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Abstract Run-off containing increased concentrations of

sediment, nutrients, and pesticides from land-based

anthropogenic activities is a significant influence on water

quality and the ecologic conditions of nearshore areas of

the Great Barrier Reef World Heritage Area, Australia. The

potential and actual impacts of increased pollutant con-

centrations range from bioaccumulation of contaminants

and decreased photosynthetic capacity to major shifts in

community structure and health of mangrove, coral reef,

and seagrass ecosystems. A detailed conceptual model

underpins and illustrates the links between the main

anthropogenic pressures or threats (dry-land cattle grazing

and intensive sugar cane cropping) and the production of

key contaminants or stressors of Great Barrier Reef water

quality. The conceptual model also includes longer-term

threats to Great Barrier Reef water quality and ecosystem

health, such as global climate change, that will potentially

confound direct model interrelationships. The model rec-

ognises that system-specific attributes, such as monsoonal

wind direction, rainfall intensity, and flood plume resi-

dence times, will act as system filters to modify the effects

of any water-quality system stressor. The model also

summarises key ecosystem responses in ecosystem health

that can be monitored through indicators at catchment,

riverine, and marine scales. Selected indicators include

riverine and marine water quality, inshore coral reef and

seagrass status, and biota pollutant burdens. These indica-

tors have been adopted as components of a long-term

monitoring program to enable assessment of the effec-

tiveness of change in catchment-management practices in

improving Great Barrier Reef (and adjacent catchment)

water quality under the Queensland and Australian Gov-

ernments’ Reef Water Quality Protection Plan.
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The Great Barrier Reef is the largest reef system in the

world and extends for >2,300 km along the northern

Queensland (Australian) continental shelf (Fig. 1). It con-

sists of an archipelagic complex of >2,900 reefs and covers

an area of approximately 225,000 km2. A majority of the

reefs are situated on the mid- and outer-continental shelf

and are located 40 to 150 km from the mainland. A sig-

nificant number of reefs (approximately 750) also exist at

‘‘inshore’’ or ‘‘nearshore’’ sites within 40 km of the

Queensland coast (Furnas and Brodie 1996).

The Great Barrier Reef was listed on the World Heritage

Register in 1981 in recognition of its outstanding universal

value (Lucas and others 1997). Protection of the ecologic

systems of the Great Barrier Reef World Heritage Area

from water-sourced pollutants is recognised as being one

the critical issues for management of the World Heritage

Area (Haynes and others 2001). Evidence derived from
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modelling and sampling of relatively undisturbed catch-

ments of far-northern Cape York indicate that the export of

sediments and nutrients from southern disturbed catch-

ments to the marine environment has increased

dramatically during the last 150 years (Furnas 2003;

Table 1). There is also increasing evidence concerning the

contamination of coastal ecosystems with a range of

modern pesticide residues (Haynes and others 2000a;

Mitchell and others 2005; Shaw and M}uller 2005). Deg-

radation of inshore reefs of the Great Barrier Reef has been

associated with increased terrestrial runoff of pollutants in

the region between Port Douglas and the Whitsun-

days (Udy and others 1999; van Woesik and others 1999;

Fabricius and De’ath 2004; Fabricius and others 2005;

Devantier and others 2006), and damage to both inshore

and outer-shelf reefs of the central Great Barrier Reef from

Crown of Thorns Starfish (Acanthaster planci) outbreaks

has been attributed to increased terrestrial nutrient runoff

(Brodie and others 2005).

Pollutant loads originating from land-based runoff are

predicted to continue to increase, and there is an immediate

need to improve current land-management regimes to

minimise this runoff (Brodie and others 2001a; Brodie and

Mitchell 2005). A key strategy to affect this change is the

recently released Reef Water Quality Protection Plan

(Anon 2003). This plan builds on existing government

policies and industry and community initiatives and aims to

assist in halting and reversing the decline in the quality of

water entering the Great Barrier Reef. This will help in the

overall protection of the ecological health of the Great

Barrier Reef as well as the health of its adjacent catchments

and waterways. The Reef Water Quality Protection Plan

compliments previous policy that advocated water-quality

targets for land-based pollutants discharged to the marine

environment (Brodie and others 2001b).

This article summarises the impacts of key water-quality

parameters on tropical marine ecosystems and provides a

framework on which a long-term water-quality and eco-

system monitoring program has been developed. The

monitoring program is described in detail in a companion

article (Haynes and others 2007).

Conceptual Models and Monitoring Programs

Conceptual models are a key component in the development

of an integrated monitoring program to assess trends in the

ecologic status of a system. They assist in identifying the

main environmental stressors or threats, appropriate indi-

cators of ecosystem health, and relations or linkages between

the stressors and the indicators. Additionally, conceptual

models are an important tool for communicating how com-

plex ecologic systems work, the ecologic and physico-

chemical interactions between the various components, and

which components and linkages might be targeted by spe-

cific management actions (Jorgensen 1988; Newton and

others 1998; Gross 2003; Downs and others 2005).

In the Great Barrier Reef, conceptual models have been

used to underpin process models that describe connections in

the paddock-to-reef continuum, e.g., models describing

catchments (the SedNet/ANNEX model system, McKergow

and others 2005), in risk assessments (Greiner and others

2005), in models describing estuaries and coastal waters

(Robson and others 2006) and in models describing reef

waters (Wolanski and others 2003, 2004; Wolanski and

De’ath 2005; Wooldridge and others 2006). Elsewhere,
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Fig. 1 The Great Barrier Reef and its catchments

Table 1 Estimates of change in pollutant inputs to the Great Barrier

Reef (from Furnas 2003)

Inputs Pre-18500s annual
pollutant flux estimate

Current annual pollutant
flux estimate

Sediment 1–5 million ton 14 million tons/y

Phosphorus 2,400 tons/y 7,000 tons/y

Nitrogen 23,000 tons/y 43,000 tons/y
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other models of land and coral reef interactions have been

developed using so-called fuzzy logic (Meesters and others

1998; Ruitenbeek and others 1999), but these have only

addressed coral reef impacts and fail to include the catch-

ment drivers of environmental effects.

Development of the Reef Water Quality Protection Plan

monitoring program was assisted by three conceptual

models that encapsulate the risks posed to reef ecosystems

from catchment (agricultural and urban) development:

1. A broad-scale system conceptual model (Fig. 2) shows

the relations between contaminant generation in the

Great Barrier Reef catchment, transport of these

contaminants through the catchment by way of local

rivers and their estuaries, and their effects on water

quality and ecosystem health in the Great Barrier Reef

lagoon. In particular, the model illustrates the concep-

tual links between dry-land grazing and intensive

cropping activity (pressures and threats) and the

production and dispersion of key water-quality con-

taminants (stressors). Also shown are the ecosystem

attributes (indicators) that can be used to monitor

ecosystem health at the catchment, riverine, and

marine scales. This conceptual model also includes

reference to longer-term threats to Great Barrier Reef

water quality and ecosystem health, such as global

climate change, that will potentially confound direct

model relationships. The model also recognise that

system-specific attributes, such as monsoonal wind

direction, rainfall intensity and flood plume residence

times, will act as system filters to modify the effects of

the stressors (Cloern 2001; Devlin and others 2003). In

particular, concentrations of suspended sediments,

particulate and dissolved nutrients, and pesticide

residues in rivers flowing into the Great Barrier Reef

region reach peak values during flood events, which

are typically associated with monsoonal rainfall and

cyclonic activity (Devlin and others 2003), and the

movement of river-discharged pollutants in the marine

environment is modified by wind direction and inten-

sity and wave action.

2. A process-based conceptual model (Fig. 3) illustrates

the movement and partitioning of contaminants

between the water column, marine sediments, and

marine biota. The physical and biogeochemic proper-

ties of contaminants determine the ways in which they

disperse in the environment (Bewers and others 1992).

This model has been used to ensure that the appropri-

ate ecosystem compartments were sampled and that

information was collected on parameters that

could influence the biogeochemical properties of the

contaminants.

3. A risk-based conceptual model identifies the regions of

the Great Barrier Reef lagoon that are at high risk from

contaminants transported from the catchment. In

particular, adjacent land use and distance and direction

of a reef or other ecosystem from the mouth of the

major rivers both have significant influence on the

potential risk posed by land runoff (Devlin and others

2003; Greiner and others 2005). This latter model has

been most useful in optimising sample collection sites

and is fully discussed in the second article in this series

(Haynes and others 2007).

Catchment Activity (Pressures and Threats)

The coastal region adjoining the Great Barrier Reef World

Heritage Area is divided into 40 wet and dry tropical

catchments draining directly into the Great Barrier Reef
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lagoon (Gilbert and Brodie 2001). Most catchments are

small (<10,000 km2); however, the Burdekin and Fitzroy

River catchments (133,000 and 143,000 km2, respectively)

are among the largest in Australia (Fig. 1). Human activity

in these catchments is the primary determinant of altered

water quality that is ultimately transmitted to the Great

Barrier Reef World Heritage Area.

Although the region remains relatively sparsely popu-

lated, extensive land clearing has occurred during the last

200 years since European settlement, and approximately

80% of the land area of catchments adjacent to the Great

Barrier Reef World Heritage Area now supports some form

of agricultural production (Gilbert and Brodie 2001). Graz-

ing of beef cattle is the largest single land use in Great Barrier

Reef catchments, and this has resulted in extensive clearance

of forests for conversion to pasture (Gilbert and Brodie

2001). Intensive cropping, mainly of sugarcane but with

considerable areas of horticulture and cotton and grain crops,

is a significant agricultural industry in the catchments

between Bundaberg and Port Douglas. Agriculture and

urban expansion have resulted in the loss of substantial areas

of coastal wetlands in north Queensland, particularly during

the last 50 years (Johnston and others 1998; Finlayson and

Lukacs 2003). This has significant ramifications for coastal

habitat and local water quality, with the loss of nutrient

removal and transformation mechanisms, sediment and

toxicant retention, flood flow alteration, and disruption of

groundwater discharge and recharge (Lukacs 1998).

Catchment-Based Contaminants (Stressors)

The three major classes of water-quality contaminants

increased by human activities in Great Barrier Reef

catchments are sediments, nutrients, and pesticides. Land

clearing and removal of woodlands for the establishment of

grazing pasture has greatly increased soil erosion and

sediment loss to local watercourses. Sediment loss is

exacerbated by chronic overgrazing during drought periods

(McIvor and others 1995). Sugarcane cultivation was also

a major source of eroded material under conventional

cultivation practices. However, recent management

improvements in the sugarcane industry, including green

cane harvesting and trash blanketing and minimum tillage,

have decreased soil losses by approximately 80% (Ray-

ment 2003). Trash and stubble retention in other cropping

systems (cotton, bananas) has also decreased erosion rates

(Faithful and Finlayson 2005).

Sugarcane cultivation requires substantial use of inor-

ganic fertiliser, particularly nitrogen. It is estimated that
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only 35% of the fertiliser applied to sugarcane (typically

150–200 kg/ha/y nitrogen fertiliser) is used by the crop in

the year of application (Reghenzani and others 1996); the

remainder is lost to the environment (to the atmosphere by

way of volatilisation and denitrification and to groundwa-

ters and runoff) or stored in the soil, including trash storage

(Freeny and others 1994; Bohl and others 2000; Rasiah and

Armour 2001). The proportion lost to each compartment

depends on climate, weather, soil type, cultivation prac-

tices, fertiliser-application practices, and hydrology

(McShane and others 1993; Reghenzani and others 1996).

The use of pesticides (herbicides, insecticides, and

fungicides) in Great Barrier Reef catchments has increased

progressively in areas under crop cultivation (Hamilton and

Haydon 1996). There has also been a shift from the use of

organochlorine-based compounds such as DDT, dieldrin,

and heptachlor as they were progressively restricted and

banned for use between 1973 and 1994. Modern use

includes triazine, organophosphate, and urea-based pesti-

cides. Organochlorines and modern agricultural pesticides

are widely distributed in Queensland catchment soils,

irrigation drains, and river sediments and in the nearshore

marine environment adjacent to human activity (Haynes

and others 2000a 2006; Müller and others 2000; McMahon

and others 2005; Mitchell and others 2005; Shaw and

Müller 2005).

Contaminant Transport (Vectors and Filters)

Land-based contaminants generated in the catchment from

various land uses are transported to waterways by way of

surface runoff and subsurface water flows. Most of this

transport occurs during high-intensity rainfall events, when

the contaminants are released from the landscape in major

flow events (Mitchell and others 1997, 2005). The loads of

sediment, nutrients, and pesticides discharged from any

one Great Barrier Reef river are proportional to rainfall, to

the volume of freshwater discharged during the wet season,

and to the extent and type of agricultural land in the

catchment (Brodie and Mitchell 2005).

Estimates of runoff from Great Barrier Reef catchments

show that most of the sediment (approximately 85%) and

nutrients (approximately 65% for N and 78% for P) orig-

inate from the southern ‘‘dry’’ catchments that are

dominated by grazing, such as the Burdekin and Fitzroy

Rivers, where the larger volumes of discharge from these

rivers are characterised by greater loads of sediments and

nutrients per unit volume of discharge. However, wet

tropical catchments (e.g., Tully and Johnstone) have the

highest sediment and nutrient loss rates per unit of catch-

ment area, reflecting their higher local rainfall and erosion

rates (Brodie and Mitchell 2005).

Waters discharged in flooding rivers form plumes that

extend out into the nearshore marine environment of the

Great Barrier Reef (Brodie and Furnas 1996; Devlin and

others 2001). Mapping and coring of sediments in the Great

Barrier Reef lagoon shows that most of the eroded sedi-

ment transported by these river systems is deposited within

10 km of the coast (Orpin and others 1999; Lambeck and

Woolfe 2000; Neil and others 2002; Orpin and others 2004;

Pfitzner and others 2004). Under normal conditions (south-

easterly trade winds), these flood plumes flow northward

from the river mouth for distances of up to 200 km but are

usually constrained to within 20 km of the coast. Dissolved

materials, including dissolved nutrients, are transported

hundreds of kilometers in flood plumes both offshore and

more commonly alongshore (Devlin and others 2001;

Devlin and Brodie 2005; Rohde and others 2006). Major

floodwaters and their associated dissolved nutrients origi-

nating from large rivers, such as the Burdekin River, may

extend northward for up to 450 km (Wolanski and van

Senden 1983; Devlin and Brodie 2005). Nutrient concen-

trations in these river plumes can be up to 100 times higher

than seawater concentrations in nonflood periods (Devlin

and others 2001; Devlin and Brodie 2005; Rohde and

others 2006). Inshore ecosystems may be exposed to plume

waters and their entrained contaminants for periods of days

to weeks during the wet season (Devlin and Brodie 2005).

Secondary transport of contaminants, especially partic-

ulate matter, occurs in the period after flood plumes

dissipate as wind-generated turbulence and currents

resuspend inshore sediments and transport them northward

along the coast (Orpin and others 1999). Ultimately, most

of the fine sediment in inshore waters is trapped in north-

ward-facing bays (e.g., Broad Sound, Bowling Green Bay,

Princess Charlotte Bay) (Orpin and others 2004).

Impacts of Contaminants in the Marine Environment

(Indicators)

Three of the major ecosystem types that make up the Great

Barrier Reef system (mangroves, seagrass, and corals) are

affected differently by water-column contaminants. Man-

groves are believed to be affected by herbicides, whereas

corals and seagrasses are more affected by increases in

suspended sediment and nutrient concentrations as well as

by herbicide exposure (Bell and Duke 2005; Duke and

others 2005; Fabricius 2005; Jones 2005; Negri and others

2005; Waycott and others 2005).

Nutrient Impact Indicators

The waters of the Great Barrier Reef are characterised by

high ambient light intensities and water temperatures. As a
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consequence, available nutrients are rapidly taken up by

phytoplankton and converted to organic matter, particularly

in interreef regions (Furnas and others 2005). These recy-

cled and transformed nutrients largely determine the

(nutrient) water-quality status of these waters and any

impacts on benthic organisms. Phytoplankton biomass

measured as chlorophyll a concentrations are two to three

times higher in inshore waters of the central and southern

Great Barrier Reef compared with areas in the northern

Great Barrier Reef (Brodie and others 2007). This is

believed to reflect their enhanced nutrient status, which is

attributed to terrestrial nutrient discharge from rivers in the

central and southern Great Barrier Reef associated with

agricultural activities.

Fabricius (2005) and Schaffelke and others (2005) have

recently summarised the ways in which increased nutrient

concentrations may result in a range of impacts on coral

and seagrass communities. Macro-and micro-algal blooms

are produced by higher nutrient concentrations, and macro-

algae may overgrow coral structures, outcompeting polyps

for space and shading coral colonies to critical levels

(Hunter and Evans 1995; Stimson and others 2001).

Excessive nutrients may also depress coralline algal growth

and inhibit reef consolidation (Björk and others 1995).

Chronic exposure to increased concentrations of dissolved

inorganic nutrients, such as nitrate, can interfere with the

relationship between corals and their zoooxanthellae and

result in decreased calcification rates (Stambler and others

1994; Marubini and Atkinson 1999; Ferrier-Pages and

others 2001). This may weaken the coral skeleton and

make coral colonies more susceptible to damage from

storm action (Stambler and others 1991; Ferrier-Pages and

others 2000). Boring organisms may bioerode coral reef

structures at higher rates under increased nutrient condi-

tions, further decreasing overall reef consolidation (Kiene

and Hutchings 1994).

Additionally, there is evidence suggesting that coral

reproduction and recruitment are highly sensitive to

increased nutrient concentrations (Wittenberg and Hunte

1992; Hunte and Wittenberg 1992; Fabricius 2005), with

increased concentrations of dissolved organic nutrients

inhibiting coral reproductive processes, such as egg size,

fertilisation rates, and embryo formation (Ward and Har-

rison 2000; Koop and others 2001; Cox and Ward 2002).

Increased concentrations of particulate organic matter can

inhibit all aspects of coral recruitment, including egg fer-

tilization, larval development, larval survival and larval

settlement and metamorphosis (Gilmour 1999).

Increased nutrient concentrations can also be deleterious

to seagrasses by lowering ambient light levels by way of

proliferation of local light-absorbing algae (including

water-column phytoplankton, benthic macro algae, or algal

epiphytes) and decreasing the photosynthetic capability of

seagrass (Walker and others 1999). Increased nutrient

concentrations can also cause deleterious disruptions to

nitrogen and phosphorus metabolism in seagrass (Touchette

and Burkholder 2000), although Australian seagrasses are

generally regarded as being nitrogen - limited.

Increased concentrations of nutrients sourced from

agricultural activities have been linked to an expansion in

the range of seagrasses (e.g., Syringodium isoetifolium)

around Green Island since the 1970s (Udy and others

1999). Also, data collected along the north Queensland

coast suggest that the tissue nutrient status of the seagrass

Halophila ovalis has increased during a 20-year period in

concert with increasing fertiliser use by the local agricul-

tural industry and that this seagrass species may be a good

bioindicator of local nutrient conditions (Mellors and oth-

ers 2005).

Sediment Impact Indicators

Evidence exists that high, chronic inputs of terrestrial

sediment and organic matter lead to a range of coral and

seagrass impacts through shading, smothering, burial, dis-

ruption of recruitment, or deleterious community shifts

(Dodge and others 1974; Longstaff and Dennison 1999). In

contrast, mangroves often respond to increased sediment

concentrations through expansion of their range, particu-

larly in areas where river flows and flushing are decreased

(Schaffelke and others 2005).

Regardless of whether such sediment loads are natural

or the result of human activity, excessive sediment loads

can impact corals through smothering when particles settle

out (Riegl 1995; Philipp and Fabricius 2003), and by

decreasing light availability, coral photosynthesis, and

growth (from increased water turbidity) (Rogers 1990;

Kleypas 1996; Anthony 1999). Sediments with a higher

content of organic matter are more damaging than ‘‘clean’’

sediments in a smothering situation (Weber and others

2006). Sediment impacts on corals can include changes to

coral population structure and colony size, altered growth

forms, and decreased growth and survival (Rogers 1990;

Anthony 2000; Anthony and Fabricius 2000). In particular,

low concentrations of sediments and dissolved mucopoly-

saccharides released by bacteria and other microorganisms

can coat corals (Fabricius and Wolanski 2000; Fabricius

and others 2003). This creates a metabolic energy drain

when the coral removes the aggregate that may decrease

reproductive capacity and the organism’s capacity to grow

(Stafford-Smith 1993; Riegl and Branch 1995; Telesnicki

and Goldberg 1995). Early life–stage corals are at most risk

from accumulated sediment through prevention of larval

settlement (Hodgson 1990; Gilmour 1999) or burial of the

juvenile recruit (Babcock and Davies 1991; Babcock and
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Mundy 1996; Fabricius and others 2003). Sedimentation is

also suspected to adversely impact abundance of crustose

coraline algae and influence the development of algal turfs.

Both of these effects will compromise coral recruitment

(Birrell and others 2005; Harrington and others 2005).

Increases in suspended sediment concentrations and

water-column turbidity cause a decrease in water-column

light penetration that can adversely affect seagrass photo-

synthesis rates (Longstaff and Dennison 1999). Seagrass

losses of over 1,000 km2 were observed in Hervey Bay,

southern Queensland in 1992 and again in 1999 during

cyclone and storm events (Preen and others 1995; Camp-

bell and McKenzie 2004). Seagrass loss was attributed to

river turbidity decreasing the amount of light reaching the

plants as well as to physical removal of seagrass by cyclone

and storm action (Preen and others 1995; Longstaff and

others 1999).

Pesticide Impact Indicators

The herbicides diuron, simazine and, atrazine are com-

monly found in flood plumes, coastal waters, and sediments

in the Great Barrier Reef region (Haynes and others 2000a;

McMahon and others 2005; Rohde and others 2005; Shaw

and Muller 2005). More than half of the commonly used

herbicides such as diuron exert a toxic effect by restricting

electron transfer within the photosynthetic chloroplast of

the target plant or alga, leading to a decrease in photosyn-

thetic efficiency (Jones 2005). Because most adult corals

rely on symbiotic dinoflagellates to provide additional

energy requirements for colony functioning, this may result

in a loss of fitness in the host coral polyp (Jones and others

2003). Under extreme conditions, high concentrations of the

herbicide, or long periods of exposure to it will result in

expulsion of the symbiont (bleaching) from the adult coral

(Jones and Kerswell 2003; Jones and others 2003).

Laboratory trials have indicated that these types of

herbicides are unlikely to affect fertilisation or metamor-

phosis in corals at the concentrations likely to be present in

inshore Great Barrier Reef waters (Negri and others 2005).

However, they may depress photosynthetic activity in

juvenile and adult coral symbionts (Negri and others 2005).

Laboratory experiments have also shown that low con-

centrations (3 lg l�1) of diuron will inhibit photosynthesis

in crustose coralline algae (Harrington and others 2005).

Photosynthetic inhibition is increased when coralline algae

are exposed to both diuron and fine sediment (Harrington

and others 2005). This may compromise coral recruitment

because crustose coralline algae are a critical settlement

inducer for many coral species (Heyward and Negri 1999).

A limited number of laboratory trials have investigated

the toxicity of diuron and other herbicides to tropical

seagrass species (Haynes and others 2000b; Ralph 2000).

Effective quantum yield as a measure of photosynthetic

activity in Halophila ovalis and Zostera capricorni was

found to be significantly depressed by diuron concentra-

tions between 0.1 and 100 lg L�1 after 5 days of laboratory

herbicide exposure, whereas effective quantum yield in

Cymodocia serrulata was only significantly decreased in

plants exposed to higher diuron concentrations (10 and 100

lg L�1). H. ovalis was similarly affected by the herbicides

atrazine and simazine. These results indicate that exposure

to herbicide concentrations present in inshore Queensland

sediments present a potential risk to seagrass functioning,

particularly during flood conditions (Haynes and others

2000a; McMahon and others 2005). Laboratory trials have

also indicated the relative sensitivity of some mangrove

species to diuron exposure compared with other commonly

used herbicides (Bell and Duke 2005; Schaffelke and

others 2005).

Confounding Stressors and Impacts

The quantity and subsequent impacts of land sourced

sediment, nutrient, and pesticide discharges to tropical

marine ecosystems may also be fundamentally influenced

and/or confounded by a range of indirect water-quality

threats. These indirect threats include global climate

change, river floods, cyclonic weather systems, and

increased capacity for reef algal growth caused by loss of

algal grazers, particularly grazing fish (Hughes 1994).

These confounding impacts may all be interlinked (Pan-

dolfi and others 2003; Bellwood and others 2004). The

expected primary consequence of global climate change is

increased seawater temperatures and changes in ocean

chemistry (Hughes and others 2003). Increased seawater

temperatures increase the frequency and intensity of coral

bleaching as well as the incidence of coral disease (Hoegh-

Guldberg 1999; Hughes and others 2003). The recognised

biological effects of bleaching are decreased coral growth

and calcification, decreased reproductive output, and

increased mortality (Goreau and MacFarlane 1990).

Increased carbon dioxide concentrations in seawater

enhance the dissolution of calcium carbonate. This may

decrease calcification rates in coral species and lead to

changes in coral community structure, reproduction, and

overall functioning in coral reef environments (Kleypas

and others 1999). The frequency and intensity of tropical

cyclones and the damage they induce is also expected to

increase as a consequence of global warming with the long-

term elevation of seawater temperatures (Hughes and oth-

ers 2003). The resultant increase in frequency and intensity

of river flooding and freshwater inundation of inshore

marine waters will result in increased coral mortality,
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particularly when this coincides with periods of increased

seawater temperatures and coral bleaching (Berkelmans

and Oliver 1999). The impacts of these stressors must be

quantified in a monitoring program to accurately partition

the influence of land-sourced pollutants on the reef systems

being monitored.

The Reef Water Quality Protection Plan Monitoring

Program

The implementation of a long-term water-quality and

ecosystem monitoring program based on the conceptual

models previously described is central to assessment of the

success of land management strategies initiated under the

Reef Water Quality Protection Plan (Anon 2003) to

improve reef water quality. This Great Barrier Reef mar-

ine-monitoring program is comprised of four

complimentary subprograms. River-mouth water quality

monitoring is carried out to assesses long-term change in

the concentrations and loads of the major land-sourced

pollutants (including sediments, nutrients, and pesticides)

discharged to the marine environment that have the

potential to adversely affect coral reef, mangrove, and

seagrass ecosystems. Water-quality monitoring is also

carried out in the inshore waters (i.e., within 10 to 15 kms

of the coast) of the Great Barrier Reef to assess changes

with time in concentrations of similar water-quality indi-

cators. Monitoring of the major marine ecosystem types

most at risk from land-based pollutants (e.g., intertidal

seagrass beds and inshore coral reefs) is carried out to

ensure that any change in their status is identified. Coral

and seagrass monitoring sites are associated with the

inshore marine water-quality monitoring program to enable

correlation with concurrently collected water-quality

information. In the fourth subprogram, mud crab (Scylla

serrata) pollutant concentrations are assessed to monitor

the accumulation of specific pesticide and polyaromatic

hydrocarbon concentrations in inshore marine biota.

Information on weather and sea conditions—including

rainfall, seawater temperature and salinity, and river dis-

charge volumes—is also collected to help with

interpretation of biological data. In addition, two further

subprograms are carried out in the catchments of the Great

Barrier Reef. Change in the export of pollutants correlated

with land-management change at the property scale are

measured through intensive, small-scale monitoring pro-

grams, whereas at the subcatchment scale, monitoring of

pollutants in event flows allows identification of primary

source areas of pollutants and their correlation with dif-

ferent land-management practices. The Reef Water Quality

Protection Plan monitoring program is described in detail

in a companion article (Haynes and others 2007).

Conclusion

The conceptual models presented here are the first attempt

to produce a comprehensive model of catchment to reef

pollution and ecological response. This has enabled the

construction of numeric models based on these articulated

relationships. Quantification of the concepts is now being

attempted by way of a number of approaches, including the

use of Bayesian Belief Networks (e.g., Thomas and others

2005), fine-scale process models (Robson and others 2006),

and empirical process approaches (e.g., Wooldridge and

other 2006).
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