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Abstract The identification of disturbance thresholds is

important for many aspects of aquatic resource manage-

ment, including the establishment of regulatory criteria and

the identification of stream reference conditions. A number

of quantitative or model-based approaches can be used to

identify disturbance thresholds, including nonparametric

deviance reduction (NDR), piecewise regression (PR),

Bayesian changepoint (BCP), quantile piecewise constant

(QPC), and quantile piecewise linear (QPL) approaches.

These methods differ in their assumptions regarding the

nature of the disturbance-response variable relationship,

which can make selecting among the approaches difficult

for those unfamiliar with the methods. We first provide an

overview of each of the aforementioned approaches for

identifying disturbance thresholds, including the types of

data for which the approaches are intended. We then

compare threshold estimates from each of these approaches

to evaluate their robustness using both simulated and

empirical datasets. We found that most of the approaches

were accurate in estimating thresholds for datasets with

drastic changes in responses variable at the disturbance

threshold. Conversely, only the PR and QPL approaches

performed well for datasets with conditional mean or upper

boundary changes in response variables at the disturbance

threshold. The most robust threshold identification

approach appeared to be the QPL approach; this method

provided relatively accurate threshold estimates for most of

the evaluated datasets. Because accuracy of disturbance

threshold estimates can be affected by a number of factors,

we recommend that several steps be followed when

attempting to identify disturbance thresholds. These steps

include plotting and visually inspecting the disturbance-

response data, hypothesizing what mechanisms likely

generate the observed pattern in the disturbance-response

data, and plotting the estimated threshold in relation to the

disturbance-response data to ensure the appropriateness of

the threshold estimate.

Keywords Threshold � Land use � Nutrient � Stream �
Fish indicator

Introduction

Anthropogenic disturbances, such as urban development

within watersheds and industrial or municipal wastewater

generation, can lead to increased nutrient, sediment, and

toxicant inputs to aquatic ecosystems and can modify the

physicochemical, thermal, hydrologic, and morphologic

characteristics of streams (Paul and Meyer 2001; Wang and

Lyons 2003). Such disturbances also can negatively affect

the structure and function of biological communities (Karr

and Chu 1999; Wang and others 2003). Understanding

how aquatic communities respond to increasing levels of

disturbance is critical for many aspects of stream man-

agement, including assessing stream health, predicting

future risks, rehabilitating degraded waterbodies, and

establishing regulatory criteria.

When undisturbed, stream physicochemical, morpho-

logical, thermal, and hydrological conditions are in a
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dynamic equilibrium, with conditions varying around long-

term averages in response to fluctuations in large-scale

factors such as climate (Wang and others 2006a). Biolog-

ical communities in streams have evolved under such

conditions and consequently can be quite resilient to minor

disturbances. Under intensified disturbance, however,

ecosystem functions and biological communities can

become increasingly stressed until some critical threshold

is surpassed, whereupon drastic changes in stream condi-

tion can result from even slight changes in disturbance

levels (Fore and others 1996; Allan 2004; Wang and others

2006b; Groffman and others 2006). Stream ecologists,

managers, and policy makers are greatly interested in

identifying disturbance thresholds for establishing regula-

tory criteria for aquatic systems and for identifying stream

reference conditions against which stream degradation can

be judged (Wang and others 2007).

Disturbance thresholds are routinely identified through

visual inspection of data series plots (Schueler 1994; Booth

and Jackson 1997; Wang and others 2003) or by setting

thresholds equal to some percentile (e.g., 75th percentile) of

the observed disturbance levels (EPA 2000a, b). There are

perceived problems with both of these approaches. With the

visual inspection approach, different researchers may iden-

tify different thresholds for the same dataset due to the

subjective nature of the process. Identification of disturbance

thresholds by the percentile approach can be problematic

because of differing levels of disturbance among regions. A

region with relatively few disturbed waterbodies may require

a different percentile to accurately estimate the disturbance

threshold than a region with lots of disturbed waterbodies.

Several quantitative or model-based approaches to iden-

tifying thresholds have been proposed, and the interest in

using such methods is increasing. Proposed approaches

for identifying disturbance thresholds include piecewise

regression (Toms and Lesperance 2003), Bayesian change-

point analysis (Qian and others 2003, 2004), and

nonparametric deviance reduction assessment (Qian and

others 2003). Two other methods that, as far as we are aware,

have not been used to identify disturbance thresholds, but

which seem promising, are quantile piecewise constant and

quantile piecewise linear approaches (Chaudhuri and Loh

2002). Although each of the aforementioned methods can be

used to identify disturbance thresholds, they differ in their

assumptions regarding the nature of the disturbance-

response variable relationships, which can affect the accu-

racy of the threshold estimates. To those unfamiliar with

these methods, it may not be clear what assumptions are

made by the approaches regarding the disturbance-response

variable relationship or how results might vary if several of

the approaches were applied to the same set of data.

The purpose of this research was to present an overview

of each of the aforementioned approaches for identifying

disturbance thresholds, including the types of disturbance-

response variables datasets for which the methods are

appropriate. Additionally, using simulated and empirical

datasets, we compare threshold estimates among each of

these approaches as a way of evaluating the robustness of

the methods. We felt that this comparison would be ben-

eficial in selecting among the approaches as factors such as

small sample sizes and the occurrence of measurement

error may make it difficult to know what the underlying

disturbance-response variable relationship is for a particu-

lar set of data.

Methods

Overview of Techniques

Nonparametric deviance reduction (NDR) is an approach

for threshold identification that entails splitting a distur-

bance-response dataset into two groups at points along the

ordered disturbance variable gradient and calculating the

reduction in the response variable deviance that results

from the split (Qian and others 2003). For a continuous

variable, the deviance can be calculated as

D ¼
Xn

i¼1

yi � lð Þ2

where D is the deviance, n is the sample size, and l is the

mean of the n response variable observations (Qian and

others 2003). For categorical data, the deviance can be

calculated as

D ¼ �2
Xg

i¼1

ni log pið Þ

where g is the number of classes, pi is the proportion of

observations, and ni is the number of observations in class

i (Qian and others 2003). The split that results in the

largest reduction in the deviance is the disturbance

threshold estimate. According to Qian and others (2003),

the NDR approach to threshold identification is inspired

by tree-based modeling; the identified threshold is in fact

the first split of a regression tree model. The type of

disturbance-response threshold pattern assumed by the

NDR approach can be best described as a stair-step rela-

tionship in which there is a drastic change in response

variable characteristics at the disturbance threshold

(Fig. 1A). The NDR approach was used by Qian and

others (2003) to identify soil phosphorous thresholds

based on differences in macorinvertebrate communities.

Wang and others (2007) also used the NDR approach to

identify nutrient thresholds based on differences in fish

and macroinvertebrate occurrence.
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The Bayesian changepoint (BCP) approach for identify-

ing thresholds conceptually is similar to the NDR approach

in that it entails splitting a disturbance-response dataset into

two or more groups at points along the ordered disturbance

variable gradient. Thus, the BCP approach would also work

well for a stair-step disturbance-response threshold pattern.

Unlike the NDR approach, however, the BCP approach

requires explicit specification as the probability distribu-

tions of the groups that result from splitting the original

dataset. For example, if one assumes that the response

variable is distributed normally, then splitting the dataset

into two groups would result in the groups having normal

distributions with means and variances of l1 and r2
1 and l2

and r2
2: Alternatively, if one assumed that the response

variable has a binomial distribution, then splitting the

datasets into two groups would result in the groups having

binomial distributions with parameters p1, N1, p2, and N2,

where pi is the probability of success for group i (i = 1 or 2)

and Ni is the number of sites for the groups. Because the

BCP approach is based on Bayesian statistical principles,

prior distributions can be assigned to all model parameters,

including the threshold estimate, which can be useful when

previous research has been conducted on a particular dis-

turbance-response variable relationship. If prior research

has not been conducted, then uninformative priors can be

specified for the model parameters. Qian and others (2003)

used Bayesian changepoint analysis for both binomial and

normally distributed data to identify soil phosphorous

thresholds for macroinvertebrate communities. Qian and

others (2004) used Bayesian changepoint analysis for mul-

tinomial distributed data to identify soil phosphorous

thresholds for diatoms and macroinvertebrates.

Piecewise regression (PR) models are ‘‘broken-stick’’

models that consist of two or more separate regression lines

describing the conditional mean relationship between the

disturbance and response variables. The regression lines

are joined at unknown points along the ordered gradient of

the disturbance variable (Toms and Lesperance 2003). The

points where the regression lines are joined, which are

referred to as knots, breakpoints, or joinpoints, indicate

where there are changes in the conditional mean relation-

ship between the disturbance and response variables and

are interpreted as threshold estimates for the disturbance

variable. Mathematically, piecewise regression models can

be represented as

yi ¼
b10 þ b11xi; xi� a
b20 þ b21xi; xi [ a

�

where b10 and b11 are the regression intercept and slope,

respectively, for the first group of observation, b20 and b21

are the regression intercept and slope for the second group

of observations, and a is the threshold estimate. Continuity

among the pieces is imposed through the constraint

b10 + b11a = b20 + b21a (Seber and Wild 2003). To fit

piecewise regression models by nonlinear least squares, we

want to find estimates of b10, b11, b20, b21, and a such that

the quantity

Xn

i¼1

yi � l xi; b; að Þð Þ2

is minimized, with l(xi, b, a) representing the piecewise

conditional mean function from above. Fitting PR models
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Fig. 1 Illustration of three disturbance-response threshold patterns

that may be encountered in aquatic resources management. Top panel,

stair step; middle panel, condition mean; bottom panel, wedge-shaped
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can be difficult due to the occurrence of many local minima

in the objective function surface, which is one of the

challenges in using this method to identify disturbance

thresholds. The type of disturbance-response threshold

pattern assumed by the PR approach can be best described

as a conditional-mean relationship in which there is a

change in the conditional mean of the response variable per

unit increase at the disturbance threshold (Fig. 1B). Toms

and Lesperance (2003) used the PR approach to identify

forestry harvest thresholds for understory plant community

occurrence. Denoël and Ficetola (2007) used the PR

approach to identify landscape configuration thresholds for

newt conservation.

The quantile piecewise constant (QPC) is similar to the

NDR approach in that it is a tree-based method for iden-

tifying disturbance thresholds. The NDR and QPC

approaches differ, however, in terms of what characteris-

tics of the response variable are used to partition the

groups. With the QPC approach, trees are generated by

recursively dividing the data series such that there are

maximum differences in the sth quantiles of the response

variables. The use of response variable quantiles to gen-

erate regression trees is not new. Breiman and others

(1984) proposed constructing median regression trees as a

robust alternative to mean-based regression trees. Chau-

dhuri and Loh (2002) extended this concept to deal with a

broader range of quantiles. As with the NDR approach, the

QPC approach for identifying disturbance thresholds would

work well for a stair-step disturbance-response threshold

pattern. One advantage of identifying thresholds with the

QPC approach is that one can more fully explore the

characteristics of the response variable. For example,

quantile regression trees could be constructed based on the

50th, 75th, and 95th percentiles of the response variable

and the rate of change in threshold estimates could be

considered, which might lead to greater insight regarding

whether a disturbance threshold truly exists for a particular

dataset.

The quantile piecewise linear (QPL) approach for

identifying disturbance thresholds blends characteristics of

the QPC and PR approaches. Like the QPC approach, the

QPL approach is a regression tree method that uses quan-

tiles to partition groups. Whereas the QPC approach

generated trees by recursively partitioning a data series

such that each tree node has maximum differences in the

sth quantiles of the response variables, the QPL approach

partitions the data based on differences in the conditional

relationship between the disturbance and response vari-

ables at each tree, which is somewhat similar to the PR

approach for threshold identification. Unlike the PR

approach, however, the QPL approach is capable of iden-

tifying thresholds based on the lower and upper tails of

the conditional distribution of the response variables.

Mathematically, the QPL approach can be represented with

the same equation used to represent the PR approach.

Fitting of the b10, b11, b20, b21, and a parameters for the

QPL approach, however, entails minimization of the sum

Xn

i¼1

yi � n xi; b; að Þj j þ 2s� 1ð Þ yi � n xi; b; að Þð Þf g

where n(xi, b, a) is the piecewise conditional quantile

function (Chaudhuri and Loh 2002). Unlike the SR

approach, the QPL approach does not impose a continuity

restriction on the regression pieces; thus, in addition to

there being differences in regression slopes, there also may

be jumps or falls among the regression lines at the distur-

bance thresholds. There are several disturbance-response

variable relationships for which the QPL approach would

work well; one such pattern would be a wedge-shaped

dataset (Fig. 1C) in which there was a change in the upper

boundary relationship between the disturbance and the

response variables at some threshold. Wedge-shaped

datasets are believed to be common in aquatic resource

management (Cade and others 1999; Wang and others

2003, 2007) and result from response variables being

affected by several potentially limiting factors, only some

of which are measured, with the upper limits of the

response variable being set by one of the measured factors

(Cade and Noon 2003).

Data Simulation and Collection

We simulated datasets for the stair-step, conditional mean,

and wedge-shaped disturbance-response threshold patterns

described in the previous section to evaluate the accuracy

and robustness of the different threshold identification

approaches. Each simulated dataset consisted of 500

observations. We simulated a stair-step disturbance-

response threshold pattern by randomly drawing data from

uniform probability distributions. At disturbances\0.2, the

response variable could take on values between 0.0 and 1.0.

At disturbances[0.2, however, the response variable could

only take on values between 0.0 and 0.2. We simulated a

conditional-mean dataset using the equation

yi ¼
0.9,

1.20 - 1.5xi;

�
xi� 0:2
xi [ 0:2

In other words, the response variable was constant at

disturbances\0.2, but at disturbances[0.2 there was a 1.5

times decrease in the conditional mean of the response per

unit increase in the disturbance variables. Random errors

generated from a normal probability distribution with a

mean of 0 and a standard deviation of 0.1 were added to the

simulated data to reflect measurement uncertainty for both

the response and the disturbance variables. We simulated a

824 Environmental Management (2008) 42:821–832

123



wedge-shaped dataset using an interference interaction

model as described by Cade and others (1999). The wedge-

shaped dataset was such that there was a change in the

upper boundary relationship between the disturbance and

the response variables at disturbances [0.2 (Fig. 2).

The empirical datasets that we used to compares

threshold estimate among the different quantitative

approaches were collected as part of previous research

conducted in Michigan (Wang and others 2008) and Wis-

consin (Wang and others 2007). The main objectives for

the Michigan research were to identify stream reference

sites and to quantify human disturbance gradients for

streams within the state (Wang and others 2008). The

Michigan dataset consisted of measurements from 741

wadable streams (defined as streams with network water-

shed areas \1,600 km2 or stream orders \fifth order)

located throughout the state (Wang and others 2008).

Disturbance attributes measured for the streams included

road density (RDDENS; km/km2), population density

(POPDENS; people/km2), and percentage urban land use

(URBAN; %) in the watersheds upstream of the sites. Two

biological indicators of stream health were calculated for

the stream sites using fish assemblage data collected by

electrofishing: percentage of captured fish that were human

disturbance intolerant (INTOL; %) and an index of biotic

integrity (IBI) score. IBI scores for coldwater streams were

calculated using an IBI procedure developed for Wisconsin

coldwater streams (Lyons and others 1996); IBI scores for

warmwater streams were calculated using an IBI procedure

developed specifically for Michigan warmwater streams

(Wang and others 2008). For Michigan streams not con-

sidered either cold- or warmwater, both cold- and

warmwater IBI scores were calculated and the higher of the

two scores were assigned to the streams.

The main objectives for the Wisconsin study were to

examine the relationships between nutrient concentration

and fish community composition, and to evaluate the

importance of nutrient concentration in structuring fish

community composition relative to other physicochemical

variables (Wang and others 2007). Data from the Wisconsin

study were from 235 streams located throughout the state

(Wang and others 2007). Disturbance attributes measured

for the streams included total phosphorous (TP; mg/l),

dissolved phosphorus (DP; mg/l), and dissolved ammonia

nitrogen (NH4; mg/l) concentrations. Three biological

indicators of stream conditions were calculated from fish

assemblage data collected by electrofishing: percentage of

captured fish that were human disturbance intolerant

(INTOL; %), number of captured fish from the Salmonidae

family (SALMN), and IBI scores (Wang and others 2007).

IBI scores for Wisconsin coldwater streams were calculated

using the Wisconsin coldwater IBI procedure (Lyons and

others 1996), while IBI scores for warmwater streams were

calculated using a Wisconsin warmwater procedure (Lyons

1992). As was done for Michigan streams, both cold- and

warmwater IBI scores were calculated for streams not

considered either cold- or warmwater and the higher of the

two scores were assigned to streams.

Data Analysis

Disturbance thresholds for the simulated and empirical

datasets based on the NDR approach were calculated in R

(R Development Core Team 2007) using the ‘rpart’ pack-

age (Therneau and others 2007), which is an R package for

constructing classification and regression trees. We used
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middle panel, simulated condition mean dataset; bottom panel,
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the first split identified by the ‘rpart’ regression tree as our

NDR threshold estimate. Disturbance thresholds based on

the BCP approach were estimated in WinBUGS (Lunn and

others 2000), which uses Gibbs sampling to construct a

Markov chain for determining the joint posterior proba-

bility distribution for model parameters. We assumed that

we had no knowledge as to the location of disturbance

thresholds and thus used uniform distributions as threshold

priors when fitting all models. We used the median of the

marginal posterior distribution of the threshold parameter

as the threshold point estimate. For the simulated datasets,

we assumed that the response variables were distributed

normally. We also assumed that the IBI response variables

for the empirical datasets were distributed normally. We

assumed that the INTOL response variables from the

empirical datasets were distributed binomially. We

assumed a Poisson distribution for the SALMN response

variable for the Wisconsin empirical dataset.

Disturbance thresholds for the PR approach were esti-

mated in SAS (SAS Institute 2003) using the NLIN

procedure. The PR models were fit by grid-search, which is

a recommended approach for fitting these types of models

(Lerman 1980) because of the occurrence of many local

minima in the objective function surface. In some cases, it

was necessary to specify a very fine sampling grid in order

to keep the models from converging on local least-squares

minima. Other software packages also could have been

used to fit the PR models, including R through the ‘seg-

mented’ package (Muggeo 2003) or the Joinpoint software

program (National Cancer Institute 2005). We elected to

use SAS to fit the PR models to have better control over the

sampling grid during the model fitting process.

Disturbance thresholds for the QPC and QPL approa-

ches were estimated using GUIDE (Loh 2002, 2007),

which is a flexible program for fitting a wide range of

classification and regression tree models, including quan-

tile regression trees. As with the NDR approach, we

assumed that the first splits identified by the GUIDE pro-

gram were the QPC and QPL threshold estimates.

Disturbance thresholds for the QPC and QPL approaches

were estimated based on the 90th and 99th percentiles of

the response variables; thus, we were primarily interested

in exploring the benefits of considering upper boundary

differences in response variables as a way to identify dis-

turbance thresholds.

When estimating the disturbance thresholds for the

simulated datasets and the IBI response variables for the

Michigan and Wisconsin datasets by the NDR, PR, QPC,

and QPL approaches, the response variables were not

transformed. For the INTOL response variable, which was

expressed as a percentage, the response variable was

transformed using a logit transformation for the NDR, PR,

QPC, and QPL approaches. For the SALM response

variable in the Wisconsin dataset, which was expressed as a

count, the response variable was loge transformed prior to

analysis with the NDR, PR, QPC, and QPL approaches.

For the simulated datasets, we evaluated the performance

of the threshold identification methods by comparing actual

thresholds with the thresholds estimated by each of the

approaches. For the empirical datasets, because we did not

know whether a disturbance threshold existed for the data-

sets or where their exact locations were, we simply evaluated

consistency of threshold estimates among the approaches as

a way of gauging expected differences among the methods.

Results

Simulated Data

For the simulated stair-step dataset, the threshold estimates

from the NDR, BCP, QPC, and QPL approaches were very

close to the actual threshold for this dataset (Table 1). The

threshold estimates for the NDR and BCP approaches

equaled 0.20, while for the QPC and QPL approaches, the

threshold estimates equaled 0.21. The fact that the NDR,

BCP, and QPC approaches accurately estimated the

threshold was not particularly surprising given that these

approaches are intended for this type of disturbance-

response threshold dataset. The accuracy of the QPL

approach was slightly more surprising. The threshold esti-

mate for the PR approach was 0.41 for the simulated stair-

step dataset, indicating that this approach did not perform

well for this type of disturbance-response threshold pattern.

For the simulated conditional-mean dataset, the PR

approach yielded the most accurate threshold estimate

(Fig. 2), which again was not surprising given that the PR

approach was intended for this type of data. The threshold

estimate from the PR approach equaled 0.25, which was

only slightly greater than the actual threshold of 0.20. The

QPL 90% and 99% methods gave the next most accurate

threshold estimates; both methods gave threshold estimates

of 0.33. Based on plots of the threshold estimates in rela-

tion to the simulated data, it appeared that the accuracy of

the QPL 90% and 99% approaches was affected by the

addition of random errors to the simulated data series

(Fig. 1). It is possible that using a different quantile (e.g.,

50% or 80%) may have improved the accuracy of this

approach. The BCP, NDR, and QPC approaches gave the

least accurate threshold estimates for the conditional-mean

dataset; their threshold estimates ranged from 0.39 to 0.57

(Table 1).

For the simulated wedge-shaped dataset, the SR and

QPL 99% method yielded the most accurate threshold

estimates (Fig. 2). The threshold estimates from these

approaches equaled 0.19, which was just slightly less than

826 Environmental Management (2008) 42:821–832
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the actual threshold of 0.20. The QPL 90% approach was

the next most accurate method, provided a threshold esti-

mate of 0.32. As was found with the conditional mean

dataset, the BCP, NDR, and QPC approaches provided the

least accurate estimates, with thresholds ranging from 0.39

to 0.48 (Table 1).

Michigan Data

The disturbance thresholds identified for the INTOL-

RDDENS dataset ranged from 0.77 to 5.58 km/km2

(Table 1). The SR, BCP, QPL 90%, and QPL 90%

approaches yielded fairly similar threshold estimates (0.69

to 1.10 km/km2). The QPC 99% and QPL 99% also gave

similar threshold estimates (2.04–2.05 km/km2). Graphi-

cally, the INTOL-RDDENS dataset appeared to most

closely resemble a wedge-shaped dataset, in which case the

QPC 99% and QPL 99% likely did a better job at esti-

mating the disturbance thresholds (Fig. 2). For the INTOL-

POPDENS and INTOL-URBAN datasets, estimated dis-

turbance thresholds were similar across all of the

approaches. The estimated thresholds ranged from 12.50 to

16.73 people/km2 for the INTOL-POPDENS dataset and

ranged from 0.82% to 3.10% for the INTOL-URBAN

dataset (Table 1). Graphically, there appeared to be a fairly

drastic change in percentage intolerant fish at relatively low

human population densities and percentage urban land use

within watersheds, suggesting that these datasets were

more similar to a stair-step disturbance-response threshold

pattern. The similarity in the threshold estimates among the

approaches for the INTOL-POPDENS and INTOL-

URBAN datasets thus is reasonable based on the similarity

among the approaches for the simulated stair-step dataset.

For the IBI-RDDENS dataset, estimated disturbance

thresholds ranged from 0.34 to 1.81 km/km2 (Table 1). The

BCP and NRD approaches resulted in similar threshold

estimates (1.60–1.83 km/km2), as did the QPC 99% and

QPL 99% approaches (Table 1). The SR, QPC 90%, and

QPL 90% approaches gave threshold estimates ranging

from 0.34 to 0.73 km/km2, which was substantially lower

then the threshold estimates from the other approaches.

Graphically, the IBI-RDDENS most closely resembled a

Table 1 Estimated thresholds for the simulated, Michigan, and Wisconsin datasets

Variable NDR PR BCP QPC 90% QPC 99% QPL 90% QPL 99%

Simulated dataset

Stair-step 0.20 0.20 0.41 0.21 0.21 0.21 0.21

Conditional mean 0.48 0.39 0.25 0.53 0.57 0.33 0.33

Wedge-shaped 0.45 0.45 0.19 0.45 0.39 0.32 0.19

Michigan dataset

INTOL vs. ROAD 5.58 1.0 1.10 0.77 2.04 0.69 2.05

INTOL vs. POP 12.54 12.5 16.73 12.54 11.28 13.54 10.86

INTOL vs. URB 1.86 3.1 0.82 0.51 2.33 0.52 2.29

IBI vs. ROAD 1.81 1.6 0.34 0.73 1.16 0.69 1.16

IBI vs. POP 12.92 12.9 10.12 12.54 19.57 12.80 5.13

IBI vs. URB 0.12 3.5 0.13 0.98 1.51 0.98 1.51

Wisconsin dataset

IBI vs. TP 0.39 0.07 0.03 0.04 0.06 0.04 0.07

IBI vs. DP 0.30 0.05 0.07 0.06 0.04 0.02 0.04

IBI vs. NH4 0.02 0.02 0.03 0.02 0.04 0.07 0.04

INTOL vs. TP 0.16 0.10 0.08 0.11 0.06 0.11 0.06

INTOL vs. DP 0.01 0.04 0.10 0.07 0.04 0.07 0.04

INTOL vs. NH4 0.06 0.03 0.05 0.03 0.03 0.07 0.03

SALMN vs. TP 0.14 0.09 0.12 0.09 0.07 0.09 0.13

SALMN vs. DP 0.08 0.05 0.09 0.06 0.06 0.04 0.09

SALMN vs. NH4 0.05 0.02 0.03 0.02 0.03 0.03 0.05

Note. NDR—nonparametric deviance reduction; PR—piecewise regression; BCP—Bayesian change point; QPC 90%—quantile piecewise

constant (90th percentile); QPC 99%—quantile piecewise constant (99th percentile); QPL 99%—quantile piecewise linear (90th percentile);

QPL 99%—quantile piecewise linear (99th percentile); INTOL—percentage of captured fish that were human disturbance intolerant (%); IBI—

fish index of biotic integrity; SALMN—number of captured fish that belonged to the Salmonidae family; ROAD—watershed road density (km/

km2); POP—watershed population density (people/km2); URBAN—watershed urban land use (%); TP—total phosphorus (mg/l); DP—dissolved

phosphorous (mg/L); NH4—dissolved ammonia nitrogen (mg/l)

Environmental Management (2008) 42:821–832 827

123



wedge-shaped dataset, and the NDR, BCP, QPC 99%, or

QPL 99% yielded the most likely disturbance threshold

estimates (Fig. 3). For the IBI-POPDENS and IBI-URBAN

datasets, all approaches gave similar threshold estimates

(Table 1). For the IBI-POPDENS dataset, estimated

thresholds ranged from 5.13 to 12.92 people/km2

(Table 1). For the IBI-URBAN dataset, estimated thresh-

olds ranged from 0.12% to 3.50% (Table 1). Graphically,

all of these threshold estimates appeared reasonable given

the observed disturbance-response variable relationship.

Wisconsin Data

For both the IBI-TP and the IBI-DP datasets, the SR, BCP,

QPC, and QPL approaches gave very similar threshold

estimates, but the estimated threshold from the NDR

approach differed substantially from the other approaches.

For the IBI-TP dataset, the SR, BCP, QPC, and QPL

approaches had threshold estimates that ranged from 0.03

to 0.07 mg/l, while the NDR approach gave a threshold

estimate of 0.39 mg/l. For the IBI-DP dataset, the SR, BCP,

QPC, and QPL approaches gave threshold estimates that

ranged from 0.02 to 0.07 mg/l, while the NDR approach

gave a threshold estimate of 0.30 mg/l. For the IBI-NH4

dataset, the threshold estimates were similar among the

approaches, ranging from 0.02 to 0.07 mg/l. Graphically, it

appeared that there may have been multiple disturbance

thresholds for the IBI-TP, IBI-DP, and IBI-NH4 datasets,

which could explain the differences in the threshold esti-

mates among approaches (Fig. 4).

Fig. 3 Scatterplots of the

Michigan fish biological

indicator data in relation to the

human disturbance data.

Locations of the threshold

estimates from each of the

identification methods are also

shown on the plots. INTOL,

percentage of captured fish that

were human disturbance

intolerant (%); IBI, index of

biotic integrity scores;

RDDENS, watershed road

density (km/km2); POPDENS,

watershed population density

(people/km2); URBAN,

percentage urban land use

within watershed (%)
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There was very little difference in threshold estimates

among the NDR, PR, BCP, QPC, and QPL approaches

for the remaining Wisconsin datasets (Table 1). For the

INTOL response variable, estimated thresholds ranged

from 0.06 to 0.16 mg/L for total phosphorous, 0.01 to

0.10 mg/l for dissolved phosphorous, and 0.03 to 0.07

for dissolved ammonia nitrogen. For the INTOL-TP

dataset, it appeared that NDR approach might have

overestimated the disturbance threshold (Fig. 4). For the

INTOL-DP dataset, the NDR approach may have

underestimated the disturbance threshold, while the PR

approach may have overestimated the disturbance

threshold (Fig. 4). For the SALM-TP dataset, the BCP,

QPC 90%, QPC 99%, and QPL 90% approaches

appeared to yield the most reasonable threshold esti-

mates, while the NDR, PR, and QPL 99% approaches

appeared to slightly overestimate the disturbance

threshold. Again, such assessments are complicated by

the uncertainty as to whether thresholds actually existed

for any of these datasets.

Discussion

There are several advantages in using a quantitative

approach to identify disturbance thresholds. First, unlike

the simple percentile approach, many quantitative approa-

ches attempt to identify thresholds based on observable

changes in response variables, which helps ensure that

thresholds correspond to meaningful changes in ecosystem

function or biological communities. This property should

also help make the approaches relatively robust to natural

gradients in intensity of anthropogenic activities. Second,

model-based approaches for identifying disturbance

thresholds allow estimates of uncertainty in the threshold

estimates. For example, with the BCP approach, percentiles

of the threshold’s marginal posterior distribution can be

used to estimate Bayesian credibility intervals for the

threshold. With the PR approach, confidence intervals for

the estimated threshold can be obtained by bootstrapping or

through large-sample approximation. Bootstrapping has

also been used to calculate confidence intervals for tree-
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Fig. 4 Scatterplots of the

Wisconsin fish biological

indicator data in relation to

types and levels of nutrient.

Locations of the threshold

estimates from each of the

identification methods are also

shown on the plots. SALMN,

number of captured fish that

belonged to the Salmonidae

family; INTOL, percentage of

captured fish that were human

disturbance intolerant (%); IBI,

index of biotic integrity scores;

TP, total phosphorous

concentration (mg/l); DP,

dissolved phosphorous

concentration (mg/l); NH4,

dissolved ammonia nitrogen

concentration (mg/l)
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based approaches (Qian and others 2003), although caution

should be exercised in using bootstrapping with tree-based

models as coverage of confidence intervals may be too

narrow (Bühlmann and Yu 2002). Finally, quantitative

approaches for identifying disturbance thresholds allow

testing of the threshold’s statistical significance. For

example, a chi-square test can be used to test whether

thresholds identified by the NDR approach are statistically

significant. Both permutation hypothesis tests (Kim and

others 2000) and Bayes Information Criteria (BIC) model

selection (Tiwari and others 2005) can be used to test the

statistical significance of the threshold estimate with the PR

approach. Qian and others (2003) describe how to test the

significance of a threshold for the BCP approach.

The results of this study suggest that no single method

for identifying thresholds necessarily outperforms other

methods; accuracy of threshold estimates from the different

approaches depends largely on the observed data distribu-

tions. Most of the quantitative approaches that we tested

performed reasonably well for datasets with drastic chan-

ges in response variables, such as the simulated stair-step

dataset and INTOL-POPDENS, INTOL-URBAN, IBI-

URBAN, SALMN-NH4, INTOL-NH4, and IBI-NH4 data

pairs. In contrast, only a few of the approaches, such as the

PR and QPL methods, performed well for datasets with

gradual decreases in response variables under intensified

levels of disturbance, such as the simulated conditional-

mean and wedged-shape datasets and the INTOL-

RDDENS and IBI-RDDENS datasets. Again, it is impor-

tant to keep in mind that quantitative or model-based

approaches to identifying disturbance thresholds make

different assumptions regarding the nature of data distri-

bution, and it is important to pick an approach that assumes

a disturbance-response threshold pattern similar to the

dataset that is being evaluated. Based on our assessment,

one of the more robust approaches for identifying distur-

bance thresholds was the QPL approach. It performed well

for all simulated datasets and it appeared to yield reason-

able threshold estimates for many of the field-collected

datasets. Thus, if one is uncertain as to the exact nature of a

disturbance-response variable relationship, the QPL

approach may be a beneficial approach to try initially.

However, one can likely imagine a disturbance-response

threshold pattern for which the QPL approach would not

work well; as a result, it is important not to consider the

QPL approach as the ideal threshold identification method

that will yield valid estimates under all situations.

Regarding the BCP approach and its performance in

identifying thresholds, it is important to note that we lim-

ited our consideration of this method to what was described

by Qian and others (2003). However, the BCP approach is

in fact a far more versatile approach for identifying

thresholds because it requires specifying the probability

distributions for the different groups. While in this study

we limited our use of the approach to relatively simple

circumstances, in actuality it would be possible to use the

BCP approach to conduct a variety of analyses. For

example, the BCP approach could be used to identify

disturbance thresholds in a manner similar to the PR

approach. Doing so would only require specification of the

correct probability distributions for the groups. There are a

number of advantages in adopting a Bayesian framework to

identify thresholds. As previously mentioned, it allows

specification of priors for model parameters, which allows

analyses to build on results from previously completed

research. A Bayesian framework also results in a more

straightforward interpretation of the uncertainty associated

with parameters estimates. Perhaps the biggest difficulty in

using the BCP approach to identify disturbance thresholds

is that many aquatic resource managers may lack the

necessary analytic skills to implementing this threshold

identification approach. Additional development of the

BCP approach for identifying thresholds should be con-

ducted, and we encourage the development of a tool, such

as an R package, which would allow managers to use this

approach to identify thresholds under a number of possible

scenarios (e.g., conditional mean, wedge-shaped distur-

bance-response threshold patterns).

From our analysis of field-collected datasets, we found

that categorizing observed disturbance-response variable

patterns into particular distribution types (e.g., stair step,

conditional mean, wedge shaped) could be difficult, which

is perhaps the biggest challenge in selecting a threshold

identification approach. Factors such as small sample sizes,

measurement error, and lack of contrast among disturbance

measurements can result in dramatically different distur-

bance-response variable patterns. Because of this, we

recommend the following steps be used to identify envi-

ronmental thresholds. First, the disturbance-response

variable relationship should be plotted and visually

inspected to help ensure that the dataset includes obser-

vation across a broad spectrum of disturbance levels. If the

dataset do not span a wide range of disturbance levels, data

collection may need to be expanded to additional areas.

Visual inspection of plots will also help analysts evaluate

whether a single threshold or, possibly, multiple thresholds

occur within a dataset. Second, analysts should hypothesize

what the relationship between the disturbance and the

response variable is. Visual inspection of the plots gener-

ated in the previous step will also help with this task, but

analysts should not restrict this evaluation to data plots

only. Rather, analysts should attempt to incorporate

mechanistic understanding of disturbance-response vari-

able relationships. Third, when estimating disturbance

thresholds, analysts should consider methods that generate

estimates of uncertainty concerning threshold locations and
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that allow significance testing regarding the occurrence

of environmental thresholds. If using a quantile-based

approach, analysts should consider estimating thresholds

using multiple percentiles and calculating the rate of

change in threshold estimates for these different percen-

tiles. Finally, the location of the threshold estimates should

be plotted along with the disturbance-response data to

assist in evaluating whether the identified threshold makes

sense given the observed data and what already is known

about the disturbance and response variable relationship.

Based on the results from this last step, it may be necessary

to return to an earlier step (e.g., additional data collection,

choosing a different threshold identification method) in the

process to ensure that the identified thresholds are

appropriate.
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