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ABSTRACT / The objective of this article is to apply fuzzy set
and interpolation techniques for land suitability evaluation for
maize in Northern Ghana. Land suitability indices were com-
puted at point observations using the Semantic Import (Sl)

model, whereas spatial interpolation was carried out by block
kriging. Interpolated land suitability shows a high correlation
(R? = 0.87) with observed maize yield at the village level. This
indicates that land suitability is closely related to maize yield in
the study area. Membership functions were further used to
assess the degree of limitation of land characteristics to
maize. Sixty percent of the data has membership functions
ranging from 0.23 for ECEC to 1.00 for drainage. ECEC, or-
ganic C, and clay are the major constraints to maize yield. The
use of the fuzzy technique is helpful for land suitability evalua-
tion, especially in applications in which subtle differences in
soil quality are of a major interest. Furthermore, the use of
kriging that exploits spatial variability of data is useful in pro-
ducing continuous land suitability maps and in estimating un-
certainties associated with predicted land suitability indices.

Land evaluation is carried out to estimate the suit-
ability of land for a specific use such as arable farming
or irrigated agriculture. Land evaluation can be carried
out on the basis of biophysical parameters and/or so-
cioeconomic conditions of an area (FAO 1976). Bio-
physical factors tend to remain stable, unlike socioeco-
nomic factors that are affected by social, economic, and
political settings (Dent and Young 1981; Triantafilis
and others 2001). Thus, physical land suitability evalu-
ation is a prerequisite for land-use planning and devel-
opment (Sys 1985; Van Ranst and others 1996). It
provides information on the constraints and opportu-
nities for the use of the land and therefore guides
decisions on optimal utilization of land resources (FAO
1983).

The skillful planning of land resources has become
a major issue for rural development in Africa. This
concern results from increasing pressure on land re-
sources as a result of population growth. Gradual
change from small-scale subsistence farming to market-
based agricultural production has further contributed
to increased pressure on land (Sankoh and others
2001). Until recently, conventional soil survey alone
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could provide the basic data needed for land-use plan-
ning and rural development. However, with increasing
competition for land among various land uses owing to
increase in population, there is a need for spatial infor-
mation technology such as remote sensing to aid data
collection and the use of geographical information
systems (GISs) to efficiently handle natural resource
data. Such technology is also needed to compute land
suitability and model scenarios for land-use planning.
Sankoh and others (2001) provide a recent review of
spatial information technology for land suitability anal-
ysis, including the prospects of using the technology for
community development in Africa.

Several land evaluation approaches exist (Rossiter
1996). Van Lanen (1991), cited in Triantafilis and oth-
ers (2001), identified three general types, namely the
qualitative approach, the parametric approach, and
process-based models (Table 1). Land evaluation pro-
cedures focus increasingly on the use of quantitative
procedures to enhance the qualitative interpretation of
land resource surveys. Crucial to the estimation of land
suitability is the matching of land characteristics with
the requirements of envisaged land utilization types.
With the exception of modeling, most of these proce-
dures are highly subjective. For instance, additive or
multiplicative land indices involve classification of land
characteristics into severity levels based on arbitrary
cutoff points (Rossiter 1996). Although the need to
make value judgment in land evaluation is inevitable

© 2004 Springer-Verlag New York, LLC



227

Fuzzy-Based Land Evaluation

Table 1. Three general approaches of land evaluation based on Van Lanen (1991), as cited in Triantafilis and

others (2001)

Approach Description Examples

Qualitative Evaluation of physical suitability is based on expert Land Capability, Classification
judgment and described in qualitative terms such as (Klingebiel and Montgomerry
not suitable, marginally suitable, and highly suitable. 1961) and FAO Land Suitability,

Evaluation (FAO 1976)
Parametric Land suitability is assessed on a continuous scale using Storie Index Rating (Storie 1933)

multiplicative or additive models (indices)

Process-based models

erosion, or water movement

Land performance is assessed on the basis of models
representing specific processes such as crop yield,

World Food Studies; WOFOST
(Boogaard and others 1998)

(Davidson and others 1994), it is important to utilize
techniques that minimize human bias to improve the
pragmatic value of land evaluation results.

The objective of this study is to apply fuzzy set and
interpolation techniques for land suitability evaluation
and relate it to maize yield in Northern Ghana. Yields of
maize have experienced a decline in the last few years
in Ghana. This phenomenon calls for efforts to explain
the downward trend and make recommendations for
improvement. Yield information is of interest to users
(farmers) and policy makers (government officials)
who are responsible for rural development. Most often,
climate is attributed as the major cause of declining
maize productivity (e.g., CIMMYT 1988). However, with
adequate rainfall, optimum yields cannot be attained
without favorable soil conditions (Ogunkunle 1993).
The study stresses the importance of good soil manage-
ment in areas with suboptimal rainfall for crop produc-
tion.

Methods

The Study Area

The study area of about 4800 km?® (Figure 1) is
located in the Guinea savannah of the northern region
of Ghana. It lies between latitudes 8° 50" and 10° N, and
stretches between longitudes 0°30' to 1°30" W. Subsis-
tence agriculture is the major means of livelihood in
the area. Major crops grown include maize, sorghum,
yam, rice, groundnut, soybeans, and vegetables. The
rainfall pattern is unimodal, with an annual amount of
about 1100 mm. The topography is generally slightly
undulating, with mean slope of about 7% (Braimoh
and Vlek 2004). The main geological formation is the
Voltaian, which comprises sandstone with a character-
istic layer of ironstone at shallow depths. Three broad
groups of soil can be distinguished in the area: the
reddish well-drained upland sandy loams on the Upper

Voltaian sandstones, the yellowish imperfectly drained
sandy loams on slopes close to the valley bottoms, and
in situ alluvial soils of the valley floors. The soils are
classified as Rhodic Paleustalf, Typic Plinthaqualf, and
Typic Plinthaquept (Soil Survey Staff 1994).

Data Sources

Soil and land characteristics data were obtained
from a study on factors affecting land-use change under
the Sustainable Water Use Under Changing Land-Use
in the Volta Basin (GLOWA) project at the Center for
Development Research in Bonn. A total of 120 soil
samples (data points) were collected along transects
following the road network of the study area (Figure 1).
Sampling intervals varied from about 0.5 to 1.5 km
along a transect, depending on changes in land cover
along transects. Six soil variables influencing maize
yield were selected for each data point based on the
opinion of experts at the Savannah Agricultural Re-
search Institute (SARI), Tamale in Northern Ghana,
and a preliminary study on land-use/land-cover change
(Braimoh and Vlek 2004). Summary statistics of the
dataset are presented in Table 2. Other relevant site-
specific data including household farm sizes and maize
yields collected from a socioeconomic survey of the
area were obtained from the database as well (Table 3).
The farmers interviewed were selected following a mul-
tistage (cluster) sampling procedure. The survey cov-
ered 237 households in 20 villages.

Computation of Land Suitability Indices

In this study, we will focus on the use of fuzzy logic.
Fuzzy logic (Zadeh 1965) is based on imprecise reason-
ing, leading to fuzzy sets and other fuzzy techniques. A
fuzzy set may be used for classification of objects where
classes do not have rigidly defined boundaries (Zadeh
1965). If Zrepresents a space of objects or phenomena,
then the fuzzy set A is the set of ordered pairs
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Table 2. Descriptive statistics for land characteristics (N = 120)

Land characteristics” Minimum Maximum Mean CV? (%)
Effective Cation Exchange Capacity (ECEC) 0.84 17.02 4.42 19
(cmol/kg)

Organic C (%) 0.50 2.38 1.22 32
pH (1:2.5 CaCl,) 4.20 6.30 5.16 9
Sand (%) 13.08 89.08 53.06 26
Clay (%) 0.72 23.60 7.18 62
Drainage 3 1.62 42
“Drainage as an ordinal variable was coded as 1 = not limiting, 2 = moderately limiting, and 3 = limiting.

’CV = coefficient of variance.

Table 3. Average maize yield for villages (1999-2001)

No. Village Yield
1 Kpenjiyili 1.07 (tha™)
2 Attakura 0.77
3 Jukuku 1.16
4 Wuripe 1.20
5 Kpegunayili 0.95
6 Digma 1.17
7 Sakpaluwa 0.77
8 Voguyili 0.64
9 Libga 0.61

10 Jana 0.72

11 Ziong 0.54

12 Dabogushei 0.67

13 Sanga 0.79

14 Kotingli 0.77

15 Yong 0.73

16 Sabegu 0.66

17 Saakuba 0.89

18 Dalun 0.71

19 Kpachi 0.68

20 Cheyohi 0.65

A={z,ps(2)}, VzeZ, (1)

where 4 (Z) is the membership function of any ze Zto
A. Tt indicates the degree of membership of z in A by
taking values within the interval [0,1], with O represent-
ing nonmembership and 1 representing full member-
ship of the set (Burrough and McDonnell 2000). Inter-
mediate values (0 < p, < 1) reflect the degree of
closeness of an entity to the defined class. The Boolean
logic, on the other hand, has two crisp possibilities of
membership: none (pu, = 0) and full (n, = 1). Exam-
ples of fuzzy logic application in land evaluation in-
clude Burrough and others (1992), Tang and Van
Ranst (1992), Davidson and others (1994), and Groen-
emans and others (1997).

Fuzzy logic is preferred to Boolean logic for land
evaluation because fuzzy techniques lead to estimates

for land-use suitability on a continuous scale and can,
therefore, be more informative than the Boolean
(crisp) technique. Second, fuzzy techniques capture
the continuous variation of soil properties, which is the
raison d'etre of land suitability evaluation. Finally, land
evaluation based on fuzzy sets helps to deal with vague-
ness or imprecision characterizing natural resource
data (Burrough 1989).

Land suitability evaluation using fuzzy set techniques
consists of three steps: generation of membership val-
ues for the land characteristics, determination of
weights for the membership values, and combination of
weighted membership values to produce a joint mem-
bership value or land suitability index, /. Membership
values were generated for six land characteristics con-
sidered to be important to agricultural land use in the
study area using the Semantic Import (SI) model (Fig-
ure 2). The basic symmetric SI model is of the form

p..A(Z):m for0=z=aq, (2)

where A is the land characteristic set; a is the parameter
that determines the shape of the function, ¢ (also called
the ideal point or standard index) is the value of the
property z at the center of the set and « is the maxi-
mum value that z can take. The lower crossover point
(LCP) and the upper crossover point (UCP), corre-
sponding to ¢; and ¢, respectively in Figure 2a repre-
sent situations where the value of the land characteris-
tics is marginal for a specified purpose. At these points,
ma (2) = 0.5. The choice of crossover points specified
for fuzzy membership computation could be based on
data, expert knowledge, or conventionally imposed cri-
teria (McBratney and Odeh 1997). If only the lower or
upper limits of a class are of practical relevance to the
envisaged land utilization type, asymmetric variants of
the SI model are used. For instance, for land charac-
teristic “organic C” in which higher values contribute
positively to crop yield, a suitable model is
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Figure 2. Different member-
ship functions and parameters
used to determine membership
values of land characteristics
(Burrough and McDonnell
2000).
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Land

characteristics Rank

Justification

Organic C 6

Soil organic matter is crucial to the supply of N and cations. Soil organic C shows

significant correlations with N, P, K, Ca, Mg, clay, ECEC, base saturation, and pH
(Braimoh and Vlek 2004). Analysis of variance also shows that organic C contents of
cultivated and virgin lands are highly significant at P < 0.01 (Braimoh and Vlek 2004).
Fugger (1999) also shows that low SOM mineralization was the main cause of low maize
yield in an area around Tamale.

ECEC 5

Cation-exchange capacity determines the nutrient-holding capacity of the soil. It was rated

next to organic C, as most of the ECEC are contributed by organic colloids (Fugger

1999).
Drainage 4

Drainage influences air and water regimes of the soil. Good drainage leads to deeper

rooting of maize, whereas water logging may reduce the uptake of cations. Drainage
problems are usually encountered in Northern Ghana due to excess water in the rainy
season. Thus, drainage was rated higher than other physical land characteristics.

pH 3

Nutrient availability in the soils is strongly dependent on pH (Braimoh and Vlek 2004).

For instance, an increase in pH through liming may lead to an increase in CEC.
Although the optimum pH for maize is about 5.5, it is able to tolerate a wide range of
pH between 4.5 and 8.0 (Sys 1985). Only about 11% (i.e., 13 out of 120 samples) of the
soils have pH below 4.5, whereas the pH of the remaining 89% samples ranges from 4.5
to 6.3. Thus, pH cannot be taken as a major constraint to maize cultivation in the study

area.

Clay 2

Owing to the sandy nature of the soils, clay content plays a crucial role in nutrient supply.

Clay is significantly correlated (P < 0.05) with organic C and N in the study area
(Braimoh and Vlek 2004). This suggests that contents of organic C and N in the soils
are clay dependent. Clay is also important in moisture retention for crop growth.

Sand 1

Soils of the study area are coarse textured with sand content > 80%; water-holding

capacity and soil organic matter are usually low (Overseas Development Institute 1999).
Cultivation of such soils often leads to rapid soil degradation, as there is no sufficient
organic matter to bind soil aggregates together.

walz) = T+ {(i=c— 1 forO0<z<c¢+ 1, (3)
where ¢, is the width of the transition zone (Figure
2b). The transition zone for an asymmetric model
refers to the absolute difference between the value of
the property at the ideal and crossover points. A
similar model [Equation (4)] applies to a land char-
acteristic for which lower values contribute positively
to crop yield:

1
MA(Z) = 1+ {(Z —c+ t?)/t‘z}?

for0<z<c— 1 (4)

where & is the width of the transition zone (Figure 2c).

An overall land suitability index (/) at each sampling
point was computed using the convex combination
rule, which is a linear weighted combination of mem-
bership values of each characteristic A;:

1= D opma, (5)

i=1

where w; are the weights of the memberships values ., .

Equation (5) shows that the choice of weights ; is
crucial in the determination of the overall land suitabil-
ity index. Davidson and others (1994) suggest that this
choice should be based on data and knowledge of the
relative importance of differentiating land characteris-
tics to crop growth. In this study, simple ranking was
used to rate land characteristics from 1 (least impor-
tant) to 6 (most important). This ranking (Table 4) was
based on the literature (e.g., Sys 1985, Fugger 1999),
expert opinion and a preliminary study on the impor-
tance of the land characteristics to agricultural land-use
in the study area (Braimoh and Vlek 2004). To ensure
that weights sum up to unity, the rank 7; of a land
characteristics A; was converted to weight o, using the
formula

7
0, =

i (6)
Membership functions and weights for land character-
istics used in the study are presented in Table 5. An
asymmetric function I (Equation 3) was used for pH, as
the pH values range from 4.2 to 6.3 in the study area
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Table 5. Land characteristics and membership function parameters

Membership function parameters”

Land characteristics Model type LCP c ucp a 4 b Weight
pH (1:2.5 CaCl,) Asymmetric I [Equation (3)] 4.5 5.5 — — 1.0 — 0.14
ECEC (cmol/kg) Asymmetric I [Equation (3)] 2 16 — — 14 — 0.23
Organic carbon (%) Asymmetric I [Equation (3)] 0.8 1.5 — — 0.7 — 0.29
Sand (%) Symmetric [Equation (2)] 20 40 60 .0005 — — 0.05
Clay (%) Symmetric [Equation (2)] 15 25 35 .01 — — 0.10
Drainage Asymmetric II [Equation (4)] — 1 3 — — 2 0.19

“Adapted from Sys (1985).

Table 6. Summary statistics for membership values of land characteristics and land suitability index (N = 120)

Statistics “‘pH RECEC p“organic (] Hsand p“clay p“drainagc I

Mean 0.56 0.48 0.24 0.66 0.27 0.64 0.45
Standard deviation 0.31 0.27 0.08 0.25 0.14 0.36 0.14
CV (%) 55 57 34 38 52 57 31

Minimum 0.22 0.18 0.19 0.14 0.14 0.20 0.23
Maximum 1 1 1 1 1 1 0.89
(Table 2). Thus, the LCP was the most important in y = by + bx, (7)

defining the membership function. Similarly, organic C
and ECEC were fitted to asymmetric function I model,
as high amounts contribute positively to crop growth.
The LCP was set at 0.8% and 2 cmol/kg, respectively.
Asymmetric function II (Equation 4) was applied to
drainage, with optimum drainage class set at 1. Thus,
the UCP was the most crucial in fitting the membership
function. The symmetric model (Equation 2) was ap-
plied to sand and clay, as the optimum texture for
maize range from clay loam to loam (Sys 1985). Thus,
both the UCP and LCP were crucial in fitting the
membership functions.

Spatial Interpolation and Validation

Spatial interpolation of land suitability indices was
carried out by kriging (Chiles and Delfiner 1999). Or-
dinary point kriging provides the best linear unbiased
predictor at point locations under the assumption that
the mean of the quantity being predicted is constant,
whereas ordinary block kriging provides average pre-
dictions of land suitability for areas of land. In kriging,
the first step is to describe the spatial structure of the
land suitability index using the variogram (Chilés and
Delfiner 1999). Second, parameter estimates of the
variogram were used to predict land suitability. Land
suitability indices were predicted for block sizes of 5 km
X b km being the average size of agricultural area of the
villages.

For validation, linear regression was used to relate
observed yield with I:

where yis average village yield, xis the interpolated /by
block kriging, b, is the intercept, and b, is the slope of
the regression line.

Results

Statistics of membership values and land suitability
index are presented in Table 6. The membership value
indicates the degree of suitability at a given location
with respect to a given land characteristic. For instance,
a membership value of 0.4 for a land characteristic
indicates that suitability of the location is 40% of the
ideal requirement of the land characteristic. It also
implies that the location has a limitation of 60% with
respect to the land characteristic. Average membership
value for organic C is the lowest (0.24), whereas that of
sand is the highest (0.66). Membership value of organic
C also has the lowest coefficient of variation (34%),
whereas coefficients of variation of membership values
for drainage and ECEC are the highest (57%).

Cumulative distribution functions (cdf’s) for mem-
bership values of land characteristics are shown in Fig-
ure 3. The shapes and positions of the cdf’s are differ-
ent for the land characteristics. Sixty percent of the
data has ppepe < 0.23 (Figure 3a), indicating that
ECEC limitation for maize production is up to 77% for
60% of the data. Similarly, 60% of the data has p,; <
0.47 and po,ganic ¢ < 0.42. Thus, for chemical proper-
ties, the limitation for maize production is in the order
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Figure 3. Cumulative probability distribu-

tion of membership values of land charac-
teristics: (a) chemical properties; (b) phys-
ical properties.

ECEC > organic C > pH. For physical properties, 60%
of the data has p,q < 0.78, pg,y < 0.25, and pypainage
< 1 (Figure 3b). Thus, the severity of the limitation of
physical properties for maize production is in the order
clay > sand > drainage.

Table 6 indicates moderate variability in / (CV =
31%). The mean [is 0.45, indicating that average land
suitability for maize is 45% of ideal suitability. Figure 4
shows that 70% of the data is less than 50% of the ideal
land suitability. Low values of I reveal low intrinsic
quality of the soil, and also explain why maize yields are
very low (Table 3).

The spatial variability in 7is indicated by a variogram
(Figure 5). The fitted variogram is a linear model with
a spatially uncorrelated variation (nugget variance) of
0.0137. The nugget variance accounts for about 64% of
total variation. This suggests microvariability in / that
could not be detected at the scale of sampling; that is,
there are large homogenous areas that are longer than
the lags of the variogram. Future studies could consider
reducing the sampling interval, as well as increasing the
intensity of sampling to reduce random variation at

0.8

0.6

Membership value

0.4 1.0

small intervals and also account for short-scale variabil-
ity in 1. The monotonically increasing section of the
variogram represents the continuous (i.e., spatially de-
pendent) component of the variation. The unbounded
spatial dependence structure of I suggests that the
range (i.e., the distance beyond which there is no spa-
tial correlation) is larger than the sampled area. This
may be due to the fact that the area is predominantly
characterized by a single geology (mainly sandstone).
The spatial pattern of I (Figure 6a) shows that land
suitability for maize increases from the north to the
south of the landscape. This map may be used to iden-
tify the proportion of land area below or above a given
1. The map could also be used to plan land improve-
ment and fertilizer input distribution. Finally, the map
could be further combined with other information to
develop an environmental sensitivity index for environ-
mental management. The map of the standard devia-
tion of I (Figure 6b) shows uncertainty in / estimates.
Higher values are observed in areas where there are few
observations (sampling points). Thus, increasing the
sampling intensity would lead to reduction in the esti-
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mation variance and hence improve the confidence in
estimates of 1.

The relationship between the observed maize yield
and the interpolated I is shown in Figure 7. Both re-
gression coefficients are significant (Table 7), and the
coefficient of determination is high. This shows that
land suitability is closely related to maize yield in the
study area.

Figure 5. Variogram of land suit-
ability index.

Discussion and Conclusion

Fuzzy logic is an attempt to extend the concept of
continuous variation of soil properties from the geo-
graphic space to the attribute space (Burrough and
others 1997). Boolean logic works on the principle that
a site can belong to one and only one suitability class
(e.g., suitable or not suitable). In reality however, there
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Table 7. Estimated regression coefficients b, and b
of maize yield and interpolated land suitability indices

t probability
bo S.E. (by) by S.E. (b)) bo by
-0.64 0.13 320  0.29 <001 <0.01

is usually an overlap of classes in the attribute space.
The admission of the idea of partial overlap of classes is
expressed in terms of membership functions using
fuzzy logic. This approach was used by Lark and Bolam
(1997) to address both uncertainty in prediction and
uncertainty in interpretation of soil data for sugar beet
production.

Another alternative to Boolean logic is a probabilis-
tic approach using indicator kriging (e.g., Stein 1998).
Indicator kriging can be used to estimate the condi-
tional probability that a threshold of land characteristic
A; is exceeded at a given location s, given the observa-
tions A,(s;), ... , A,(s,), their measurement locations,
and their mutual dependence structure. Again, the
conditional probability that a given location is suitable
for a given land utilization type (i.e., the threshold is
exceeded) assumes the crisp definition of the land-use
requirement. Thus, probabilistic approaches may ob-
scure information on the relative suitability to use with
respect to land characteristic A; Therefore, fuzzy set
techniques are to be preferred to Boolean and proba-
bilistic techniques.

The use of inverse methods (Triantafilis and others
2001) as an alternative to the Semantic Import (SI)
models in fitting membership functions for land char-
acteristics is, in principle, possible. A major issue con-

0.60  Figure 7. Relationship between maize yield
and land suitability index.

cerns assessing a priori, the degree of limitation posed
by each land characteristic to the envisaged utilization
type. The degree of limitation of a land characteristic
could then be converted to limitation score [e.g. fol-
lowing the method of Zhang (1989) cited in Triantafilis
and others (2001)]. Finally, the membership value of
land characteristic A could be computed using

pa(2) = e, (8)

where s is the limitation score of land characteristic A.

The approach we present in this study does not
incorporate management decision. The output of the
evaluation is simply a land suitability index map with
suitability for maize ranging from 0 to 1. Use of the land
for maize or any other crop remains a management
decision. Similarly, the fact that an area has a relatively
high suitability index does not automatically imply that
high yields would be obtained if, for instance, the timing
of planting or fertilizer application was wrong. A major
advantage of dynamic simulation models over the ap-
proach presented here is that dynamic simulation models
can incorporate management decisions such as fertilizer
application, time of planting, water application, and so
forth in predicting crop yields. However, a major problem
in utilizing such models in land evaluation is the require-
ment for large amounts of data.

A basic assumption of ordinary kriging used in this
study is that the mean of [ is constant over the area.
There are situations, however, where such intrinsic sta-
tionarity assumption may not be met (e.g., when an
area has distinct physiographic regions that affect agri-
cultural land suitability). In such situations, other tech-
niques of interpolation such as external drift kriging,
which incorporates global trend estimation as part of



the solution (Chiles and Delfiner 1999), would be more
appropriate.

Extrapolation of the land evaluation results to other
parts of Ghana would, in principle, be possible. A major
issue concerns the extension of spatial variability infor-
mation. Possibly, a Bayesian approach could be useful
here, in which a prior variogram estimation is done for
data from one specific study area, as in this article, and
a Bayesian updating takes place for the new area [e.g.,
following suggestions in Cui and others (1995)]. This
then leads to a Bayesian form of kriging, but avoids
abundant data collection to have to fully estimate var-
iogram parameters in a new region again.

The use of fuzzy and interpolation techniques in this
study produced land suitability for maize in a continu-
ous scale. Land suitability indices are low, reflecting low
inherent fertility of the soils. High correlation between
maize yield and land suitability offers an explanation
for the downward trend in maize yields in the study
area. Our approach is well applicable for applications
in which subtle differences in soil quality are of a major
interest. Using the SI model, we were able to evaluate
the limitations of land characteristics to maize in the
study area. Major constraints to maize production are
ECEC, organic C, and clay content. Emphasis should be
placed on soil management techniques that conserve
organic matter and enhance nutrient and water-hold-
ing capacity of the soil. The use of fuzzy techniques for
land suitability evaluation thus proved valuable for
identifying major constraints to crop production and
strategies for overcoming them.

Acknowledgments

The German Federal Ministry for Education and
Research and the Ministry for Schools, Science and
Research of Northrhine Westphalia provided funding
for the GLOWA project. The corresponding author
also thanks the German Academic Exchange Services
(DAAD) for funding his research studies. We sincerely
appreciate the comments of Ayo Ogunkunle, Alex
McBratney, and Anita Veihe on an earlier draft of this
manuscript.

Literature Cited

Boogaard, H. L., C. A. van Diepen, R. P. Rétter, J. M. C. A.
Cabrera, and H. H. van Laar. 1998. User’s guide for the
WOFOST 7.1 crop growth simulation model and WOFOST
Control Center 1.5. Technical Document 52. DLO-Winand
Staring Centre, Wageningen, The Netherlands 144 pp.

Braimoh, A. K., and P. L. G. Vlek. 2004. Impacts of land-cover
change on soil properties in Northern Ghanna, Land deg-
radation and Development,, 15: 65-74.

237

Fuzzy-Based Land Evaluation

Burrough, P. A. 1989. Fuzzy mathematical methods for soil
survey and land evaluation. Journal of Soil Science
40:477-492.

Burrough, P. A., and R. A. McDonnell. 2000. Principles of
geographical information systems. Oxford University Press,
New York.

Burrough, P. A., R. A. McMillian, and W. Van Deursen. 1992.
Fuzzy classification methods for determining land suitability
from soil profile observation and topography. Journal of Soil
Science 43:193-210.

Burrough, P. A., P. F. M. van Gaans, and R. Hootsmans. 1997.
Continuous classification in soil survey: spatial correlation,
confusion and boundaries. Geoderma 77:115-135.

Chiles, J. P., and P. Delfiner. 1999. Geostatistics: Modeling
spatial uncertainty. Wiley—Interscience, New York.

CIMMYT. 1988. Maize production regions in the developing
countries. International Maize and Wheat Improvement
Center (CIMMYT), El Batan, Mexico.

Cui, H, A. Stein, and D. E. Myers. 1995. Extension of spatial
information, Bayesian kriging and updating of prior vario-
gram parameters. Environmetrics 6:373-384.

Davidson, D. A., S. P. Theocharopoulos, and R. J. Bloksma.
1994. A land evaluation project in Greece using GIS and
based on Boolean and fuzzy set methodologies. International
Journal of Geographic Information Systems 8(4):369-384.

Dent, D., and A. Young. 1981. Soil survey and land evaluation.
George Allen and Unwin Limited, London.

FAO. 1976. A framework for land evaluation. Soils Bulletin 32.
FAO, Rome, 72 p.

FAO. 1983. Guidelines: Land evaluation for rainfed agricul-
ture. Soils Bulletin 52. FAO, Rome, 237 pp.

Fugger, W.-D. 1999. Evaluation of potential indicators for soil
quality in Savanna soils in Northern Ghana. Ph.D. thesis,
Georg-August University, Gottingen.

Groenemans, R., E. van Ranst, and E. Kerre. 1997. Fuzzy
relational calculus in land evaluation. Geoderma 77:283-298.

Klingebiel, A. A., and P. H. Montgomery. 1961. Land capabil-
ity classification. Soil Conservation Service Handbook 210.
U.S. Department of Agriculture, Washington, DC.

Lark, R. M., and H. C. Bolam. 1997. Uncertainty in prediction
and interpretation of spatially variable data on soils. Geo-
derma 77:263-282.

McBratney, A. B., and I. O. A. Odeh. 1997. Application of
fuzzy sets in soil science: Fuzzy logic, fuzzy measurement
and fuzzy decisions. Geoderma 77:85-113.

Ogunkunle, A. O. 1993. Soil in land suitability evaluation: an
example with oil palm in Nigeria. Soil Use and Management
9:37-42.

Overseas Development Institute 1999. Rethinking natural re-
sources degradation in semi-arid sub-Saharan Africa: The
case of semi-arid Ghana. ODI Rural Policy and Environ-
ment Group, London, UK.

Rossiter, D. G. 1996. A theoretical framework for land evalu-
ation. Geoderma 72:165-190.

Runge-Metzger, A., and L. Diehl. 1993. Farm household sys-
tems in Northern Ghana. Verlag Josef Margraf, Weiker-
sheim, Germany.



238

A. K. Braimoh and others

Sankoh, O.A. Braimoh, A. K., Kamara, S. I. (2001) “Spatial
data analysis and land evaluation procedures for community
development in sub-Saharan Africa” In: Community Develop-
ment on Sth-Saharm, Africa. Kokor, J. Y., Kroés (eds.) Univer-
sity of Dortmund SPRING Research Series 31: 85-97.

Soil Survey Staff. 1994. Keys to soil taxonomy 7th ed. U.S.
Department of Agriculture, Natural Resources Conserva-
tion Service, Washington, DC, 644 pp.

Stein, A. 1998. Analysis of space-time variability in agriculture
and the environment with geostatistics. Statistica Neerlandica
52(1):18-41.

Storie, R. E. 1933. An index for rating the agricultural value of
soils. California Agricultural Experimental Station Bulletin
556, University of California, Berkley.

Sys, C. 1985. Land evaluation. State University of Ghent, Gh-
ent; The Netherlands.

Tang, H., and E. Van Ranst. 1992. Testing of fuzzy set theory

in land suitability assessment for rainfed maize production.
Pedologie 17:129-147.

Triantafilis, J., W. T. Ward, and A. B. McBratney. 2001. Land
suitability assessment in the Namoi Valley of Australia, using

a continuous model, Amsterdam Journal of Soil Research
39: 273-290.

Van Lanen, H. A. 1991. Qualitative and quantitative physical
land evaluation: An operational approach. Ph.D. thesis.
Agricultural University Wageningen, The Netherlands.

Van Ranst, E., H. Tang, R. Groenemans, and S. Sinthura-
hat. 1996. Application of fuzzy logic to land suitability for
rubber production in peninsular Thailand. Geoderma
70:1-19.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8:338-353.

Zhang, L. A. 1989. A Land suitability evaluation system for
specific rural purposes in New South Wales. Ph.D. thesis,
The University of Sydney, NSW, Australia.



