Behav Ecol Sociobiol (1997) 41: 205-215

© Springer-Verlag 1997

REVIEW

David F. Westneat - Paul W. Sherman

Density and extra-pair fertilizations in birds: a comparative analysis

Received: 31 January 1997 / Accepted after revision: 2 August 1997

Abstract Moller and Birkhead (1992, 1993) reported
that extra-pair copulations (EPCs) occur more fre-
quently in colonial than dispersed nesting birds. We
comprehensively reviewed published data to investigate
how breeding density affects extra-pair fertilizations
(EPFs). Within species EPFs appeared to increase with
density: two of three studies on colonial breeders and six
of eight on dispersed nesters showed increases in EPFs
with increasing density. However, comparisons among
species (n = 72) revealed no evidence that EPF fre-
quencies correlated with (1) nesting dispersion, (2) local
breeding density, or (3) breeding synchrony, even when
each of these variables in turn was held constant and
phylogenetic relationships were taken into account via
contrast analyses. Methodological and biological rea-
sons for the disparity between observational studies of
EPCs and molecular genetic analyses of EPFs are dis-
cussed.

Key words Extra-pair fertilizations - Breeding density -
Dispersion - Synchrony - Contrast analyses

Introduction

Density affects behavior because as spatial proximity
increases, so does the likelihood of direct interactions,
both cooperative and competitive. Interactions between
the sexes (e.g., copulations, inter-sexual aggression) in
particular are sensitive to variations in spatial proximity
among members of the limiting sex, usually females
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(e.g., Crook 1964; Jarman 1974; Parker 1983; Crowley
et al. 1991; Davies 1991). For example, field observa-
tions and experiments have demonstrated effects of
density on female resistance in insects (e.g., Arnqvist
1992a, b; Shelly and Bailey 1992; Rowe 1992; Krupa and
Sih 1993), patterns of amplexus in toads (Kagarise
Sherman 1980; Sullivan 1982; Arak 1983), territorial
versus group-spawning in fishes (Warner and Hoffman
1980; Kodric-Brown 1988), and patterns of social bonds
in birds (Davies 1992; Hoglund and Alatalo 1995). Local
density also can influence costs of parental care (e.g.,
time spent foraging) and costs and benefits of defending
a territory, which can affect aspects of mating behavior
(e.g., Brown 1969; Trivers 1972; Emlen and Oring 1977,
Davies 1991).

Extra-pair copulations (EPCs) are mating behaviors
that would seem especially sensitive to density. EPCs are
common in birds (e.g., Westneat et al. 1990; Birkhead
and Mpller 1992) and they often lead to extra-pair fer-
tilizations (EPFs; e.g., Birkhead and Moller 1992;
Westneat and Webster 1994), frequently with neigh-
boring males (e.g., Gibbs et al. 1990; Westneat 1993;
Stutchbury et al. 1994; Hasselquist et al. 1995b). The
revelation that social and genetic monogamy often are
not synonymous has both spurred a revolution in
thinking about avian mating systems and created a need
for new hypotheses about patterns of avian mating be-
havior that take extra-pair activities into account.

An important first step is to clarify how the disper-
sion of individuals affects such activities. This issue has
not been addressed theoretically, and existing data yield
inconsistent conclusions. On the one hand, several
workers (e.g., Hoogland and Sherman 1976; Birkhead
1978; Wrege and Emlen 1987; Moller 1991; Morton et al.
1990) have suggested that EPCs should increase with
increasing density. Indeed, increases in local breeding
density were associated with higher EPC frequencies in
common guillemots (Uria aalge; Hatchwell 1988), yel-
low-billed magpies (Pica nutalli; Birkhead et al. 1992),
barn swallows (Hirundo rustica; Mgller 1991), and cliff
swallows (Hirundo pyrrhonota; Brown and Brown 1996),
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but not in white ibises (Eudocimus albus; Frederick
1987). Birkhead et al. (1987) and Mgller and Birkhead
(1992, 1993) amassed information on individual species,
which they classified as (1) colonial or dispersed nesters,
(2) showing no mate-guarding or some mate-guarding,
and (3) breeding monogamously, polygynously, or in
cooperative groups. They found that EPCs were more
frequent in colonial than dispersed nesting species. They
interpreted this as being due either to increased prox-
imity of individuals or lower intensity of mate-guarding
in colonial species.

On the other hand, genetic analyses have revealed
high frequencies of EPFs in many dispersed-nesting
birds, indeed often exceeding rates of EPCs observed or
EPFs inferred in colonial species (e.g., Westneat and
Webster 1994). At one extreme, the fairy wrens Malurus
splendens and M. cyaneus have the highest frequencies of
EPFs yet documented (> 65% of chicks, Brooker et al.
1990; and 76% of chicks and 95% of broods, Mulder
et al. 1994, respectively). Both wrens are cooperative
breeders with highly dispersed nests, and nearly all EPFs
are due to copulations with males outside the allopa-
rental group.

This paper investigates how dispersion affects the ge-
netic mating system. In particular, do colonially nesting
birds and those breeding at high densities exhibit higher
rates of EPFs than species that breed solitarily and at low
densities? To find out, we compiled all available infor-
mation on EPFs in bird populations, and on their density
and dispersion patterns. We discovered that data on
EPCs and EPFs do not yield congruent conclusions
about density effects, and we explore some of the factors
that may have created this intriguing disparity.

Methods

We assessed the effects of density in two ways. First, we reviewed
studies that either explicitly examined density effects within a spe-
cies or population, or pairs of studies conducted on populations of
the same species that differed in density. We analyzed these data
with simple pairwise comparisons (e.g., Moller and Birkhead 1992)
in a meta-analysis to test for an effect of density within species.
Second, we compared EPF frequencies among species that differed
in density, and used phylogenetic contrasts to study relationships
between EPF frequencies and density.

Before we began, we defined some key terms that would de-
termine what information we needed to gather. First, we viewed a
pair-bond as an extended social and sexual association between a
male and a female, lasting for days to months or more, consider-
ably longer than it takes to copulate. An extra-pair copulation is a
mating between a female and a male other than her pair-bonded
mate (Westneat et al. 1990); such a copulation might result in an
extra-pair fertilization. This definition excludes copulations/fertil-
izations (1) in species that have no pair bonds (e.g., many lek
breeders), and (2) between females and males that have extensive
social associations, such as males in polyandrous social groups
(e.g., dunnocks, Prunella modularis; Burke et al. 1989).

We defined population density as the number of individuals
breeding per unit area of all habitat used by the population (i.e., for
nesting, foraging, etc.). Often, however, information on population
density was not available, particularly for species that nest close
together and forage over a wide and generally unknown area (e.g.,

swallows, many seabirds). Thus for our analyses, we considered
both local breeding density, which refers to the number of indi-
viduals breeding per unit area of suitable nesting habitat (i.e., ex-
cluding habitat areas not used for nesting) and breeding dispersion,
which refers to clustering of nests within the habitat used for
nesting or foraging by the population. For local breeding density
we used the average distance between the center of a territory and
the center of the nearest neighbor’s territory (nearest neighbor
distance, NND). For dispersion, we assigned each species as being
either colonial (i.e., a very clumped breeding dispersion) or dis-
persed (spread out through the available habitat).

NNDs were based on information presented by authors either
in the focal paper or in correspondence, or that were provided in
another publication on the same population. Assignments of
breeding dispersion were based on the researchers’ own charac-
terization of the species or on the descriptions of Lack (1968). After
making our decisions, we compared our categorizations with those
of Meller and Birkhead (1992). For the 21 species that we and they
analyzed, there was only one disagreement. Whereas Meller and
Birkhead categorized red-winged blackbirds as colonial, we believe
they are more appropriately regarded as dispersed nesters, at least
in eastern North America where breeding territories are spread
throughout suitable habitat and individuals spend >95% of their
time on those territories (Westneat 1993).

We compiled data on EPFs and density from original sources
that we located by searching the major behavioral and ornitho-
logical journals, the BIOSIS database, and by contacting labora-
tories that are engaged in paternity analyses. We tabulated the
results of every study we could find that (1) sampled > 20 chicks
from unmanipulated populations, and (2) presented an unambig-
uous estimate of the proportion of chicks sired through EPFs. Thus
we omitted several allozyme studies that only estimated the pro-
portion of broods with mixed paternity (e.g., Evarts and Williams
1987) or that did not specify whether mismatched chicks resulted
from EPFs or intra-specific brood parasitism (e.g., Petter et al.
1990; Price et al. 1989; McKitrick 1990). We also omitted studies of
manipulated populations (e.g., barn swallows with manipulated tail
feathers: Smith et al. 1991; dark-eyed juncos, Junco hyemalis, with
testosterone implants: Ketterson and Nolan 1992).

In total, 88 studies on 72 bird species fulfilled our criteria
(Fig. 1). Among these, paternity was inferred using several tech-
niques: DNA fingerprinting [# = 65 studies using multi-locus
probes (Jeffreys et al. 1985) and n = 3 using single locus probes],
protein electrophoresis (n = 9), plumage markers (» = 1), and
asymmetries in heritabilities of tarsus lengths between female and
(putative) male parents and chicks (n = 10). Studies of paternity
using heritabilities have been severely criticized (e.g., Lifjeld and
Slagsvold 1989; Dhondt 1991; Gebhardt-Henrich and Nager 1991;
Hasselquist et al. 1995a) and defended (e.g., Alatalo et al. 1989). To
be safe, we analyzed the EPF data including and excluding heri-
tability studies.

For ten species, EPF frequency data have been collected on
more than one population. In all non-phylogenetic analyses, we

>

Fig. 1 Phylogenetic relationships, dispersion (D dispersed nesting,
C colonial nesting), average nearest neighbor distance (NND), and
estimated proportion of offspring sired through extra-pair fertiliza-
tions (EPFs) for 72 species of birds. Values at nodes indicate relative
divergence. The values without brackets are mean delta TsoH from
Sibley and Ahlquist (1990), from Sheldon et al. (1992) for the Paridae,
and from Sheldon and Winkler (1993) for the Hirundidae. For nodes
within genera and species not shown in the above references, we
arbitrarily picked values shown in brackets (congeneric species = 2.0
and populations within a species = 1.0, except when lower nodes
constrained the values, e.g., within the genus Falco). Average NNDs
were collected either from the authors of the paper, or calculated from
territory sizes as twice the radius of a circular territory of average size.
Superscripts indicate additional references, not used in the analysis
(see text), that reported EPFs using a different technique or in a
different population for which no data on average neighbor distances
were available
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included only data from the study that presented information on
average NNDs; if there was more than one of these, we included
just the one with the largest sample size. In phylogenetic contrast
analyses of how dispersion affects EPFs, we included only the EPF
frequency from the study with the largest sample of nestlings. In
phylogenetic contrast analyses of how mean NNDs affect EPFs, we
included studies on different populations of three species (Ficedula
hypoleuca, Passerina cyanea, and Agelaius phoeniceus: Fig. 1) for
which we obtained data on average NNDs. We assumed that
separate populations are genetically distinct and could potentially
have diverged in EPF frequencies.

Various authors (e.g., Felsenstein 1985; Harvey and Pagel 1991;
Brooks and McLennan 1991) have argued that related species
should not be regarded as independent data points in statistical
analyses, especially when they share one of the attributes of interest
(e.g., type of nesting dispersion; Fig. 1). Interestingly, however,
Ricklefs and Starck (1996) recently reported that phylogenetic
corrections made little difference in the outcome of comparative
analyses of avian physiological and morphological traits. These
results led the authors to suggest that the need for phylogenetic
corrections may have been overstated.

Nonetheless, to be safe, we analyzed EPF data using the inde-
pendent contrasts procedure of Felsenstein (1985) and Harvey and
Pagel (1991). Phylogenetic relationships among most species could
be estimated based on Sibley and Ahlquist (1990), except for spe-
cies in five families. For the Paridae we adopted the phylogeny of
Sheldon et al. (1992) and Slikas et al. (1996), for the Hirundinidae
we relied on Sheldon and Winkler (1993), we used the AOU
checklist (American Ornithologists’ Union 1983) to resolve the
location of Passerina cyanea and the Geospizine finches within the
Embirizinae, and we used Christidis and Boles (1994) combined
with Sibley and Ahlquist (1990) to determine the locations of
Gallinula (Tribonyx) mortierii and Petroica australis.

Species were assigned a dummy variable for breeding dispersion
(colonial = 0, dispersed = 1), and contrasts were calculated by the
differences between dyad species at each node using the Phenotypic
Diversity Analysis Program 3.0 (Garland et al. 1993). Relationships
between contrast values and the standard deviation in branch
lengths, calculated with several different methods of transforming
branch lengths, were tested for internal biases in the data (a rela-
tionship between the absolute value of the contrast and the standard
deviation of branch length; Garland et al. 1992). The associations
between standardized contrasts of NNDs or dispersion and EPFs
were tested with (1) linear regression, using parametric statistical
analyses in SYSTAT, or (2) a randomization test (Manly 1991).

Results

Among the 72 species studied to date (Fig. 1), EPFs have
been documented in 53 (74%), with considerable varia-
tion in EPF frequency among them (Fig. 2). The distri-
bution (Fig. 2) resembles a Poisson: 34 species have EPF
rates of < 0.05 whereas only 4 species have EPF rates of
> (0.40. The mean frequency for the entire sample is
0.13 = 0.16 (SD) and the median is 0.07. Among the 53
species in which some EPFs occur, the mean frequency is
0.18 £ 0.17. It is apparent from Fig. 2 that EPFs occur
more commonly among passerine species (42/49 = 86%)
than among non-passerines (10/23 = 45%), at higher
average frequencies [0.18 £ 0.17 (SD) vs. 0.03 + 0.05],
and with a larger range (0.0-0.76 vs. 0.0-0.18). EPFs have
been documented in species from every passerine family
studied, but no evidence of EPFs has yet been discovered
in several non-passerine families (e.g., Rallidae, Hydro-
batidae).

M Non-passerines
20 (23 species)
0 Passerines
. (49 species)
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Frequency of extra-pair fertilizations

Fig. 2 Distribution of the frequencies of extra-pair fertilizations
among 72 bird species. Passerine birds are shown in open bars, non-
passerines in stippled bars

Effect of density within species

Genetic studies on 11 species have either directly com-
pared rates of EPFs between areas differing in local
nesting density or have reported frequencies of EPFs
and density in two or more populations that could be
compared (Table 1). Eight studies found that EPFs were
greater in areas or years of higher density; in six of these
the relationship with density was significant. If each
species is considered as an independent test of the in-
traspecific effect of density, the one-tailed probability is
0.11 that 8 of 11 comparisons would fall in a particular
direction given the null expectation of equal likelihood.
For the eight studies of dispersed nesters alone, the
probability is 0.14 that six or more would show a posi-
tive effect of density. These analyses are conservative
because they do not incorporate the magnitude of any
density effect, but unfortunately we cannot take that
into account because among the studies (Table 1) den-
sity was measured differently (nearest neighbor distance,
number of neighbors, number of breeding groups per
unit of area) and units of comparison also differed (in-
dividual breeding groups within populations, or average
differences between populations).

Effect of density between species
Among 46 dispersed and colonial species there was no

correlation between NNDs and frequencies of EPFs
(Kendall’s 7t = -0.07, P = 0.50). Omitting black
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Table 1 Intra-specific comparisons of associations between density and extra-pair fertilizations

Species Technique used®

and significance

Direction of density effect

Dispersion Reference

Bearded tit

(Panurus biarmicus) DNA +(P < 0.05)
Bobolink

(Dolichonyx oryzivorus) proteins —(NS)
Eastern bluebird

(Sialia sialis) proteins +(P < 0.05)°
Eurasian kestrel

(Falco tinnunculus) DNA +(P < 0.05)
Great reed warbler

(Acrocephalus arundinaceus) DNA +(P < 0.05)
Hooded warbler

(Wilsonia citrina) DNA —(NS)

House finch

(Carpodacus mexicanus) DNA +(P < 0.05)
Pied flycatcher

(Ficedula hypoleuca) DNA + (not tested)
Red-winged blackbird

(Agelaius phoeniceus) DNA +(P < 0.05)°
Tree swallow

(Tachycineta bicolor) DNA —(NS)
Yellowhammer

(Emberiza citrinella) DNA +(NS)

Colonial and solitary ~ Hoi and Hoi-Leitner 1997

Dispersed Bollinger and Gavin 1991
Dispersed Gowaty and Bridges 1991b
Dispersed Korpimiki et al. 1996
Dispersed Hasselquist et al. 1995b
Dispersed Tarof et al. in press
Colonial Hill et al. 1994
Dispersed Lifjeld et al. 1991; Gelter
and Tegelstrom 1992
Dispersed Gibbs et al. 1990; Westneat
1993; Gray 1996
Colonial Dunn et al. 1994
Dispersed Sundberg and Dixon 1996

# Proteins protein electrophoresis, DNA single or multi-locus DNA fingerprinting
° Experimentally manipulated density, but frequent intra-specific brood parasitism included in result leaving effect on EPFs unclear
¢Significance tested between marshes within one locale (Gibbs et al. 1990), trend (not tested) also present among studies in different locales

vultures (Coragyps atratus), which have an extreme
NND (1860 m), further reduces the statistical signifi-
cance (Kendall’s 7 = —-0.03, P = 0.76, n = 45; Fig. 3).
Local breeding density differed significantly between the
colonial (x = 30 = 69 m, n = 14) and dispersed nes-
ters (x = 227 £ 335m, =n = 32, Mann-Whitney
U = 31.5, P < 0.0001) in our sample, so we analyzed
the relationship with EPFs separately for each disper-
sion. In neither was the correlation significantly different
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Fig. 3 Correlation between average nearest neighbor distance and
proportion of chicks sired through EPFs in 45 bird species. Black
vultures are omitted from this figure because they are an extreme
outlier: their EPF rate is 0 and their mean inter-nest distance is
1860 m (Decker et al. 1993, P. Parker, personal communication)

from zero [colonial: 7 = 0.05, P = 0.82; dispersed:
t = -0.11, P = 0.38 (omitting black vultures)].
Among 52 dispersed nesting species 14% =+ 18%
(SD) of chicks were sired through EPFs, and among 20
colonially nesting species 10% =+ 12% of chicks were
sired through EPFs (Fig. 4A). This difference is not
statistically significant (Mann-Whitney U = 488.5,
P = 0.60). Reanalysis of the data with red-winged
blackbirds reassigned as colonial breeders (Moller and
Birkhead 1993) does not alter the conclusion.
Cooperatively breeding species introduce special
complexities. Some authors (e.g., Birkhead and Mgller
1992) consider within-group matings between individuals
other than social mates to be EPCs, while others (e.g.,
Westneat et al. 1990) do not, because females have long-
term associations with males in their own group (e.g., in
striped-backed  wrens, Campylorhynchus  nuchalis;
Rabenold et al. 1990). In our initial analysis (Fig. 4A) we
followed Westneat et al. (1990) and counted as EPFs
only fertilizations resulting from matings between
members of different groups. We repeated the analysis
(Fig. 4B), this time excluding cooperative breeders be-
cause, at the least, helpers could complicate the dynamics
of how density affects interactions between breeding fe-
males and extra-group males. For this analysis we also
excluded the ten studies on sexual asymmetries in tarsus
heritabilities; this removed only five species for which
there were no data on EPF frequencies based on another
genetic technique. This more conservative analysis again
revealed no significant difference in EPF frequencies
between dispersed nesters (15% = 15%[SO], n = 35)
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Fig. 4 Average proportions (+SE) of chicks sired through EPFs for
dispersed versus colonial nesting species; A all studies included, B
excluding studies employing asymmetries between the sexes in
heritabilities and those on cooperative breeders

and colonial nesters (10% =+ 12%, n = 17; Mann-
Whitney U = 256, P = 0.41).

The foregoing analyses treat species as independent
data points. To deal with potential lack of independence
of closely related species we conducted phylogenetic
contrasts analyses (Felsenstein 1985). We found no re-
lationships between EPF frequencies and either NNDs
or dispersion, regardless of what transformation of
branch lengths we used. We first inferred branch lengths
from genetic distances (Fig. 1). Neither the categorical
measures of dispersion (r = 0.044, n = 64, P = 0.26)
nor NNDs (r = 0.025, n = 45, P = 0.43) were associ-
ated with EPFs in tests of 20,000 r values generated by
repeatedly drawing new pairs of independent and de-
pendent contrast values at random from the original
dataset.

However, there was a significant negative correlation
between the standard deviation of branch lengths
(square root of the sum of branch lengths for each
contrast) and contrasts of arcsine transformations of
EPF frequencies (r2 = 0.21, = -44, P < 0.01,
df = 73). This means that variation in EPF frequencies
between closely related species matched or exceeded that
between more distantly related species. The resulting
bias in EPF contrasts along the phylogenetic tree vio-
lates the assumption that contrasts are independent (e.g.,
Garland et al. 1992). This bias disappeared when we
used constant branch lengths (Garland et al. 1993) in-
stead of the lengths shown in Fig. 1. Contrasts of
transformed EPF values using constant branch lengths

were not correlated either with the categorical measures
of dispersion (> = 0.005, 1 = 0.61, df = 74, P > 0.4)
or NNDs (r* = 0.005, t = 0.46, df = 47, P > 0.5).
Moreover, neither variable was significant in a multi-
variate analysis using both coloniality (std. coeff. =
—-0.021, r = 0.13, P = 0.90) and NNDs (std. coeff. =
—-0.06, t = 0.34, P = 0.73; df = 48) as independent
variables.

Species that breed in dense aggregations often nest
synchronously (e.g., Hoogland and Sherman 1976;
Wittenberger and Hunt 1985; Burger and Gochfeld
1991; Brown and Brown 1996). Synchrony is a poten-
tially confounding variable, but there is disagreement
over whether synchrony increases (Stutchbury and
Morton 1995) or decreases (Birkhead and Biggins 1987,
Westneat et al. 1990) frequencies of EPCs and EPFs. No
comparative analysis of how extra-pair activities are
affected by density or synchrony has incorporated the
other factor. We therefore performed a multivariate
analysis on contrasts in arcsine transformed EPF fre-
quencies, using contrasts in both NNDs (data in Fig. 1)
and breeding synchrony (data from Stutchbury and
Morton 1995) as independent variables, and the branch
lengths given in Fig. 1 (tests for bias in EPF contrasts
along the phylogenetic tree revealed no significant
trends, P values all exceeded 0.05). Contrasts in EPF
frequencies were not associated with either NNDs (std.

coeff. = 0.37, t = 1.27, P = 0.23) or synchrony (std.
coeff. = 0.34, ¢t = 1.16, P = 0.27).
Discussion

Results presented here suggest an intriguing mix of ef-
fects of density on extra-pair fertilizations. Our review of
11 intraspecific studies revealed positive relationships
between density and frequencies of EPFs. A statistical
test of the data was not significant, but few species have
been surveyed and our conservative analysis did not take
into account that six of the studies found significant
positive effects of density. The generally positive rela-
tionship between density and EPFs within species seems
to be similar to the relationship between density and
EPCs reported by Meller and Birkhead (1992), although
our analyses suggest that effects of density on extra-pair
activity within a species may be contingent on other
factors (see below).

Moller and Birkhead (1993) reported that EPCs oc-
curred more commonly in colonial than dispersed-nest-
ing birds. By contrast, we found no significant effects of
dispersion or local breeding density on EPFs among
species (Figs. 1-3). The differences between our results
and Moller and Birkhead’s, and between the intra- and
interspecific analyses reported here, are puzzling. One
might suppose that patterns of fertilizations would re-
flect patterns of copulations (e.g., Birkhead and Magller
1992; but see Eberhard 1996). Clearly, however, rates of
EPCs and EPFs are not necessarily synonymous. We



suggest that there are several possible methodological
and biological explanations for the discrepancies.

First, effects of density on EPFs may somehow have
been obscured in our comparative analyses. Frequencies
of EPFs themselves are likely to be accurate because
most studies that we included are based on multi-locus
fingerprinting techniques which detect nearly all EPFs
that occur. However, there is controversy over avian
phylogenies, particularly relationships at the generic and
species levels (e.g., Sibley and Ahlquist 1990; Lanyon
1992; Mindell 1992; Harshman 1994). Resolution of
these disagreements and adjustments to branch lengths
as new information becomes available could conceivably
modify our conclusions. Nevertheless, the general results
that (1) no correlation exists between NNDs and EPFs
(Fig. 2), and (2) dispersed nesters have slightly higher
EPF rates than colonial nesters (Fig. 3) do not rely on
phylogenetic methods. Furthermore, the basic phyloge-
ny we used (Fig. 1) is the same one Mgller and Birkhead
(1993) used in their phylogenetic contrast analyses. This
implies that our different results relate to something else.

A second possibility is that observational data on
EPCs are systematically biased. For example, intra- and
extra-pair copulations may be more easily detected in
colonial than dispersed nesters. Because breeding colo-
nies often occur in open habitats, observers can watch
many pairs simultaneously and see numerous copula-
tions involving many different individuals. When EPCs
occur on the colony and in the open, they are as ob-
servable as within-pair copulations. By contrast, intra-
and extra-pair copulations in dispersed nesters are much
harder to observe, due to visually occluded habitats and
the difficulty of watching more than one focal female at
a time. This is probably why the data set of Meoller and
Birkhead (1993) includes reports of high numbers of
observed copulations for many colonial nesters, but
numerous studies of dispersed nesters that recorded few
or no copulations.

In a few well-studied dispersed nesters, many matings
have been observed. However, quantifying the relative
frequencies of intra- and extra-pair copulations is still
difficult because different behaviors are associated with
each type of mating. For example, male indigo buntings
(Westneat 1987b) and red-winged blackbirds (Westneat
1992) assault extra-pair females. This behavior is more
conspicuous than copulations between social mates, but
often females flee considerable distances or dive into
vegetation when they are attacked. This reduces op-
portunities to observe successful EPCs if they occur.
Alternatively, female black-capped chickadees (Parus
atricapillus; Smith 1988) and blue tits (Parus caeruleus;
Kempenaers et al. 1992) seek out extra-pair males by
flying surreptitiously to their territory, often at times of
day when observations are difficult (e.g., at dawn), and
then engage in EPCs that are less conspicuous than
within-pair copulations. Taken together, these observa-
tional biases magnify the variance in EPC rates among
dispersed nesters, creating a skewed distribution toward
species with few or no EPCs, and reducing the reliability
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with which we can infer the proportion of copulations
that are EPCs.

The third and perhaps most intriguing possibility is
that density actually affects EPCs and EPFs differently.
Furthermore, density might interact with other variables
in ways that mask its effects in comparative studies, and
could in some cases influence its effects within a species.
In order to be successful, EPFs require insemination and
fertilization — two additional steps beyond encountering
and attempting a copulation with an extra-pair male.
Within a species, increasing density ought to increase
rates of encounters, but might have less effect on the
probabilities of both insemination and fertilization. For
example, although extra-pair encounters might increase
with increasing density, at higher densities social mates
are forced into greater proximity, which should make it
easier for males to see and repel intruders, to control
female movements, or to witness an EPC and perform a
compensatory within-pair copulation. Alternatively, in-
creasing density may severely impair a male’s abilities to
successfully guard his social mate, because either there
are too many males to chase away, high density occurs
when nests are clustered at sites distant from other re-
sources important to males, or habitat complexity allows
females more opportunity to escape from male surveil-
lance and increasing density makes it more valuable for
them to do so. Males that cannot guard their mate might
shift their behavior from guarding to copulating re-
peatedly with her (Birkhead and Maeller 1992). This, in
turn, may reduce the chance that successful EPCs ac-
tually fertilize an egg as density increases, depending on
how females respond to frequent male overtures. Fi-
nally, the fitness benefits and abilities of females to
control copulations and subsequent fertilizations (e.g.,
Lifjeld and Robertson 1992; Birkhead et al. 1993) and
the importance of cryptic female choice (Eberhard 1996)
also may vary with ecology (e.g., Westneat et al. 1990);
increasing density may have little or no effect on the
rates of EPCs and EPFs when females often pursue
EPCs (e.g., Dunn et al. 1994), although increasing
proximity could affect the payoffs to females for pursuit.

These complications are magnified when comparing
between species. Other ecological factors, such as the
openness of the habitat and the constraints on female
choice of social mates could have major effects on fre-
quencies of extra-pair behaviors that obfuscate effects of
density. For example, species that nest in clusters (high
local breeding density) often live in open habitats,
whereas dispersed nesters live in visually-occluded areas.
If the success of mate-guarding and the transmission of
cues about the reproductive status of males or females in
nearby areas is affected by both proximity and by the
openness of the habitat, increasing density might have
an effect within a habitat (i.e. within a species). How-
ever, comparisons between species might overlook ef-
fects of density because the exact relationship between
density and EPFs is confounded by effects of habitat
differences. The impact of breeding synchrony also
could depend on habitat differences and on factors
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influencing the relative roles of males versus females in
pursuing EPCs (e.g., Birkhead and Biggins 1987;
Stutchbury and Morton 1995). Unfortunately, clear
criteria for assessing critical features of habitat openness
that affect EPFs have yet to be developed, and little
information on habitat complexity is available for most
of the species included in our analyses.

Our results offer no support for either the hypothesis
of Wagner (1993) that high-density nesting is promoted
by females because it enhances their opportunities for
obtaining EPFs, nor for that of Stutchbury and Morton
(1995) that greater nesting synchrony should increase
EPF frequencies. However, regarding the latter analysis,
it should be noted that the sample size was only 14
species (13 contrasts), so the power of our statistical test
was undoubtedly low.

Thus our analyses suggest the need for careful re-
consideration of exactly how population parameters
such as density and synchrony might influence specific
behaviors in the sequence of events that leads to fertil-
izations under particular circumstances. The general
assumption that increased proximity increases either the
number of extra-pair males encountered per fertilizable
female or the frequency of encountering fertilizable fe-
males per extra-pair male (e.g., Birkhead and Magller
1992), although intuitively appealing, may be compli-
cated by the ways individuals space themselves, how
female movement patterns affect encounters with extra-
pair males, by the structure of the habitat, and the
timing of breeding relative to others in the population.
At present, however, there is little theory explicitly for-
mulated to explore the influences of population level
characteristics on specific mating strategies such as ex-
tra-pair matings. Many potentially interesting relation-
ships are likely to be hidden in this mix of interacting
factors, a prospect that invites additional theoretical and
empirical exploration.
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