m Sal ? - ? - - 0.86

pH - ? - - ? 0.72

DO - ? - 0.58

Chl - ? - ? 0.69

TOC - - ? 0.71

Hg - ? 0.74

As ? - ? - 0.89

Cu - ? ? - 0.79

Fe - - - ? ? 0.70

Se ? - ? ? - 0.87

200 m Sal ? ? ? - 0.74

pH - ? 0.73

DO - ? - ? 0.67

Chl - ? - ? 0.70

TOC - - ? - 0.64

Hg ? ? ? - 0.64

As ? ? - 0.83

Cu - ? ? - 0.83

Fe - - ? 0.61

Se ? - ? - 0.79

Watershed Temp ? - ? - ? 0.85

Sal ? ? - ? - 0.91

pH - - - ? - ? 0.85

DO - - ? 0.79

Chl - - ? - ? 0.82

TOC - - ? - ? 0.72

TN ? - - - - 0.79

TP ? - - ? - - 0.82

Hg ? ? - 0.64

As ? ? - ? - 0.93

Fe - - - - ? 0.75

Se ? ? - ? - 0.92
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elevation, mean subwatershed slope and SHDI at three

spatial scales. At the 200 m buffer scale, stronger negative

correlations between DO and mean subwatershed elevation

are found in the less urbanized areas. At the 50 and 200 m

buffer scales, positive correlations are observed between DO

and mean subwatershed slope in highly urbanizes areas,

while negative correlations are shown in less urbanized

areas. Similarly, inside the 200 m buffer zones, DO has

positive correlations in the highly urbanized areas, while

there are negative correlations with SHDI in the less

urbanized areas.

Figure 4 shows the spatial pattern of local parameter

estimates from GWR models for Chl and mean

subwatershed elevation, mean subwatershed slope, and

SHDI at three spatial scales. At the 50 m buffer scale, the

concentration of Chl is positively related to mean subwa-

tershed elevation in highly urbanized areas, while Chl is

negatively related to mean subwatershed elevation in less

urbanized areas. At the 50 and 200 m buffer scales,

stronger correlations between Chl and the mean subwa-

tershed slope are found in less urbanized areas. Stronger

negative correlations are found at 50 m buffer scale for

both less and highly urbanized areas. At the watershed

scale, Chl is positively related to SHDI in the highly

urbanized areas, while Chl is negatively related to SHDI

within less urbanized areas. The results from GWR models

indicate that the spatially varying relationships between

explanatory variables and water quality parameters depend

on the spatial analysis scale and the urbanization level of

the watershed.

As shown in Table 10, significant positive spatial

autocorrelations are found in the GWR model for DO and

SHDI (Moran’s I = 0.2045, P \ 0.05) and in the GWR

model for Chl and SHDI (Moran’s I = 0.4296, P \ 0.05).

Significant autocorrelations made the two GWR models

unsuitable for examining the relationships between SHDI

and water quality parameters.

Discussion

Dominant Factors Influencing Water Quality

This study found that the dominant factors varied with the

spatial analysis scale. Topographical variables dominated

the water quality variations at the 50 m buffer scale. Sev-

eral other studies also noted the importance of topograph-

ical variables. For example, Pratt and Chang (2012)

Table 7 Global Moran’s I of the residuals from OLS models

Water quality parameters 50 m buffer 200 m buffer Watershed

Temp -0.20 -0.11 -0.20

Sal -0.03 -0.12 -0.21

pH -0.02 0.10 0.15

DO -0.04 -0.20 -0.20

Chl -0.01 -0.01 -0.13

TOC -0.14 -0.02 0.07

TN -0.13 0.01 0.14

TP -0.11 0.04 -0.02

Hg -0.20 -0.11 -0.10

As -0.07 0.06 0.01

Pb -0.02 -0.17 -0.10

Cu -0.03 -0.08 0.11

Fe 0.04 0.04 0.19

Zn -0.12 -0.06 -0.01

Se -0.08 0.08 0.05

Note bold number indicates values significant at P \ 0.05 level

Table 8 Statistical summary of

global coefficient of

determination (R2) for GWR

Explanatory variables Watershed 50 m buffer 200 m buffer

Min. Max. Median Min. Max. Median Min. Max. Median

ELEV 0.312 0.998 0.773 0.235 0.997 0.725 0.369 0.998 0.791

SLOPE 0.277 0.998 0.829 0.284 0.997 0.750 0.274 0.998 0.785

SLOPE_STD 0.261 0.998 0.835 0.386 0.998 0.776 0.300 0.999 0.811

URB 0.318 0.998 0.765 0.213 0.998 0.769 0.216 0.998 0.738

ROA 0.259 0.998 0.733 0.257 0.998 0.757 0.265 0.998 0.768

VEG 0.313 0.998 0.764 0.031 0.998 0.751 0.395 0.998 0.767

BAR 0.003 0.995 0.709 0.042 0.998 0.694 0.218 0.998 0.712

PD 0.414 0.998 0.766 0.210 0.999 0.760 0.381 0.998 0.766

LPI 0.131 0.894 0.626 0.316 0.998 0.781 0.270 0.998 0.722

LSI 0.242 0.997 0.762 0.260 0.998 0.761 0.338 0.999 0.799

SHDI 0.238 0.878 0.606 0.437 0.998 0.773 0.421 0.998 0.836

SHEI 0.282 0.993 0.750 0.192 0.998 0.781 0.333 0.998 0.788
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suggested that not only a flat slope may be acting as a sink

for total solids (TS) and slowing runoff, but it also may be

receiving more pollutants from outside areas and has more

residence time to carry more pollutants into the water body.

However, Chang (2008) suggested that highly variable

slopes could act as sinks for oxygen demand, sediment and

nutrients rather than their sources. Our results also showed

that mean subwatersheds slope is negatively correlated to

the concentrations of Sal, TOC, Hg, As, Cu, Fe, and Se,

which indicate highly variable slopes could act as the sink

of water pollutants.

Landscape characteristics play an important role in pol-

lutant transport and retention (Chen et al. 2002). Landscape

metrics are the mainly influencing factors at the watershed

and 200 m buffer scales, especially SHDI and SHEI. In our

study area, landscape characteristics appear to be most

important in determining water parameters at the 200 m

buffer zone or larger scales. However, previous studies

Table 9 Statistical summary of

local parameter estimates for

GWR models

Scales Explanatory variables Yundang Lake Maluan Bay Xinglin Bay

Min. Max. Min. Max. Min. Max.

Watershed ELEV -5.23 84.56 -14.29 56.33 -4.42 28.09

SLOPE -0.91 8.41 -1.06 6.14 -0.81 10.77

SLOPE_STD -0.88 6.49 -1.04 5.64 -0.68 9.30

URB -0.85 0.10 -0.28 1.13 -0.14 0.42

ROA -0.19 1.70 -7.10 0.37 -0.62 0.08

VEG -0.12 0.91 -3.81 0.68 -0.33 0.16

BAR -4.29 0.30 -1.88 0.57 -0.17 0.18

PD -7.73 24.12 -83.22 11.84 -19.25 2.05

LPI -24.77 3.99 -28.84 14.07 -5.32 5.61

LSI -222.19 139.03 -13.17 39.88 -18.68 8.74

SHDI -299.21 28.92 -17.13 78.38 -11.62 44.20

SHEI -211.31 32.06 -68.00 287.26 -18.01 3.07

50 m buffer ELEVATION -9.92 8.02 -3.48 0.40 -16.13 13.86

SLOPE -31.67 46.59 -18.74 2.94 -52.02 15.71

SLOPESTD -13.11 37.86 -10.43 3.41 -107.73 8.05

URB -0.27 0.30 -0.71 0.04 -0.23 0.02

ROA -25.09 17.75 -5.60 1.03 -8.40 1.14

VEG -0.22 0.31 -5.45 0.88 -0.05 0.08

BAR -2.64 0.89 -1.91 0.33 -0.04 0.09

PD -0.10 0.09 -1.12 0.29 -0.06 0.01

LPI -0.47 2.10 -0.10 0.88 -0.30 0.03

LSI -8.22 26.67 -2.26 0.89 -0.67 4.67

SHDI -38.47 124.81 -32.52 6.78 -3.88 28.93

SHEI -139.26 49.25 -23.31 6.60 -18.89 8.60

200 m buffer ELEVATION -14.11 21.95 -2.28 0.75 -10.29 39.19

SLOPE -19.97 41.90 -9.62 2.93 -55.67 182.02

SLOPESTD -16.30 10.22 -4.33 1.76 -6.91 2.46

URB -0.65 0.11 -1.23 0.02 -0.24 0.02

ROA -1.32 2.69 -1.06 0.10 -0.55 0.09

VEG -0.17 0.93 -4.31 0.66 -0.31 0.06

BAR -1.87 0.63 -1.99 0.34 -0.06 0.17

PD -2.20 0.38 -3.76 0.61 -0.03 0.03

LPI -0.69 0.28 -0.11 1.01 -0.29 0.10

LSI -8.39 19.62 -4.98 1.27 -0.68 3.88

SHDI -20.17 72.03 -32.97 7.02 -3.71 26.93

SHEI -53.29 105.78 -58.51 7.24 -13.01 45.96
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generally take landscape metrics as single explanatory

variables. Huang et al. (2013) found that SHDI is signifi-

cantly positively correlated with CODMn. Lee et al. (2009)

also reported that degraded water quality was positively

associated with SHDI, PD, and ED and negative to LPI.

Our study suggested that the difference of dominant

factors in different buffers is due to the urban landscape

heterogeneity in the buffer zones. The value of SHDI

generally increased with the size of buffer zone (50, 200 m

and entire watersheds from the edge of lakes). It indicated

that the spatial pattern of land use is singular in the near-

lake zones (50 m buffer), and human activity is relatively

weak. The topographical variables in the subwatersheds

become more important for the pollution export to lakes.

With increasing distance from the lakes, the interspersion

and diversity of land use types increase, and human activity

DO and MEC

At the watershed

DO and MEC

At the 50m buffer

DO and MEC

At the 200m buffer

DO and MCS

At the watershed

DO and MCS

At the 50m buffer

DO and MCS

At the 200m buffer

DO and SHDI

At the watershed

DO and SHDI

At the 50m buffer

DO and SHDI

At the 200m buffer

Fig. 3 Spatial patterns of the local parameter estimates obtained from GWR models of DO and explanatory variables: MCE mean subwatershed

elevation, MCS mean subwatershed slope, and SHDI at the watershed, 50 and 200 m buffer scales
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Chl and MEC

At the watershed

Chl and MEC

At the 50m buffer

Chl and MEC

At the 200m buffer

Chl and MCS

At the watershed

Chl and MCS

At the 50m buffer

Chl and MCS

At the 200m buffer

Chl and SHDI

At the watershed

Chl and SHDI

At the 50m buffer

Chl and SHDI

At the 200m buffer

Fig. 4 Spatial patterns of the local parameter estimates obtained from GWR models of Chl and explanatory variables: MCE mean subwatersheds

elevation, MCS mean subwatersheds slope, and SHDI at the watershed, 50 and 200 m buffer scales

Table 10 Global Moran’s I of

the residuals from GWR models

Note bold number indicates

values significant at P \ 0.05

level

Explanatory variables Watershed 50 m buffer 200 m buffer

DO Chl DO Chl DO Chl

ELEV -0.0708 0.0339 0.0172 0.0835 -0.0251 0.1373

SLOPE -0.0513 0.0525 0.1032 0.1209 0.0092 0.0839

SHDI 0.2045 0.4296 0.0205 0.0825 0.0607 0.0961
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density strengthens. Thus, the spatial patterns of land use in

the entire watershed and 200 m buffer zone dominate the

variations in water quality. Lee et al. (2009) suggested that

land use patterns affect the hydrological and chemical

runoff processes that carry pollutants and nutrients into

streams, rivers, reservoirs, and lakes, while the proportions

of certain land use types determine the pollutant and

nutrient loadings from watersheds. Water quality is likely

degraded when different land use types are greatly inter-

spersed and when the number of types increases at the

landscape level.

However, our results indicated that the major sources of

TN and TP are the non-point pollutions at the watershed

rather than at 50 and 200 m buffer scales. This finding is

similar to Nielsen et al. (2012). The correlations between

landscape metrics and concentrations of TN and TP indi-

cated that diversity and complexity of landscape pattern

were negative, which indicated that diversity and com-

plexity of landscape pattern could reduce pollution loading

into lakes. Increase of landscape diversity and complexity

at the watershed scale could improve the water quality of

lakes.

Water quality in Bay/lake is influenced by various fac-

tors such as water exchange with ocean/river and water

circulation effects, point-source pollutions, and non-point-

source pollutions. In our study area, three bays are all

isolated from West Sea by sluices and exchanged the water

at regular intervals. Furthermore, we did not carried out

sampling when the sea flooded in. Thus, the influence of

tide to water quality is relatively weak. In addition, the

non-point-source pollution has become the major source of

pollution with other conditions unchanged. We illustrated

that the dominant factors that impact on water quality

gradually varied with the expansion of buffer zones, which

change from topographical factors to landscape metrics.

The impact of human activity on water quality is obvious in

a watershed.

Scale Effect on Spatially Varying Relationships

As mentioned in the above discussion section, the scale

effect is embodied in the difference of dominant factors at

different buffers. On the other hand, the scale effect is also

embodied in the differences across effective buffer zones

for a given water quality parameter.

Guo et al. (2010) suggested that the impact of land use

on water quality could vary along the expansion of the

buffer size and that there should be an effective buffer zone

where the strongest linkage occurs between land use and

water quality. Study would support Guo’s hypothesis. As

shown in Fig. 5, the curves of R2 values from OLS models

are fluctuating at different buffers. It can help us to identify

the most effective buffer zone for water quality parameters.

The effective buffer zone to pH, DO, and Chl is within

watersheds, the weakest buffer zone is in the 50 m buffer

zone; the effective buffer zone for Sal, TOC, As, Fe, and Se

is the same as the watershed, the weakest buffer zone is in

the 200 m buffer zone; unlike the other water quality

parameters, the effective buffer zone to Hg is within the

50 m buffer zone. The results indicate that the watershed

scale is the effective spatial analysis scale for most of the

water quality parameters in the study area, which seems to

be consistent with the findings of previous studies in some

other watersheds (Lee et al. 2009; Pratt and Chang 2012;

Trolle et al. 2012). This is because the independent vari-

ables at the watershed scale could capture much more

information which can offer better explanations for varia-

tions in the water quality. However, the studies of Johnson

et al. (1997), Sawyer et al. (2004), and Huang et al. (2013)

found that land use pattern near water bodies is a better

predictor of water quality than in the other buffer zones.

Thus, we concluded that the effective buffer zone does

exist, but it varies in the different watersheds for given

water quality parameters.

Spatially Varying Relationships Along

the Urbanization Gradient

The heterogeneity of land use patterns in different urban

regions might contribute to weakness or even offset of

relationships between land use pattern and water quality.

Tu (2011) found that spatial diversity in the relationships

between land use and water quality parameters existed at

the watershed scale with different levels of urbanization in

eastern Massachusetts, USA.

In this study, the relationships between explanatory

variables and water quality parameters at different sam-

pling sites vary along the urbanization gradient, and clear

spatial differences in the relationships are observed

(Figs. 3, 4). The results obtained from GWR models show
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Fig. 5 Variation of R2 value obtained from OLS models at three

spatial analysis scales
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that both positive and negative relationships exist in the

study area. At 200 m buffer scale, higher mean subwater-

shed elevation and mean subwatershed slopes are related to

a poor water quality condition in highly urbanized areas,

while the relationship between mean subwatershed eleva-

tion and the water quality condition is not clear in less

urbanized areas. At the watershed scale, higher landscape

diversity is related to poor water quality conditions in

highly urbanized areas, while the relationship between

landscape diversity and water quality conditions is not

clear in less urbanized areas.

The results from GWR models indicated that the spa-

tially varying relationships between explanatory variables

and water quality parameters are more diversified and

complex in less urbanized areas than in highly urbanized

areas. This is presumably due to various spatial differences

for landscape characteristics in each subwatershed of the

less urbanized areas. So the less urbanized areas may have

complex ‘‘delivery’’ mechanisms for the pollutants. The

stronger or even adverse impacts of land use patterns on

water quality are usually observed in less urbanized

watersheds rather than in highly urbanized watersheds.

Conclusions

In this study, we examined the relationship between 12

explanatory variables and 15 water quality indicators in the

three coastal lake watersheds of Xiamen city, China. Both

OLS and GWR models were used in order to identify the

spatially varying relationships and scale effects along the

urbanization gradient. We concluded that (1) topographical

features of subwatersheds are identified as key variables in

near-lake zones, while landscape metrics are the dominant

factors of water quality in the whole watershed and 200 m

buffer zones. The impact of landscape metrics on water

quality gradually strengthens with the expansion of buffer

zones. At the watershed scale, increasing the landscape

diversity may improve the water quality of lakes. Land

uses are too weak to be considered as a strong influential

factor on water quality. (2) Study would support Guo’s

hypothesis (Guo et al. 2010), which confirms the existence

of effective buffer zones and their variations within dif-

ferent watersheds. (3) Spatially varying relationships

between explanatory variables and water quality parame-

ters are more diversified and complex in less urbanized

areas than in highly urbanized areas. So we should pay

more attention to the relationships between landscape

patterns and water quality in less urbanized areas. Inte-

grating more explanatory variables of watershed charac-

teristics can help us to identify the key pollution causes and

to establish more reasonable pollutant control policies for

urban water bodies.

This study proposed that adjustment of landscape pat-

terns in a watershed is the key measure to improve urban

lake water quality, and implementing effective buffer

zones are ideal measure to reduce pollutant load into lakes.
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