

Breast Volume Measurement in Young Chinese Women and Clinical Applications

Qun Qiao, M.D., Ph.D., Gang Zhou, M.D., and Yi-chun Ling, M.D.

Beijing, China

Abstract. The authors carried out research on breast volume and body surface anatomy of 125 women. As a result, an average breast volume for Chinese women was obtained (325.36 \pm 12.66 ml), and a table with several linear equations for calculating breast volume was derived. The authors applied these results to their clinical work and succeeded in making mammaplasty more precise in 178 patients.

Key words: Breast-Breast volume-Chinese women

Over 2 years, we carried out research on breast volume and body surface anatomy of 125 women in order to find the standards of breast volume, shape and body development for Chinese women.

Materials and Methods

Subjects

The 125 female patients included in this study ranged in age from 18 to 26 years, with normal body development and absence of chest deformity. The total number of measured breasts was 250.

Research Parameters

The 8 general and 10 special parameters included in this study are listed in Table 1.

Posture

For data acquisition, the subjects were in an erect position with their arms by their sides.

Data Grouping

Fourteen data groups were constructed with reference to body side, height, weight, chest circumference, and breast volume. Grouping criteria and the number of subjects falling into each group are summarized in Table 2.

Data Analysis

Breast volume was calculated from the following formula:

$$V = 1/3 \times 3.14 \times MP^2 \times (MR + LR + IR - MP)$$

Mean value (\bar{X}) , standard deviation (S), standard error (S \bar{x}) and coefficient of variation (CV) were determined for each variable in each group. The significance of difference was computed by variance analysis or *t*-test applied to the mean value of each variable in each group. Standard correlation analysis for bivariate data of breast volume and other variables adopted the least-squares line, Y = ax + b, and polyvariate progressive regression analysis were applied as well. All data was processed on an IBM computer according to American Biomedical Data Processing procedures.

Results

An average of the total data was calculated and was regarded as the control group. The basic results derived from each variable in this group are listed in Table 3.

Correspondence to Prof. Qun Qiao, M.D., Ph.D., Plastic Surgery Hospital of Chinese Academy Medical Sciences, Ba-Da-Chu, Beijing 100041, China

Q. Qiao et al.

Table 1. Research parameters and measurements

Parameter	Symbol	Unit	Measurement
Height	Н	cm	
Weight	W	kg	
Width of shoulder	AA	cm	Acromion to acromion
Chest circumference 1	CC1	cm	Under the axilla
Chest circumference 2	CC2	cm	Across the nipple
Chest circumference difference	CCD	cm	CC2-CC1
Lumbus circumference	LC	cm	Across the umbilicus
Buttock circumference	BC	cm	Across the fullest part of the buttock
Mid-sternal line	MSL	cm	Vertical line dropped from the suprasternal
	C) H		notch to the nipple line
Sternum-nipple line	SNL	cm	Suprasternal notch to nipple
Clavicle-nipple line	CNL	cm	Mid-clavicular point to nipple
Medial breast radius	MR	cm	Nipple to medial terminal crest
Lateral breast radius	LR	cm	Nipple to lateral terminal crest
Inferior breast radius	IR	cm	Nipple to inframammary fold
Nipple-sternum line	NSL	cm	Nipple to mid-sternal line
Mammary projection	MP	cm	••
Nipple projection	NP	mm	
Areola diameter	AD	mm	

Table 2. Data classification

Grouping	Number	Grouping criterion
Control	250	All data
Left	125	All left breast data
Right	125	All right breast data
Short	110	H < 160.00 cm
Tall	140	H ≥ 160.00 cm
Standard weight	44	$W = (H - 100) \pm 1$
Overweight	120	W > (H - 110) + 1
Underweight	86	W < (H - 110) - 1
CCD > 0	166	CCD > 0
CCD < 0	52	CCD < 0
CCD = 0	32	CCD = 0
Large breast	96	Breast volume > 350 ml
Small breast	93	Breast volume $< 250 \text{ ml}$
Standard breast	61	Breast volume = $250 - 350$ ml

Important developmental characteristics of Chinese women are as follows:

- Average height = 159.00-160.00 cm.
- Average weight = 50.40-60.00 kg.
- Standard weight = height minus 110.
- The average chest circumference difference (CCD) = 2.0 cm.
- The average distance from the nipple to the suprasternal notch is 19.05 cm, the average distance between the nipples is 20.00 cm, forming an isosceles triangle. This characteristics has also been described in Western women, but the mean value of each distance in our study is 1.0 cm less than that in Western women
- The average breast volume is 310–330 ml, with the standard breast volume ranging between 250 ml and 350 ml.

- In overweight women, breast volume increased by 20 ml/kg overweight.
- The standard breast forward projection is 3.0–4.0 cm.

The major variables influencing breast volume are as follows:

- Breast volume is positively correlated with weight, chest circumference, lumbar circumference, and buttock circumference.
- Breast volume is negatively correlated with height.
- Breast volume is closely related to the chest circumference difference (CCD), with a correlation equation of approximately $V = 250 + 50 \times CCD + 20 \times WO$ (wo = weight over the standard).
- Nipple position is not dependent on height, but is influenced by breast volume, that is, for each 300 ml increase above the standard breast volume, nipple position is displaced 1.0 cm down and outward. This conclusion is very important to prevent the high location of the new nipple areolar complex after reduction mammaplasty, e.g., while marking the new location of the new location is initially determined at the crossing point of a line joining the suprasternal notch to the nipple and the inframammary fold, after that, the superior margin must be extended downward 1–2 cm according to the reference value of the breast volume to be removed (see Case 3).

A table for calculating breast volume from the radii (MR + LR + IR) and forward breast projection is presented in Table 4.

Item	No.	$\overline{X}\pm S\overline{x}$	S	CV	Max.	Min.
Н	125	159.548 ± 0.446	4.986	3.125	170.00	148.00
W	125	50.644 ± 0.527	5.892	11.636	69.00	40.00
AA	125	37.476 ± 0.258	2.880	7.685	45.00	29.00
CC_1	125	79.656 ± 0.402	4.489	5.635	95.00	68.00
CC_2	125	81.488 ± 0.489	5.468	6.710	101.00	69.00
CCD	125	1.832 ± 0.250	2.793	152.469	9.00	-5.00
LC	125	66.520 ± 0.585	6.537	9.827	89.00	55.00
BC	125	86.088 ± 0.466	5.215	6.057	100.00	68.00
MSL	125	16.596 ± 0.119	1.328	8.005	20.00	13.50
SNL	250	19.052 ± 0.107	1.691	8.875	23.00	13.00
CNL	250	19.260 ± 0.096	1.516	7.874	23.00	15.00
MR	250	8.634 ± 0.081	1.284	14.876	12.00	4.50
LR	250	9.604 ± 0.111	1.747	18.19	15.00	5.00
IR	250	6.836 ± 0.086	1.357	19.859	10.50	4.00
NSL	250	10.028 ± 0.076	1.194	11.904	14.00	6.00
MP	250	3.618 ± 0.061	0.967	26.72	6.00	1.00
NP	250	4.666 ± 0.169	2.679	57.411	13.00	0.00
AD	250	33.204 ± 0.358	5.665	17.061	48.00	20.00
BV	250	325.369 ± 12.66	200.146	61.54	1017.875	25.656

Several linear equations for calculating breast volume from height (H) and weight (W) were also derived:

- Breast volume = 2145.32 11.4069 × H (standard weight)
- Breast volume = $1874.268 9.254 \times H$ (over weight)
- Breast volume = $9.074 \times W 134.18$

Clinical Application

Over the last 8 years, we applied the results of breast volume measurement to our clinical work and succeeded in making mammaplasty more precise in 178 patients including augmentation mammaplasty in 96 patients, reduction mammaplasty in 60 patients, breast reconstruction in 10 patients and other breast deformities in 12 patients.

For augmentation mammaplasty, the size of the prostheses to be used could be determined by subtracting real breast volume from the ideal breast volume, both of which can be drawn from the Table 4.

Case 1

A 25-year old woman with small breasts. R = 25 cm (MR = 9 cm, LR = 10 cm, IR = 6 cm), MP = 2.5 cm. According to Table 4:

- Real breast volume = 147 ml (R = 25, MP = 2.5)
- Ideal breast volume = 352 ml (R = 25, MP = 4)
- Size of the implant to be used is 200 ml (352–147).

Pre- and postoperative instances are shown in Figure 1.

 $Case \ 2$

A 29-year-old woman with a unilateral breast defect after breast tumor excision. In normal side, R = 23 cm (MR = 8 cm, LR = 9 cm, IR = 6 cm), MP = 2.5 cm. According to Table 4:

- Real breast volume = 134 ml (R = 23, MP = 2.5)
- Ideal breast volume = 318 ml (R = 23, MP = 4)
- Size of the implant to be used for the normal side is 180 ml, the other affected breast required a 240 ml implant (see Fig. 2).

For reduction mammaplasty, the volume of the breast tissue to be removed from patients with macromastia could be computed by subtracting the ideal volume derived from the linear H and/or W equations from the real breast volume derived from the formula $V = 250 + 50 \times CCD + 20 \times WO$.

Case 3

A 27-year-old woman with hypertrophic breasts, H = 165 cm, W = 60 kg, CCD = 10 cm, standard weight = 55 kg

- Real breast volume = $250 + 50 \times 10 + 20 \times 5 = 850$ g
- Ideal breast volume = $1874.268 9.254 \times 165 = 347.358 \text{ g}(\text{H})$
- Ideal breast volume = $9.074 \times 60 134.18 = 410.26 \text{ g (W)}$
- Ideal breast volume = (347.358 + 410.26)/2 = 380 g

Fig. 1. (A) A 25-year-old preoperative woman, (B) 2 months postoperative following breast augmentation through the transaxillary submuscular placement with 200-cc prostheses. (C) Preoperative profile view. (D) Postoperative profile view. Fig. 2. (A) A 29-year-old woman with a unilateral breast de-

• Volume intended reduction = 850 - 380 = 470 g

Pre- and postoperative examples are shown in Figure 3.

For breast reconstruction, the size of the myocutaneous flap necessary for breast reconstruction could be determined in reference to the volume of the patient's other breast.

Case 4

A 35-year-old woman with a unilateral breast absence after radical mastectomy. A double lumen breast implant (180 ml silicone gel + 30 ml saline water) was inserted into the left breast under the muscle, a pedicled latissimus dorsi myocutaneous flap and a double lumen breast

after augmentation. A 180-cc implant was inserted through a

transaxillary incision under the muscle on the left side (right

breast). A 240-cc implant was inserted through the first opera-

tive incision on the right side (left breast).

Table 4. Breast volume calculation (ml)

		Р											
R	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7
10	9	20	34	49	66	83	101	117	131	143	151	155	154
11	10	22	38	56	75	96	117	138	157	174	188	199	205
12	12	25	42	62	85	109	134	159	183	206	226	243	257
13	13	27	46	69	94	122	151	180	209	238	264	288	308
14	14	29	50	75	104	135	168	201	236	269	302	332	359
15	15	32	54	82	113	148	184	223	262	301	339	376	411
16	16	34	59	88	123	160	201	244	288	333	377	420	462
17	17	37	63	95	132	173	218	265	314	364	415	465	513
18	18	39	67	101	141	186	235	286	340	396	452	509	564
19	19	41	71	108	151	199	251	307	367	428	490	533	616
20	20	44	75	115	160	212	268	329	393	459	528	597	667
21	21	46	80	121	170	224	285	350	419	491	565	642	718
22	22	48	84	128	179	237	302	371	445	523	603	686	770
23	23	51	88	134	188	250	318	392	471	554	641	730	821
24	24	53	92	141	198	262	335	414	497	586	679	774	872
25	25	55	96	147	207	276	352	435	524	618	716	819	924
26	26	58	101	154	217	289	369	456	550	649	754	863	975
27	27	60	105	160	226	301	385	477	576	681	792	907	1026
28	28	62	109	167	236	314	402	498	602	713	829	951	1078
29	29	65	113	173	245	327	419	520	628	744	867	995	1129
30	30	67	117	180	254	340	436	541	654	776	905	1040	1180
31	31	70	121	187	264	353	452	562	681	808	942	1084	1232
32	32	72	126	193	273	366	469	583	707	839	980	1128	1283
33	34	74	130	200	283	378	486	604	733	871	1018	1172	1334
34	35	77	134	206	292	391	503	626	759	903	1056	1217	1385
35	36	79	138	213	302	404	519	647	785	934	1093	1261	1437
36	37	81	142	219	311	417	536	668	812	966	1131	1305	1488
37	38	84	147	226	320	430	553	689	838	998	1169	1349	1539
38	39	86	151	232	330	443	570	710	864	1030	1206	1394	1591
39	40	88	155	239	339	455	586	732	890	1061	1244	1438	1642
40	41	91	159	245	349	468	603	753	916	1093	1282	1482	1693

P = MP; R = MR + LR + IR.

implant (180 ml silicone gel + 60 ml saline water) were used to reconstruct her right breast (see Fig. 4).

Discussion

With the recently improved techniques for cosmetic breast surgery and an increasing public awareness toward such procedures, many women who have undergone mastectomy are choosing to undergo breast reconstruction. Also, more and more women are opting for breast reduction/augmentation mammaplasty as a means of improving their physical appearance. Thus, plastic surgeons require methods for accurate breast volume determination. In this area, Bouman [1], Kirianoff [3] and Schultz [6] applied Archimedes' principle to measure breast volume or to determine the size of gel implants necessary to construct breasts of a given size, while Grossman [2] and Strombeck [7] developed various devices for measuring breast volume based on geometric principles. Regnault [5] discussed the relationship between the size and shape of the commercial brassiere, and regarded brassiere cup sizes as an acceptable indication of breast size. In 1986, Loughry [4] applied the technique of biostereometric analysis to breast volume measurement.

All of the above-mentioned investigations involved Western women, therefore, we required 2 years to research breast volume on Chinese women. This study defined standards of body development among Chinese women and, more specifically, obtained average breast volume and its relation to a variety of parameters. As a result, a table and set of equations for computing breast volume were developed, thus providing plastic surgeons with useful tools for planning breast augmentation, reduction, and reconstruction procedures. This study also negated the general clinical impression that the left breast is larger than the right [4] and confirmed Strombeck's view that, in overweight patients, breast volume increases by 20 cm³ for each kilogram overweight [7].

Acknowledgements. The authors are grateful to Dr. Guang-yu Chen, Dr. Cheng Liu, Dr. Li Teng, Dr. Wen-zhi Li, and Dr. Chun-mei Wang for their excellent technical assistance, and to 3A

4A

Fig. 3. (**A**) A pre-operative view of a 27-year-old woman with moderate hypertrophic breasts. (**B**) Two weeks postoperative, 500 gm was removed from the left breast, 412 gm was removed from the right breast, and the nipples were elevated 10 cm. The patient has sensation in her nipples. (**C**) Preoperative profile view. (**D**) Postoperative profile view.

Fig. 4. (A) A 35-year-old woman with unilateral breast ab-

sence after radical mastectomy shown preoperatively. (**B**) The patient shown 2 weeks postoperatively. A double lumen breast implant (180 ml silicone gel + 30 ml saline water) was inserted into the left breast under the muscle, a pedicled latissimus dorsi myocutaneous flap and a double lumen breast implant (180 ml silicone gel + 60 ml saline water) were used to reconstruct the right breast.

Dr. Robert A. Ersek and Dr. Aurelio Vazquez Salisbury for their assistance in the preparation of this manuscript.

References

- Bouman FG: Volumetric measurement of the breast before and during mammaplasty. Br J Plast Surg 23:263, 1970
- 2. Grossman AJ: A simple means for accurate breast volume determination. Plast Reconstr Surg **66**:851, 1980
- 3. Kirianoff TG: Volume measurement of unequal breasts. Plast Reconstr Surg **54**:616, 1974
- Loughry CW, Sheffer DB: Breast volume measurement of 248 women using biosterometric analysis. Plast Reconstr Surg 80:557, 1987
- Regnault P, Rollin KP: Breast reduction. In: Regnault P, Rollin D (eds), Aesthetic plastic surgery. Boston: Little, p. 503, 1984
- Schultz RC: Further applications of Archimedes' principle in the correction of asymmetrical breasts. Ann Plast Surg 16:98, 1986
- Strombeck JO: Priority grouping in a waiting list of patients for reduction mammaplasty. Ann Plast Surg 17:498, 1986