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ABSTRACT / A river system is a network of intertwining chan-
nels and tributaries, where interacting flow and sediment trans-
port processes are complex and floods may frequently occur. In
water resources management of a complex system of rivers, it is
important that instream discharges and sediments being carried
by streamflow are correctly predicted. In this study, a model for
predicting flow and sediment transport in a river system is devel-
oped by incorporating flow and sediment mass conservation
equations into an artificial neural network (ANN), using actual river

network to design the ANN architecture, and expanding hydro-
logical applications of the ANN modeling technique to sediment
yield predictions. The ANN river system model is applied to mod-
eling daily discharges and annual sediment discharges in the
Jingjiang reach of the Yangtze River and Dongting Lake, China.
By the comparison of calculated and observed data, it is demon-
strated that the ANN technique is a powerful tool for real-time
prediction of flow and sediment transport in a complex network
of rivers. A significant advantage of applying the ANN technique
to model flow and sediment phenomena is the minimum data
requirements for topographical and morphometric information
without significant loss of model accuracy. The methodology and
results presented show that it is possible to integrate fundamen-
tal physical principles into a data-driven modeling technique and
to use a natural system for ANN construction. This approach
may increase model performance and interpretability while at the
same time making the model more understandable to the engi-
neering community.

A river system is a complex network of intertwining
channels and tributaries, where floods may frequently
occur, with interacting flow and sediment transport
processes. The assessment of sediment volume being
transported by streamflow is of vital interest in hydrau-
lic engineering due to its importance in the design and
management of water resources projects. Numerical
simulations of water discharges, flow velocities, and
sediment transport rates have been attempted to inves-
tigate water and sediment problems. Hydrodynamic
models have been widely used for the analysis, predic-
tion, design, and management of a wide range of wa-
ter–sediment systems. However, the spatial heterogene-
ity of various physical and geomorphologic properties
of a river system can not be easily represented, and the
requirement for large amounts of data by sophisticated
deterministic models must be considered. In the appli-
cation of conventional models, the emerging issue is
the requirement of detailed topographical, geophysi-
cal, and morphometric data. A river network covers a
vast area consisting of many watersheds and subbasins,

where a complete set of data may not be available. A
practical user-friendly model is needed for quick simu-
lations and predictions with minimum data require-
ment and without significantly compromising the
model accuracy.

An artificial neural network (ANN) has the charac-
teristics of parallel link, error correction, and nonlinear
transfer and is an emerging technique for the flow and
connection of information. It is constructed to obtain a
prediction of system response without attempting to
reach an understanding of or provide insight into the
nature of the phenomena that are represented (Haykin
1994, Fausett 1994, Hornik 1989, Fahlamn 1989,
Rumelhart and others 1986, Rogers and Lamarsh
1992). It is a tool for nonlinear input–output mapping,
which usually consists of input, output, and layers of
hidden units or elements called neurons. ANNs have
been successfully applied to the field of pattern recog-
nition (Bishop 1995) and are increasingly used in the
areas of the aquatic environment (Aly and Peralta 1999,
Dawson and Wilby 1998, French and others 1992,
Chang and Tsang 1992, Hsu and others 1995, Zhang
and Stanley 1997). Dibike and others (1999) conducted
the encapsulation of numerical–hydraulic models in
ANNs for a flow forecasting problem with encouraging
results. Dibike and Abbott (1999) employed ANNs to
simulate plane two-dimensional flow. Many studies have
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used ANNs to investigate the rainfall–runoff relation-
ship over watersheds (Zhu and others 1994, Tokar and
Johnson 1999). Yang and others (1998) developed a
hydrology-based ANN model using nonlinear reservoir
theory. However, the ANN technique has not yet been
applied to sediment yield predictions.

In view of growing applications of ANNs in the areas
of water resources (Smith and Eli 1995, Raman and
Sunilkumar 1995, Minns and Hall 1996, Carrieve and
others 1996), a comprehensive review of their concept
and applications was carried out by ASCE (2000a,
2000b). It was concluded that ANNs could perform as
well as existing models. However, the physics of the
underlying process is locked up in a set of ANN con-
figuration and not revealed back to the user after train-
ing. Moreover, in previous studies using ANN models,
investigators experienced difficulty in determining the
appropriate ANN structure or optimum network archi-
tecture, especially hidden layers, due to a lack of fun-
damental physical principles and an understanding of
internal conditions of the system being simulated. Pre-
vious investigators had to use a trial-and-error ap-
proach, i.e., going through extensive experiments and
many trials, to determine the number of units in hid-
den layers. The trial-and-error approach is somewhat
frustrating and time-consuming (Karunanithi and oth-
ers 1994). The integration of ANN and hydrodynamics
can avoid the disadvantages of a hydrodynamic model
in real-time prediction, e.g., large data requirement
and long computational time, while overcoming the
difficulty in choosing the optimal ANN structure and
internal functions. If a real river network is used as the
ANN model structure, it is possible and necessary for
the model to employ the physical functions and inter-
nal conditions of the river system.

This paper is concerned with the application of the
artificial neural network to water-sediment problems in a
complex river system. The objectives of this study are to
develop an ANN river system model for simulating and
predicting flow and sediment transport in a river system
and to demonstrate the practical capability and usefulness
of the ANN technique. The model utilizes the real river
system being simulated as the ANN architecture and in-
corporates the physical behavior and internal conditions
of the system. Water and sediment mass conservation
equations are integrated into a multilayer feed-forward
network with an error back propagation algorithm. The
integration of physical functions into the model and the
use of an actual river network for ANN construction
makes it possible to have an appropriate or optimum
architecture for ANN modeling and makes it easier for
the engineering community to understand the technique
and interpret results. The model is intended for real-time

prediction of flow and sediment transport in a complex
waterway network with less data required for topographi-
cal and morphometric information than a conventional
hydrodynamic model without compromising modeling
accuracy. The model is calibrated and tested against ob-
served water discharges and sediment transport quantities
in the Jingjiang Reach of Yangtze River and Dongting
Lake, China.

Method

ANN Overview

Among many ANN structures, the most widely used
one in the area of hydrology is the multilayer, feed-
forward network (Rumelhart and others 1986). In a
feed-forward network, data flows in one direction
(Rumelhart and others 1986, White 1990, Gallant and
White 1992). An ANN has input, output, and hidden
middle layers (Figure 1). A neural network consists of a
large number of simple processing elements or units,
namely neurons or nodes. Each neuron is connected to
other neurons by means of direct communication links,
each with an associated weight. The neurons in one
layer are not connected among themselves. The data
passing through the connections from one neuron to
another are multiplied by weights that control the
strength of a passing signal. The input layer neurons

Figure 1. Typical three-layer feed-forward ANN.
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receive the input vector and transmit the values to the
next layer of processing elements across connections.
This process is continued until the output layer is
reached. The weights represent information being used
by the net to solve a problem. The net usually has two
or more layers of processing units where each unit in
each layer is connected to all processing units in the
adjacent layers. The desired output is achieved by ad-
justing the weights on the links between the neurons
and calculating the value of error function for a partic-
ular input and then back-propagating the error from
one layer to the previous one (Rumelhart and others
1986). Each neuron multiplies every input by its inter-
connection weight, sums the product, and then passes
the sum through an activation (or transfer) function to
produce its result. Activation functions typically used in
previous studies (Imrie and others 2000, Jain and
Chalisgaonkar 2000) included logistic sigmoid, bipolar
sigmoid, linear, sigmoid plus linear, and cubic polyno-
mial. The output for sigmoid function is always
bounded between 0 and 1.

ANN Learning

The process of determining ANN weights is called
learning or training and is similar to calibration of a
mathematical model. The ANNs are trained with a
training set of input and known output data. At the
beginning of training, the weights are initialized either
with a set of random values or based on some previous
experience. Next, the weights are systematically
changed by the learning algorithm such that for a given
input the difference between the ANN output and
actual output is small. The ANN learning process is
terminated when this difference is less than a specified
tolerance. In general, there are two additional termina-
tion procedures that are commonly used: (1) when the
weights are updated a maximum number of times and
(2) when the error calculated for a separate test dataset
begins to increase, i.e., by cross-validation. At this stage,
the ANN is considered trained. If regional information
is not available or insufficient on important river
reaches, a hydrodynamic model still can be used to
generate training data for an ANN.

The most widely used learning rule for ANNs or mul-
tilayer perceptions is the error back-propagation (BP)
algorithm developed by Rumelhart and others (1986)
(Tchaban and others 1998, Bishop 1995). The BP algo-
rithm is based upon the generalized delta rule. In BP
processes, all nodes change their weights based on the
accumulated derivatives of the error with respect to each
weight. A set of inputs and outputs is selected from the
training set, and the network calculates the output based
on the inputs. This output is subtracted from the actual

output to find the output layer error. The error is back-
propagated through the network, and the weights are
suitably adjusted. This process continues for the number
of prescribed sweeps or until a prescribed error tolerance
is reached. The mean square error over the training sam-
ples is the typical objective function to be minimized.
After training is completed, the ANN performance is val-
idated and implemented for its intended use. An ANN is
better trained when a wider range of environmental sce-
narios is used, under which input data are collected. If the
model is trained using a dataset that contains a limited
range of values, it may perform poorly when encounter-
ing events having previously unobserved values. The fail-
ure to generalize may limit its use as a tool in applications
where the data available for calibration is unlikely to cover
all possible scenarios. Imrie and others (2000) presented
a methodology for improving the generalization perfor-
mance of an ANN model by adding a guidance system to
a learning architecture and including a simple cross-vali-
dation procedure in ANN training. The method can pro-
duce models that generalize well on new data and extrap-
olate beyond the range of values included in the
calibration range. Imrie and others (2000) scaled river
flow data so that the training data values lay between 0.2
and 0.8 or between 0.1 and 0.9. However, reducing the
range of the scaled values further may lead to loss of
information and a poorer overall network performance
(Imrie and others 2000).

A temporal back-propagation algorithm, i.e., a re-
current ANN, was presented in work by Haykin (1994)
and Elman (1990). The recurrent ANN is a nonlinear
system in which the outputs from the net at one time
step become the inputs at the next time step, are in-
herently dynamic in nature, and are able to deal with
time-varying information (Anmala and others 2000).
This dynamic feature embedded in BP ANN architec-
ture makes it suitable to modeling time-dependent flow
and sediment transport process.

The determination of optimal network architecture
is a part of the learning strategy (Fahlman and Lebiere
1990). The number of input, output, and hidden layer
nodes depends on the problem being studied. There
are no fixed rules about the number of nodes in the
hidden layer. However, if the number of nodes in the
hidden layer is too small, the network may not have
sufficient degrees of freedom to learn the process cor-
rectly. If the number is too high, the training will take
a long time and the network may sometimes overfit the
data (Karunanithi and others 1994). In previous studies
(Jain and Chalisgaonkar 2000, Anmala and others
2000) the number of neurons or units in the hidden
layer was determined after many trials. The configura-
tion that gave the minimum sum of the square of errors
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(SSE) was selected as the ANN structure (Jain and
Chalisgaonkar 2000). Such an approach is frustrating
and time-consuming (Karunanithi and others 1994).
To conquer this problem, a constructive algorithm
(namely cascade correlation learning architecture) was
developed by Fahlman and Lebiere (1990). It is a type
of feed-forward ANN that constructively builds the net-
work by adding one hidden unit at a time to avoid the
need to manually locate the optimum network struc-
ture (Imrie and others 2000). However, the straightfor-
ward cross-validation procedure employed in error-
back propagation training can not be applied to this
algorithm (Imrie and others 2000). Several alternatives
were suggested by Russell and Norvig (1995), Karnin
(1990), and Hsu and others (1995). Various empirical
guidelines based on the number of inputs or training
patterns were also proposed (Weigend and others
1990). In this study, a river system is modeled by an
ANN configuration, which is based on the structure of
the river network, so that the difficult and time-consum-
ing practice in finalizing the hidden layer structure can
be avoided.

In most cases, network output depends not only on
the current and previous input but also on the condi-
tion of the system. For instance, when significant deg-
radation occurs in a river, sediment outflow is influ-
enced by local scouring or erosion in the channel in
addition to inflow. In this case, the input–output rela-
tion is very complex and difficult to simulate using a
traditional ANN transfer function. A conventional BP
ANN is a “black box” without physical meanings of
internal parameters and physical relations between the
parameters and output. It may give good training re-
sults, but poor implementation results when system
conditions vary. Therefore, water and sediment mass
conservation over the whole network and at all nodes
needs to be considered when using BP algorithm for
simulating water movement and sediment transport in
a river system.

ANN Representation of a River System

A river system is a network of intertwining channels,
tributaries, lakes, and other waterbodies connected to
each other. It may be nonlinear and multivariate, and
the variables involved may have complex interrelation-
ships. Such problems can be efficiently solved using
ANNs as there are many similarities between a neural
network and a river system. The processes that involve
several parameters in a complex system such as a river
system are amenable to neurocomputing. Therefore, it
is feasible to use an ANN model to simulate flow and
sediment transport processes in a complex river system.

A river system can be conceptualized according to

research needs and the connection and interaction
between waterbodies. To meet the requirement for
developing an ANN model for flow and sediment trans-
port, some considerations or assumptions are made.
The river network is represented by a system of inter-
connected nonlinear reservoirs. Upstream inflows and
sediment loads to various waterbodies are used as the
model input and downstream discharges and sediment
transport rates at a downstream station as the model
output. It is assumed that there is no interaction, i.e.,
water and sediment exchanges, between reservoirs in
the same layer of the network. Interaction between
reservoirs in the adjacent layers is represented by the
weight, to which a zero is assigned if there is no ex-
change between two layers. This treatment makes the
use of the similarity between the ANN and the river
network. The nodes in the first and last layers of the
network serve as input and output, respectively, and do
not have storage capability. The nodes of the internal
layers have storage functions through which there are
water and sediment exchanges. Reservoir storage-out-
flow function is nonlinear for both water and sediment.
Water and sediment mass conservation principles apply
to all reservoirs in the river system.

With the above-mentioned assumptions and consid-
erations, the simplified representation of a river net-
work (Figure 2) consists of three components: water
and sediment inflows (sources) as input, internal res-
ervoirs in parallel or series, and water and sediment
outflows as output. A nonlinear relationship exists be-
tween the input to the first layer and the output from
the last node. The water continuity and sediment trans-
port equations are used for satisfying water and sedi-
ment mass conservation over the whole river system as
well as at all nodes.

Mass Conservation–Transfer Function

Mass conservation is used as the transfer (or activa-
tion) function in this ANN modeling of a river system.
In the representation of a river system, i.e., a concep-
tual model characterizing the river net, mass conserva-
tion is satisfied at all nodes and over the entire network
by the water continuity equation,

�V w, j
k�1

�T
� �

i�1

Nk

�i, j
w,k�1Q w,i

k � Q w, j
k�1 (1)

and the sediment continuity equation,

�V s, j
k�1

�T
� �

i�1

Nk

�i, j
s,k�1Q s,i

k � Q s, j
k�1 (2)
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where subscripts and superscripts w and s denote water
and sediment, respectively; index k is for the layers of
reservoirs; index i is for reservoirs in a previous layer
(i � 1, 2, . . ., Nk); index j is for reservoirs in the
current layer (j � 1, 2, . . ., Nk � 1); V is the water
storage or sediment deposition; Q is water flow-rate
(discharge) or sediment transport rate; T is time; � is
the fraction of water or sediment from a reservoir in the
immediate upstream layer entering a reservoir in the

current layer, i.e., corresponding weight; and Nk is the
total number of reservoirs in the previous layer (k)
entering the current layer (k � 1). The sediment trans-
port rate, Q s, is equal to the product of discharge, Q,
and sediment concentration, C, i.e. Q s � QC.

The generalized form of equations 1 and 2 is written as

�V j
k�1

�T
� �

i�1

Nk

�i, j
k�1Q i

k � Q j
k�1 (3)

Figure 2. ANN representa-
tion of a river network.
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After discretization, the difference form of equation
3 is

�V j
k�1

�T
� �

i�1

Nk

�i, j
k�1Qi

k � Qj
k�1 (4)

The state variable for jth reservoir in (k � 1)th layer
at time step T � �T is determined by

Vj
k�1�T��T � Vj

k�1�T � � �
i�1

Nk

�i, j
k�1Q i

k � Q j
k�1� �T�T (5)

In general, changes to external conditions influence
flow pattern and sediment transport process in a reser-
voir or river channel, which may cause imbalanced
sediment transport and scouring or deposition. River-
bed aggradation or degradation, in turn, affects flow
and sediment transport. Sediments serve as a “bridge”
in the variations of flow and sediment transport and
between balanced and imbalanced sediment transport.
Therefore, riverbed aggradation/degradation need to
be considered in computations of reservoir water and
sediment outflows. If accumulated reservoir deposition
is used to express reservoir morphometry, reservoir
outflow function is

Q w�T � fw�Vw�T, Vs�T . . .� (6)

Similarly, sediment out flow at each of the nodes
(reservoir) is a function of sediment inflow and reser-
voir geometry,

Q s�T � fs�Q ��T, Vs�T . . .� (7)

in which Q � � �i�1
Nk �i, j

k�1Q i
k.

When reservoir aggradation/degradation is insignif-
icant, reservoir outflow may be considered as a nonlin-
ear function of reservoir storage, i.e., the relation be-
tween outflow and storage at time step T becomes:

Q w�T � fw�Vw�T� (8)

Similarly, sediment outflow function can be simpli-
fied as

Q s�T � fs�Q �s�T� (9)

The water and sediment functions vary from water-
shed to watershed, depending on the physical and geo-
metrical characteristics of the catchment and the inher-
ent hydrological and sediment properties of the river
basin/system. Empirical relations or regressions to
measured data can be used to determine the functions,
considering the requirements in the mathematical
schemes or algorithms of the ANN model. In this study,
the functions are represented in the ANN model by
empirical expressions (Yang and others 1998) in the

form of 1/[1 � exp(	Ax)], where A is the calibration
coefficient and x stands for Vw,Vs, Q �, and Q �s. The
coefficient A in the empirical water and sediment equa-
tions was determined by measured flow and sediment
data, respectively.

ANN Model for a River System

In the ANN river system model, the mass balance for
inflow and outflow relations at a node (j) in the first
layer (Figure 2) is expressed as

Q j
1 � Q j,in

1 (10a)

�
i�1

N1

�i, j
2 � 1 (10b)

where Q j,in
1 is inflow (i.e., water or sediment source) to

node j in layer 1 and Q j
1 is outflow from node j in layer

1.
For the internal nodes or reservoirs in the ANN

model (Figure 2), the input–output relations are

Q j,in
k � 1 � �

i�1

Nk

�i, j
k�1Q i

k (11a)

Q j
k�1 � f�V, Q �� (11b)

�
i�1

Nk�1

�i, j
k � 2 � 1 (11c)

For the output nodes (Figure 1), the relations are

Q j,in
K � �

i�1

Nk	1

�i, j
K Q i

K	1 (12a)

Q j
K � Q j,in

K (12b)

where K is the total number of layers.
The ANN model for water and sediment transport

simulations is constructed with the integration of mass
conservation principles into a BP ANN, including water
and sediment continuity equations 1 and 2, outflow-
storage functions, equations 8 and 9, and the input–
output relations, equations 10–12. Although the algo-
rithm in this model is similar to that in traditional ANN,
the incorporation of the water and sediment conserva-
tion principles gives the model some new features. The
interaction between water sediment and reservoir
aggradation/degradation has an impact on water and
sediment outflow–storage functions. The intertwining
river system is reasonably represented by the ANN
model for their similarity in structures of both net-
works. Connections between adjacent layers are de-
scribed by parameters that have physical meaning. Mass
conservation is satisfied at all nodes and over the whole
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river system. In this flow- and sediment-based ANN river
system model, the impact of upstream and downstream
sediment deposition conditions on reservoir storage
and deposition is simulated; the traditional BP ANN
can not deal with this. The model may be simplified to
the traditional BP model if the storage variation term,

Vj

k � 1/
T, in the mass conservation equation 3 is
dropped.

Application

Study Site

The study site is the middle (Jingjiang) reach of
Yangtze River and Dongting Lake in the center of
Hunan province (Figure 3). The plain area of the
middle Yangtze River is a heavily populated region with
rapidly developing transportation and economy.
Dongting Lake is located on the south side of Jingjiang
reach of the Yangtze River and used as a detention
basin for attenuating flood peaks in Yangtze River. The
Yangtze River flow enters Dongting Lake through three
diversion works at Songzi, Taiping, and Ouchi. The
lake has four tributaries from the southwest, Xiang, Zi,
Yuan, and Li. It is divided into three regions (west, east,
and south) with flood pathways connecting them. Ac-
cording to historical records (1951–1988 hydrological
data), long-term annual inflow is 3.018 � 1011 m3 in-
cluding 1.12 � 1011 m3 from three flood diversion
inlets (37.1% of the total runoff), 1.647 � 1011 m3 from
the tributaries (54.6%), and 0.251 � 1011 m3 of surface
runoff or overland flow from the surrounding area of
the lake (8.3%). Three cutoffs (1967–1972) along the
Jingjiang reach have changed the flow and sediment
diversions at the three inlets and influenced flow and
sediment transport processes in and exchange between
Jingjiang reach and the lake.

Some of the Yangtze River water (Yichang plus
Qingjiang) stays in its main channel, Jingjiang reach.
The rest enters the lake through the diversion works,
meeting water from the tributaries in the lake, which
returns to the main channel of the Yangtze River at
Chenglingji after routing through flood pathways at the
west and south regions of the lake. The Dongting basin
is a radiating river network with the lake at its center.
Morphological and meteorological conditions vary sig-
nificantly from watershed to watershed. During wet
seasons, storm centers move around in an area of 1.0 �
106 km2, resulting in water rises in the upstream rivers
or tributaries and elevating flood peaks in the lake due
to superposition of arriving floods. The flood season
lasts for almost eight months (March–October) with
four months of high flood flows (May–August). The

complexity and intertwining nature of the river system
causes frequent flooding. To identify the impact of
water and sediments in the tributaries on the flow and
sediment transport processes in the lake, the tributaries
need to be treated as independent elements in the river
network and each has its individual role in the network.
For simplicity and convenience, overland runoff is
treated as part of the flow in the tributaries and distrib-
uted according to the ratio of tributary flow to the total
flow.

Model Structure

The study area is divided into 17 interconnected
regions and flood waterways in parallel or series, form-
ing a network. Table 1 lists nodes used in the ANN
model and corresponding river regions in the river
system. In the ANN model interactions exist between
adjacent layers of nodes. However, adjacent regions in
the river network may not physically have any connec-
tions. Therefore, in this paper, the weights are set at
zero for adjacent regions that have no interactions. For
instance, region 3 has no water exchange with regions
in layer 3 except region 11. In addition, the three
diversion flows are combined to one for simplicity. The
interaction and exchanges between the Jingjiang River
and Dongting Lake are characterized by a network as
shown in Figure 4. Based on the representative river
network, the ANN network for water and sediment
transport simulations has six layers of nodes and reser-
voirs. There are five nodes in the first layer, Yichang
and Qingjiang inflow and four tributaries. The second
to fifth layers have six, seven, three, and two reservoirs,
respectively. The sixth layer has one node, i.e., outflow
at Luoshan Station. As indicated in the structure of the
ANN river system model (Figure 4), the number of
input nodes is the number of factors influencing out-
put variables, which in turn equals to the number of
output nodes.

The simplified pattern of the river network can be
considered as the appropriate ANN architecture. The
reasons are that it is a physical representative of the
river net and that mass conservation equations and
flow–storage–sediment functions are incorporated into
the model as the transfer functions, which describe the
behavior and conditions of the system. It is convenient
and reasonable to construct the ANN network (Figure
4) by considering the structural pattern of the river
system due to the similarity between them. The use of a
river system for the ANN structure makes it unnecessary
to carry out many experiments and time-consuming
trials, as performed in previous investigations.

The number of hidden units in the internal layers,
which can be adjusted according to the river system
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being studied, determines the network’s suitability and
capability. They should be selected with care. If the
number of hidden reservoirs is too small, the model’s
applicability to a wide range of problems may be com-
promised. If the number of hidden nodes or reservoirs
is too high, it may result in “overtraining” or “overfit” of
the model. The disadvantage of overtraining is that it
tries to memorize the relationship accurately in the
training phase, resulting in good performance during
training, but poorer generalization capacities in the
implementation phase. A large number of internal

units may lead to excessively long model learning time
and not necessarily give better accuracy or fewer errors.
After a certain number of hidden nodes, the increase in
the number of nodes may not contribute to better
predictive capabilities of the model. Beyond a certain
point, the addition of hidden nodes is governed by the
law of diminishing returns for such problems (Anmala
and others 2000). In previous studies, the selection of
the appropriate number of hidden units in the internal
layers, depending on project need and the number of
input and output nodes, was made from experience
and experiments because a useful analytical method
was lacking.

Although the use of an actual river network in the
selection of hidden nodes in internal layers eliminates
the trial-and-error approaches used in the previous
ANN applications, its appropriateness should be exam-
ined and verified by other approaches. An empirical
formula was suggested by Yang and others (1998), as a
reference, for computing the appropriate range of hid-
den units in an internal layer, nh � �ni � no � a, in
which ni is the number of input nodes, no is number of
output nodes, and a is a constant in the range of 1–10.
For the Jingjiang–Dongting water system considered in
this study, the selected numbers of hidden units in the
internal layers were based on the pattern of the actual
river system as presented in Table 1 and Figure 3. The
selected hidden unit numbers as indicated in Figure 4
fall within the range of values (3–12) computed by the
empirical formula suggested by previous investigators
(Yang and others 1998, Jain and Chalisgaonkar 2000).
This comparison verifies that the selected numbers of
internal layer nodes, by considering the actual river
network, are appropriate.

Results and Discussion

A statistical parameter needs to be selected to mea-
sure agreement or disagreement between actual obser-

Table 1. Nodes or reservoirs in ANN model and regions in the river network

Node or
reservoir River region

Node or
reservoir River region

1 Zhijiang-Ouchikou 10 Songzi River (east and west tributaries), Dahu River,
Zizhiju River, Guanwan River, Hudu River

2 Songzi River, MituoTemple-Zhonghe mouth 11 Lower reach of Xiang River
3 Upper reach of Xiang River 12 Lower reach of Zi River
4 Upper reach of Zi River 13 Lower reach of Yuan River
5 Upper reach of Yuan River 14 Taoxuan-Jianli
6 Upper reach of Li River 15 Zhuzi
7 Ouchi-Taoxuan 16 Region West Dongting Lake and tributaries and

south Dongting Lake
8 West and middle tributaries of Ouchi River 17 Jianli-Luoshan
9 East tributaries of Ouchi River 18 East Dongting Lake to Chenglingji

Figure 4. Network schematic of the middle reach of the
Yangtze River.
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vation and model simulations. The goodness of fit be-
tween observed data and model results was primarily
measured by a regression that is constrained through
the origin. The overall performance of the ANN model
was judged with respect to observed (actual) flow and
sediment data on the basis of the coefficient of effi-
ciency or regression coefficient, R2, calculated as fol-
lows:

R2 � 1 �
se

2

�2 (13)

where se
2 is standard error of model predictions (sum of

the square of errors) and �2 is standard deviation of the
mean of the observed data, given as

se
2 �

�
m�1

M

� pm � dm�2

M
(14)

and

�2 �

�
m�1

M

�dm � d� �2

M
(15)

where dm and pm are observed data (target values) and
model predictions respectively, M is the number of data
points (pm, dm) and d� is the mean of the observed
values. A perfect match between observed data and
model simulations is obtained when R2 approaches 1.0
and se

2 goes to 0.0, which are the objective values for
model training (or calibration) and validation.

The river system ANN model for hydrodynamics and
sediment transport simulations was trained and tested
separately. Decoupled water flow and sediment trans-

port simulations are performed using different sets of
data due to data availability for flows and sediments.
Instream flow (daily discharge) and nonpoint source
surface runoff data at Dongting Lake, Yichang station,
four tributaries, and Luoshan station (outlet) are em-
ployed to train and test the ANN model developed in
this study for flow simulations. Luoshan station is the
closest downstream station to the outlet (near Chen-
glingji), which collects water and sediments from the
entire study area. The flood travel time from Yichang to
Luoshan is about 3 days and from the four tributaries
about 2 days. In model training and validation, the
inflow data (input variables) were observations on a
different day from outflow data (output variables). The
lead time of the forecast period (lag) is 2–3 days. The
1981–1983 flow data set is used for model training or
calibration and the 1984 set for model verification. To
avoid the problem of exceeding the upper and lower
limits of the value range of the model units, the flow
data were scaled so that the values of dimensionless vari-
ables lay within the range of 0.1–0.9 (Imrie and others
2000). With the weights obtained in the training phase
(1981–1983), the performance of the ANN model was
tested using the validation period data (1984).

The interaction and exchange between the Jingjiang
reach of the Yangtze River and Dongting Lake are
bridged by flow and sediment transport at the diversion
openings. Therefore, to satisfactorily catch the develop-
ing and evolutionary process of the river reach, the
variation patterns of flow and sediment transport at the
diversion openings must be correctly reflected during
ANN model training. An R2 value of 0.995, the measure
of model performance, was obtained for the training
period 1981–1983 and 0.985 for the validation period
of 1984. The verification result is presented in Figure 5,

Figure 5. Measured (circles) and simulated
(solid line) discharges at Chenglingji station
(1984), R2 � 0.985.
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containing a plot of observed and computed daily dis-
charges at Chenglingji station during the year of 1984.
It is seen that the simulated hydrograph, using the ANN
model developed in this study and trained with 1981–
1983 flow data, agrees well with the field measure-
ments. The plot shows a very good match, as indicated
by an R2 performance value of 0.985, except for some
deviations near flow peaks during Julian days 180–270.
The average relative error, i.e., the average of ratio of
difference between measured and calculated to the
measured, is less than 3%. The maximum relative error
is less than 6%. It is demonstrated that the ANN model
is capable of reproducing the flow process in a river
network and can be effectively used for mapping flow
variations.

Annual sediment discharges at Dongting Lake, the
tributaries, and Chenglingji station for the period
1956–1979 are used to train the model for sediment
transport simulations by calibrating the weights (�) in
the ANN model. Model verification is conducted with
the 1980–1988 annual sediment discharge data. The
results of model training and verification for sediment
transport are displayed in Figure 6. The simulated sed-
iment discharges at the Chenglingji station during the
calibration period of 1956–1979 are generated after
the calibration of weights in the model. The model
duplicates the measured variation of annual sediment
discharge very well. The performance measure, R2

value, is 0.997 for the calibration period (1956–1979)
and 0.986 for the validation period (1980–1988). The
relative errors in the result from model testing or vali-
dation with the 1980–1988 data set are within a satis-
factory or required range of accuracy, demonstrating
the model’s usefulness and adequacy in simulating and
analyzing flow and sediment transport processes in the
Dongting area of the Yangtze River. Based on the re-
sults, it is clear that the ANN technique is capable of
modeling the flow and sediment transport behavior of
a river system.

Conclusions

In the simulations of a complex river network, the
successful employment of deterministic models or
hydrodynamic models is restricted by a need for a
great amount of site-specific data. It is impractical to
use a traditional hydrodynamic model for quick and
simple simulations and real-time predictions, espe-
cially when a complete set of data is not available.
Considering the similarity in structure and in the
input– output relation between a neural network and
a river system, the use of an ANN approach for
simulating water and sediment motions in a river
network is adequate and practical. The ANN tech-
nique has been used to establish an integrated river
system simulation model. A significant advantage of
using the ANN technique is that it can successfully
model the unsteady flow behavior and sediment
transport in a complex system of rivers.

An ANN river system model has been developed by
integrating the mass continuity equations and storage
functions into a back-propagation ANN. The encapsu-
lation of equations describing physical processes in the
ANN model as well as the similarity in structures of a
river net and an ANN configuration overcomes the
difficulty in selecting the appropriate network architec-
ture. The use of the actual river net for configuring the
ANN avoids the trial-and-error procedure for choosing

Figure 6. Training (top, R2 � 0.997) and verification (bot-
tom, R2 � 0.986) results of the ANN river system model—
measured and simulated sediment discharges at Chenglingji
Station.
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the optimal number of units in each hidden layer.
Connections between adjacent layers are described by
parameters that have physical meaning. Incorporating
the mass conservation as the activation function makes
the ANN model no longer a “black box.” The method
and results presented demonstrated that it is practical
and possible to integrate fundamental physical princi-
ples into a data-driven modeling technique and to use
a natural system for ANN construction.

The model has been applied to the middle reach of
the Yangtze River, i.e., Jingjiang reach and Dongting
Lake. Model results and field measurements agree well.
It is concluded that the ANN river system model is
capable of describing flow and sediment transport pro-
cesses in a river system of interconnected channels and
lakes. Given upstream inflows, the physically based
ANN river system model, which was trained with a wide
range of data, can be used to simulate and predict
downstream discharges and sediments. The simplicity
of the model makes it possible and practical to conduct
quick, real-time predictions during floods. Neverthe-
less, it should be noted that the ANN technique is most
suitable for climatically, hydrologically, and morpho-
logically stationary systems. Significant deviations from
conditions the ANN is trained for, such as changes in
rainfall–runoff relations or stream avulsions, may lead
to inaccurate predictions with ANN parameters trained
on historic data.
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Appendix 1. Notation

A � calibration coefficient
C � sediment concentration
d � observed data
f � function

n � total number of data points
N � total number of reservoirs in a layer
P � model prediction (simulated data)
Q � water discharge or sediment transport rate
R2 � coefficient measuring model performance, i.e., re-

gression coefficient
S2

e � standard error of model predictions
T � time
V � water storage or sediment deposition
x � Vw, Vs, Q�, or Q�s
� � weight
�2 � standard deviation of the mean of the observed

data

Subscripts

i � index for reservoirs in a previous layer
j � index for reservoirs in the current layer

m � index for data points
s � sediment

w � water
in � inflow

Superscripts

k � index for layers of reservoirs
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