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Abstract 
Group living is ubiquitous in the animal kingdom and confers a number of benefits and costs. In nature, animal habitats are 
complex, diverse, and constantly changing. As one of the most important ecological factors, temperature can act directly 
on the physiology and behavior of ectotherms, and its effect might be related to the context. Here, we used crucian carp 
(Carassius auratus) as an animal model to investigate how the individual and collective behaviors of the fish respond to 
two different temperatures (15 °C vs. 25 °C) across three contexts (e.g., open water, food, and food + shelter). Compared to 
those at 25 °C, the fish at 15 °C had lower individual swimming speed, synchronization of speed, group speed, and longer 
time spent in the shelter with a lower foraging speed, but such effects of temperature were not found in terms of collective 
behavior (e.g., interindividual distance, nearest neighbor distance, distance to group center, or group polarization). The 
individual swimming speeds of the fish increased with increasing environmental complexity at both temperatures. The fish 
shoals had a higher foraging speed and better group coordination and cohesion in the food context than in the food + shelter 
context. In the food + shelter context, fish spent time on moving in and out the shelter under a pattern of high swimming 
speed. Consequently, groups are less efficient at foraging in food + shelter contexts than in food contexts at only 25 °C. Our 
results suggest that the effects of temperature on the individual and collective behavior of fish are dependent on context.

Significance statement
Establishing how collective behavior emerges is crucial to our understanding of animal societies. The collective behavior and 
structure of animal groups may change considerably depending on the context, which can alter collective behavior through 
adaptive changes in individuals’ behavior. Among the various environmental factors, temperature is an ‘ecological master 
factor’ that influences individuals’ physiology and behavior. Shoals of crucian carp exhibit distinct patterns of response to 
temperature between individual- and group-level behaviors across contexts. In the food + shelter context, fish at 15 °C spend 
more time hiding within the shelter, resulting in a lower foraging speed and a longer latency to forage with a smaller group 
size than those of fish at 25 °C. Our study provides new insights into the consequences of ambient temperature on the col-
lective behavior of group-living animals in nature.
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Introduction

Group living is widespread in animal taxa, and collective 
behavior is an emergent phenomenon arising from the local 
interactions of the members of animal groups. (Krause and 
Ruxton 2002; Delcourt and Poncin 2012; Herbert-Read et al. 
2016; Schaerf et al. 2017). Living in groups can confer a 
number of ecological benefits, such as enhanced antipreda-
tor strategies and vigilance (Treherne and Foster 1981; 
Krause 1994; Fels et al. 1995), improved foraging speed 
(Creel and Creel 1995; Herbert-Read et al. 2017), increased 

Communicated by J. G. Frommen.

 *	 Ling‑Qing Zeng 
	 lingqingzeng@cqnu.edu.cn

1	 Laboratory of Evolutionary Physiology and Behaviour, 
College of Life Sciences, Chongqing Normal University, 
Chongqing Key Laboratory of Conservation and Utilization 
of Freshwater, Fishes, Room 127, Yifu Building, 
Chongqing 401331, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-024-03473-4&domain=pdf
http://orcid.org/0000-0002-3707-2994


	 Behavioral Ecology and Sociobiology (2024) 78:5555  Page 2 of 13

reproductive success (Westneat et al. 2000; Bekkevold et al. 
2002; Pilastro et al. 2003), reduced heat loss (Andrews and 
Belknap 1986), and decreased energetic cost of locomotion 
(Killen et al. 2012; Marras et al. 2015). Such benefits, how-
ever, could be partly offset by some costs of group living, 
including greater visibility to predators (Cresswell 1993; 
Seebacher and Krause 2017), increased competition for 
resources (Krause and Ruxton 2002; Pitcher et al. 1982; 
Webster and Hart 2006a), and increased risk of ectoparasite 
infection (Brown and Brown 1986; Van Vuren 1996; Han 
et al. 2015). This potential trade-off between the benefits 
and costs of group living is a dynamic process that is influ-
enced by a number of ecological factors, such as individual 
physiology and cognition (Herbert-Read et al. 2011; Von 
Rueden et al. 2015; Seebacher and Krause 2017), aquatic 
temperature (Cooper et al. 2018), ecological context (Jolles 
et al. 2017; Rodriguez-Pinto et al. 2020; Yang et al. 2021; 
Li et al. 2022), and seasonal alternation (Chen et al. 2019).

Fish that rely on ambient heat regulate their body tempera-
ture to maintain their physiological functions at an optimum 
level. Changes in temperature can directly influence physi-
ological processes related to energy metabolism (Zeng et al. 
2010; Sandblom et al. 2014; Lefevre 2016), appetite (Chen 
et al. 2019), digestive capacity and growth (Legler et al. 2010; 
Zeng et al. 2018), and swimming performance (Claireaux et al. 
2006; Zeng et al. 2009). Several researchers have indicated that 
temperature can increase hunger levels by increasing the meta-
bolic rate of predators, which in turn affects their predation 
motivation (Allan et al. 2015; Domenici et al. 2019). Subjected 
to climate and seasonal changes, surface water in temperate 
zones can fluctuate widely by up to 20 °C diurnally (Temple 
and Johnston 1997; Zeng et al. 2009). Moreover, the behavior 
of fish exhibits rhythms in response to seasonal temperature 
changes in the water body (Häfker and Tessmar-Raible 2020). 
As one of the most crucial impacts in the aquatic environment, 
temperature changes have direct effects on the physiological 
and biochemical processes of fish. For example, the physi-
ological functions (e.g., swimming ability) of fish increase 
with increasing temperature within the appropriate tempera-
ture range (Lee et al. 2003; Zeng et al. 2009; Peng et al. 2014; 
Pang et al. 2016). However, at a lower temperature, mitochon-
drial function is reduced due to a decrease in the metabolic 
capacity for muscle production (Randall and Brauner 1991; 
Guderley 2004; Day and Butler 2005), thereby reducing all 
aspects of fish organism function. Temperature also affects the 
water environment in which the fish live. When the tempera-
ture of a water body decreases, the viscosity of the water body 
also increases (Temple and Johnston 1997; Lee et al. 2003; 
Zeng et al. 2009). These changes in temperature are likely to 
cause modifications to individual functions and hence collec-
tive behavior (e.g., structure and function), which in turn will 
have a significant impact on the group's foraging performance. 
Therefore, the first goal of our study was to examine the effect 

of temperature on the individual and collective behavior of 
group-living fish.

In nature, animal habitats are complex and diverse and 
are usually compounded by various informational cues that 
span multiple sensory modalities (Heit et al. 2002; Dall et al. 
2005). Habitats that fluctuate significantly in terms of food 
and shelter (Pitcher and Parrish 1993; Killen et al. 2016) can 
result in animals responding more flexibly to different contexts 
(Sih et al. 2011; Richter et al. 2012). Differences in context 
may lead to corresponding behavioral responses in animals 
(Herbert-Read et al. 2016; Seebacher and Krause 2017; Jolles 
et al. 2020). For example, hiding under a shelter or refuge can 
reduce the risk of predation and routine energy consumption 
by fish (Maximino et al. 2010; Matsuzaki et al. 2012). Moreo-
ver, the group structure and function of group-living animals 
change greatly according to the context in which they live. For 
instance, animal groups potentially behave more cohesively 
when under attack and are more dispersed when foraging 
(Hoare et al. 2004; Schaerf et al. 2017). While animal groups 
are more cohesive in situations where food sources are scarce 
or scattered, they are more dispersed in situations where food 
is plentiful (Lihoreau et al. 2017; Jolles et al. 2018). However, 
natural changes in water temperature may affect the foraging 
efficiency of fish groups in using resources across contexts. 
Previous studies have focused more on the effects of single 
contexts on fish collective behavior (Smith et al. 2009; Her-
bert-Read et al. 2016), while few studies have examined how 
animal groups function across contexts at given temperatures 
(Jolles et al. 2018; Hansen et al. 2020; Yang et al. 2021; Li 
et al. 2022). Thus, the second goal of our study was to test 
whether individual and collective behavior and their functions 
across contexts are temperature-dependent.

Crucian carp (Carassius auratus) is a freshwater fish that 
is widely distributed in rivers, lakes, and reservoirs in Eurasia. 
It is also a common freshwater economic fish in China and 
that displays schooling foraging habits. The common seasonal 
water temperature fluctuations in summer and winter in the 
upper region of the Yangtze River, China (Pang et al. 2014; 
Fu et al. 2018), were considered the acclimation tempera-
tures, where 15 °C is the typical water temperature in winter 
and 25 °C is the typical water temperature in summer (Long 
et al. 2007). Here, we used crucian carp as an animal model to 
examine how individual and collective behaviors respond to 
different water temperatures and whether fish groups exhibit 
repeatable behavioral differences across contexts.

Materials and methods

Fish

Three hundred two-month-old crucian carp were obtained 
from a local fish farm in Yongchuan district, Chongqing, 
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immediately transported to our laboratory at Chongqing 
Normal University, China, and kept in four cyclic tempera-
ture-controlled tanks (2 m length × 1 m width × 0.5 m height, 
water depth of 0.4 m), each containing 75 fish at 20 °C. The 
water temperature of the two tanks was heated at a rate of 
2 °C per day to 25 °C using an aquarium thermoregulator at 
a starting temperature of 20.2 ± 0.1 °C, while the other two 
tanks were cooled to 15 °C at the same rate using a chiller 
(CA-1000A, RESUN, Guangzhou, China). After the target 
temperatures were reached, all the fish were acclimatized to 
the given temperature (15 and 25 °C) for at least four weeks. 
We placed plastic water plants at the bottom of each tank to 
increase the environmental enrichment. The fish were fed 
to satiation with mixed bloodworms to ensure that the fish 
could feed on the mixed bloodworms well during the col-
lective behavioral trials. Before each feeding, both the air 
and water pumps were turned off to calm the water surface, 
and the fish were allowed to feed for one hour. After that, a 
siphon was used to remove residual food and feces within the 
tank. The dissolved oxygen level was kept above 7.0 mg/L 
with a 10 L: 14 D photoperiod.

Experimental overview

There were two acclimation temperatures (15  °C and 
25 °C) for our study, with 150 fishes at each acclimation 
temperature and a total of 300 fishes. After acclimatization, 
120 fish of similar size were selected at each temperature 
(Mean ± SE, 15 °C, body size 7.84 ± 0.22 cm; 25 °C, body 
size 7.73 ± 0.23 cm) and randomly formed into groups of 
six fish, with 20 groups at each temperature. Given the spa-
tial constraints present in the holding compartment, each 
group consists of six fish, which conforms with the findings 
of previous studies in which the group size was controlled 
between 4 and 8 individuals (Jolles et al. 2017, 2018; Yang 
et al. 2021; Li et al. 2022; Cao et al. 2023). Each group 

of each temperature was tested for their collective behavior 
across three contexts for a total 10 of days. Each group of 
each temperature underwent a total of five test trials: one 
in the open water context (10 min), two in the food context 
(10 min), and two in the food + shelter context (10 min).

Collective behavior

A white circular acrylic tank (80 cm in diameter × 20 cm 
wall height, Fig. 1) was used to test the collective behavior 
of the fish. The testing temperature was controlled to be 
the same as that used during the acclimatization period. To 
maintain the water temperature at the target value (15 °C 
and 25 °C), a thermal insulation cover was placed around 
the outside of the tank wall, which allowed the change in 
water temperature to be less than 0.2 °C before and after 
filming. Given the body height of the fish at their current 
developmental stage and to minimize the possibility of ver-
tical overlap between different individuals swimming in a 
shoal, we kept the water in the tank at a depth of 6.0 cm. The 
bottom and inner walls of the tank were pasted with nontoxic 
white sticker to increase the difference in color between the 
fish and the tank. The tank was positioned inside a shelf 
(1.5 m length × 1.5 m width × 2.0 m height) illuminated from 
the top (test environment light at ~ 240 lx). A ring of green 
opaque cloth was draped around the shelf to minimize the 
potential influence of the external environment on the col-
lective behavior of the fish. A high-resolution Sony camera 
(HDR-PJ820E, 25 frames per second, 1080p) was placed 
vertically above the tank to film the collective behavior of 
the fish. (1) In the open water context, no food or shelter was 
placed in the tank. (2) For the food context, three identical 
food patches (10 cm diameter × 1 cm height) with 9 grids 
each inside were placed in an equilateral triangular space at 
the bottom edge of the tank. Five frozen bloodworms were 
randomly placed in the nine grids of the food patches when 

Food patch

Shelter

i ii iii

Fig. 1   Schematic of the tank in which the groups of fish were tested 
across three different contexts: (i) open water context, an environment 
without food or plant shelter; (ii) food context, an environment with 

three patches of food; and (iii) food + shelter context, an environment 
with food patches as well as plant shelter
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the fish were acclimating within a plastic cylinder at the 
center of the tank. (3) In the food + shelter context, a shelter 
composed of five green plastic plants (e.g., these plants were 
also present in their acclimation waters) was placed in the 
center of the tank, creating a 20 × 20 cm concealed area. At 
the same time, five bloodworms were randomly placed in the 
9 cells of the food patches when the fish were acclimating 
within the plastic cylinder.

We exposed each group of six fish at each temperature 
to a total of 5 tests (5 days in total), one in the open water 
context (day 1), two in the food context (days 2–3) and two 
in the food + shelter context (days 4–5). Similar to two previ-
ous studies (Jolles et al. 2017, 2018), we tested the groups 
in random order at each temperature but employed a fixed 
context order to avoid confounding the behavior of the fish in 
earlier contexts with experience acquired with the foraging 
patches and shelter. Before each trial, the fish were trans-
ferred from their holding compartments to a cylinder (12 cm 
in diameter) at the center of the tank without air exposure 
and allowed to acclimate for 5 min. Afterward, the fish were 
released by remotely raising the cylinder. At this moment, 
the collective behavior was filmed for the given recording 
time. After the trials, the fish were transferred back to their 
holding compartments, and five bloodworms were fed to 
each experimental fish to ensure that they maintained an 
appetite until the next trial. To avoid the influence of poten-
tial pheromones (e.g., feces, uneaten foods, and chemical 
alarm cues) from the previous fish group on the next group's 
behavioral expression, all the water in the tank was replaced 
with new aged tap water at the same water temperature. All 
trials were conducted between 8:30 am and 5:30 pm each 
day to minimize the potential effect of diurnal rhythms on 
the collective behavior of the fish. The room was maintained 
at a consistent and low sound level to reduce the impact of 
external sound sources on the groups' behavior.

Data collection and calculation

To minimize observer bias, blinded methods were use 
when all behavioral data were recorded and analyzed. After 
obtaining a video of the collective behavior, the video was 
converted to the AVI format using video converter software. 
The tracking software idTracker (version 1.10, https://​www.​
idtra​cker.​es/​home) was used to analyze all the videos. The 
two-dimensional coordinate data (i.e., pixel values on the 
x- and y-axes) of six fish in the group per time (1/24 s in 
our study) in the visual range (i.e., the open area beyond 
the shelter) were obtained. We obtained the pixel-to-actual 
distance ratio by transforming the coordinate data with the 
actual size of the tank (i.e., 11.62 pixels/cm in our study), 
which was used to obtain a set of actual movement data 
(measured in cm) of the fish groups in the active field of the 
test. Then, we calculated the following parameters via the 

axial data: (1) individual swimming speed, (2) synchroniza-
tion of speed, (3) interindividual distance (IID), (4) near-
est neighbor speed (NND), (5) group polarization (P), (6) 
distance to group center, (7) group speed, and (8) group 
percentage time moving (PTM). The calculation of each 
parameter is as follows:

(1)	 Individual swimming speed (cm/s): In our study, the 
individual swimming speeds of juvenile crucian carp 
were taken from the median speed of six fish in a group.

where V(t) is the individual swimming speed (cm/s); 
x, y(t) and x, y(t-1) denote the horizontal or vertical 
coordinate values of individual fish at moments t and 
t-1, respectively; and ∆t is the time interval between 
the two coordinate points (set at 1/24 s in our study).

(2)	 Synchronization of speed (Sv): Sv is an assessment of 
the synchronization of individual swimming speeds 
that range between 0 and 1. The higher the value is, 
the greater the synchronization of individual swimming 
speeds.

where vi and vj are the individual swimming speeds of 
fish i and j in the shoal at an instantaneous time instant, 
respectively.

(3)	 Interindividual distance (IID, cm): IID refers to the 
average interindividual distance between all individu-
als in a shoal to assess group cohesion. The lower the 
IID is, the more cohesive the group.

where xi and yi are the horizontal and vertical coordi-
nates, respectively, of fish i and j in the shoal at instant 
t.

(4)	 Nearest neighbor distance (NND, cm): This measure-
ment quantifies group cohesion and is the minimum 
distance (cm) of each fish among a matrix of distances 
between all individuals in a group.

where xi and yi are the values of the horizontal and ver-
tical axes, respectively, of fish i and j in the fish group, 
and fish j indexes all neighbors of fish i at time t.

(5)	 Group polarization (P, no unit): This measurement 
quantifies the degree of alignment of a group of fish 
when swimming and can be calculated as the magni-
tude of the mean movement vector of all individuals 

(1)V(t) =

√
(x(t) − x(t − 1))2 + (y(t) − y(t − 1))2∕Δt

(2)Sv = 1 −
||
|

(
vi − vj

)
∕(vi + vj)

||
|

(3)IID(t) =
1

n

∑n

i≠j

√
(xi(t) − xj(t))

2 + (yi(t) − yj(t))
2

(4)NND(t) = mini≠j

√
(xi(t) − xj(t))

2 + (yi(t) − yj(t))
2

https://www.idtracker.es/home
https://www.idtracker.es/home
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(Miller and Gerlai 2012; Gimeno et al. 2016). The 
group polarization ranges from 0 to 1. The polarization 
value is 1 when all the individuals moving in a group 
are perfectly aligned and 0 when all the individuals’ 
movement vectors completely cancel each other.

where vi (t) is the movement vector per unit time of an 
individual fish i, and the direction of movement is from 
the point of time t-1 to the location point of time t. n 
indicates the number of members of the group (e.g., 
n = 6 in our study).

(6)	 Group center (Gx, Gy)

where G(t) represents the mean of the horizontal or 
vertical axes of the six fish in a group at time t.

(7)	 Distance to the group center (cm)

where x(t), y(t) and Gx, Gy(t) are the values of the hori-
zontal or vertical coordinates of the individual fish and 
the centroid of the group at time t, respectively.

(8)	 Group speed (GV, cm/s)

where Gx (t) and Gy (t) are the values of the horizontal 
and vertical coordinates of the group center at time t, 
and Gx (t-1) and Gy (t-1) are the values of the horizontal 
and vertical coordinates of the group center at time t-1, 
and ∆t is the interval between the two coordinates of 
the group center (e.g., 1/24 s in our study).

(9)	 Group percentage time spent moving (PTM, %)

where Tmoving is the total time that the group spent per-
forming swimming and Ttotal is the total duration of the 
video capture (e.g., 600 s in our study). A fish group 
was considered to be moving when its instantaneous 
group speed was greater than 1.75 cm/s (Tang et al. 
2017).

	   (10) Foraging speed (ind/min)

where i represents the number of bloodworms ingested 
by the shoal and t (min) is the total time taken to con-
sume all 15 bloodworms.

(5)P(t) =
1

n

|
|
|

∑n

i=1
vi(t)

|
|
|

(6)
Gx,y(t) = (x, y1(t) + x, y2(t) + x, y3(t) + x, y4(t) + x, y5(t) + x, y6(t))∕6

(7)D(t) =

√
(x(t) − GX(t))

2 + (y(t) − Gy(t))
2

(8)
Gv(t) =

√
(Gx(t) − Gx(t − 1))2 + (Gy(t) − Gy(t − 1))2∕Δt

(9)PTM = Tmoving∕Ttotal × 100

(10)F = i∕t

Additionally, the following parameters were manually 
analyzed to evaluate the group dynamics in the context of 
food and shelter. (1) Number of times the fish group left the 
shelter (n): This refers to the number of times a group of 
juvenile crucian carp (consisting of more than four individu-
als) entered and exited the shelter, with each entry and exit 
counted as one occurrence. (2) Duration of stay in shelter 
(s): This refers to the total time that a group of fish, consist-
ing of more than four individuals, spends inside shelters. 
(3) Group size (individuals): This represents the number of 
individuals in a group when they emerge from shelters.

Data analysis and statistics

Because 12 videos could not be analyzed by the idTracker 
software, these fish groups were excluded from the follow-
ing statistical analysis of individual and group behavior. 
The obtained data were first analyzed with Excel (v.2021) to 
obtain the individual and collective behavioral parameters, 
as mentioned above. The statistical software package IBM 
SPSS Statistics (v.22.0) was subsequently used to perform 
the statistical analysis of these parameters. The software Ori-
gin (v.2021) was used to plot all the figures. All the data are 
expressed as the means ± SEs, and the significance level for 
all the tests was set as P < 0.05.

The data were first tested for normality and homogeneity 
of variance using the Kolmogorov‒Smirnov test. A linear 
mixed model (LMM) was used to examine the effects of 
temperature and context on the behavioral parameters. This 
model used temperature (15 °C and 25 °C) and context (open 
water, food and food + shelter) as fixed effects, behavioral 
parameters as the dependent variables, and group ID as a 
random effect. If differences were reported by this LMM, 
differences in individual and group behavioral parameters 
between the two temperatures within the same context were 
compared using independent sample t tests, and differences 
among contexts within the same temperature were compared 
using one-way ANOVA followed by Duncan’s test. If the 
data distribution did not conform to the normality analysis, 
a nonparametric test was used, with the Kruskal‒Wallis test 
used for between-group analysis and the Mann‒Whitney U 
test used for within-group analysis. The Mann‒Whitney U 
test was also used to test the differences in the number of 
times the fish group left the shelter, duration of stay in shel-
ter, and group size between two temperatures.

We used Pearson’s correlation to examine the potential 
correlations between the three key components of collective 
motion. Finally, the repeatability of the approach for indi-
vidual and collective behaviors at two temperatures across 
the three contexts was assessed using the intraclass correla-
tion coefficient (ICC), which serves as a reliable measure of 
measurement or rating consistency. The ICC is computed as 
a ratio, where ICC = between-cluster variance/total variance 
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(both within and between clusters), thus yielding a value 
ranging from 0 to 1 (Liljequist et al. 2019).

Results

We found that both temperature and context impacted the 
individual behavior of the fish (Fig. 2 and Table 1). Across 
the two temperatures, the fish acclimated at 25 °C moved 
faster, with individual swimming speeds higher at 25 °C 
than at 15 °C, irrespective of context (Fig. 2a). Similarly, 
individuals acclimated at 25 °C had a greater synchroniza-
tion of speed than did those acclimated at 15 °C in both the 
open water context and the food context (Fig. 2b). In con-
trast, at the two temperatures, the fish had the lowest indi-
vidual swimming speeds in the open water context compared 
with those in the food context and food + shelter context 
(Fig. 2a). At 15 °C, the fish swam faster and exhibited greater 

synchronization of speed in the food + shelter context than in 
the other two contexts (Fig. 2). However, the fish exhibited a 
lower synchronization of speed in the food + shelter context 
than in the other two contexts at 25 °C (Fig. 2b).

Apart from group polarization, temperature and con-
text impacted the group speed and the group PTM of the 
fish (Fig. 3 and Table 1). The group speed and the group 
PTM were lower in the 15 °C treatment than in the 25 °C 
treatment (Fig. 3a, c). In different contexts, both the group 
speed and the group PTM increased from the open water 
context to the food + shelter context. The group speed and 
the group PTM were greater in the food + shelter context 
than in both the open water and food contexts. In addition, 
group polarization was modulated only by context and not 
by temperature (Fig. 3b and Table 1). The fish groups in 
the food context were arranged more compactly than were 
those in the other two contexts. No temperature effect on 
group cohesion was found in the three contexts (Fig. 4 and 
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Fig. 2   Effects of temperature and context on individual swimming 
speed and synchronization of speed in juvenile crucian carp. The 
boxes show the median, interquartile range, and whiskers (1.5 × the 
interquartile range). Boxes topped by the same lowercase letter (a, 

b, and c) do not differ significantly among the three contexts within 
a given temperature, while the pound sign (#) indicates a significant 
difference in parameters between the two temperatures within a given 
context

Table 1   Effects of temperature and context on the behavioral parameters of crucian carp based on the linear mixed model

N/A: This covariance parameter is redundant, and the test statistic and confidence interval cannot be computed

Parameters Temperature Context Temperature × Context Group ID

Individual swimming 
speed

F1,38.51 = 146.253, P < 0.001 F2,74.278 = 37.064, P < 0.001 F2,74.278 = 7.834, P < 0.001 Wald Z = 6.066, P = 0.004

Synchronization of speed F1,37.789 = 26.79, P < 0.001 F2,73.811 = 3.851, P = 0.026 F2,73.811 = 16.684, P < 0.001 Wald Z = 2.321, P = 0.020
Interindividual distance F1,111 = 1.401, P = 0.239 F2,111 = 19.335, P < 0.001 F2, 111 = 2.271, P = 0.108 N/A
Nearest neighbor distance F1, 111 = 0.003, P = 0.953 F2, 111 = 43.349, P < 0.001 F2, 111 = 2.951, P = 0.056 N/A
Distance to group center F1,38.998 = 0.34, P = 0.563 F2,75.926 = 83.657, P < 0.001 F2,75.296 = 3.423, P = 0.038 Wald Z = 0.009, P = 0.993
Group speed F1,38.307 = 120.095, 

P < 0.001
F 2,74.299 = 83.657, 

P < 0.001
F2,74.299 = 13.619, P < 0.001 Wald Z = 2.395, P = 0.017

Group polarization F1,38.083 = 0.563, P = 0.458 F 2,74.83 = 7.394, P = 0.001 F2,74.83 = 3.663, P = 0.03 Wald Z = 0.558, P = 0.557
Group PTM F1,37.793 = 49.828, P < 0.001 F2,73.868 = 40.666, P < 0.001 F2,73.868 = 8.231, P < 0.001 Wald Z = 2.315, P = 0.021
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Table 1). However, among the three contexts, fish in the 
food context had the closest group structure, with the lowest 
values for IID, NND, and distance to the group center, com-
pared to those in both the open and food + shelter contexts 
(Fig. 4 and Table 1).

Both the foraging speed and foraging latency were regu-
lated by temperature and context (Fig. 5). In both the food and 
the food + shelter contexts, the foraging speed of the shoals 
was lower in the 15 °C treatment than in the 25 °C treatment 
(Fig. 5a). Furthermore, the fish had greater foraging speeds 
in the food context than in the food + shelter context at 25 °C, 
but such a contextual effect was not found at 15 °C (Fig. 5a). 
On average, in the food context, the fish first fed at 42 s and 
48 s after the start of the experiment at 15 °C and 25 °C, 
respectively (Fig. 5b). In contrast, in the food + shelter con-
text, the fish started to feed at 182 s and 102 s after the start 
of the experiment at 15 °C and 25 °C, respectively (Fig. 5b).

With the presence of the shelter in the tank, the fish 
tended to split into subgroups, which were dependent on 
temperature. Between 15 °C and 25 °C, there were differ-
ences in the sizes of the groups that left the shelter at any 
time, the frequency of swimming from the shelter, and the 
duration of stay in the shelter (Table 2). At 15 °C, due to 
the longer time (396 ± 29 s) fish spent in the shelter, the 
fish shoal left the shelter less frequently, and the average 
fish group size was 2.5 ± 0.2 individuals per outing. In 
contrast, the fish shoal spent less time (186 ± 20 s) in the 
shelter at 25 °C than at 15 °C, and the average fish group 
size was 5.1 ± 0.1 individuals per outing (Table 2). The 
variables related to individual and group behavior, except 
for the nearest neighbor distance, were found to be con-
sistent across contexts at 15 °C; however, only individual 
swimming speed exhibited repeatability across contexts 
at 25 °C (Table 3).
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Discussion

Our study aimed to investigate the effect of temperature on 
the individual and collective behavior of juvenile crucian 
carp in different contexts. By analyzing movement data from 
the fish groups, we found that fish at a higher temperature 

(25 °C) had greater spontaneous activity than did those at 
a lower temperature (15 °C), as evidenced by increased 
time in movement and swimming speed and increased feed-
ing efficiency. Under colder conditions, fish tended to stay 
in shelters, reducing their foraging activity. Furthermore, 
compared with the open water context and food + shelter 
context, the effect of temperature on group structure was 
only evident in the food context, in which fish exposed to 
higher temperatures were more dispersed, while those at 
lower temperatures were more densely arranged. In the dif-
ferent contexts, the locomotor performance of fish groups 
increased with increasing habitat complexity. Compared 
with those in the other two contexts, the fish in the food 
context were the most aligned and arranged themselves more 
closely together. In contrast, shoals exposed to food + shelter 
were the most dispersed, and they usually took more time 
before starting their first group foraging. The presence of 
shelter in the environment made the fish groups more likely 
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Table 2   Statistical analysis for the use of shelters and group size 
differences (mean ± SE) between the two temperatures based on the 
Mann–Whitney U Test

Parameters Temperatures P

15 °C 25 °C

Number of times the fish 
group left the shelter (n)

2.83 ± 0.39b 12.45 ± 0.64a P < 0.001

Duration of stay in shelter (s) 396 ± 29a 186 ± 20b P = 0.004
Group size (individuals) 2.5 ± 0.2b 5.1 ± 0.1a P < 0.001

Table 3   Repeatability 
of behavioral parameter 
measurements between three 
contexts in crucian carp at two 
temperatures

Notes: *** indicates P < 0.0001; ** indicates 0.001 < P < 0.0001; and * indicates 0.001 < P < 0.05

Parameters Temperatures

15 °C 25 °C

Individual swimming speed ICC = 0.820, P < 0.0001*** ICC = 0.567, P = 0.014*
Synchronization of speed ICC = 0.494, P = 0.042* ICC = 0.217, P = 0.251
Interindividual distance ICC = 0.491, P = 0.043* ICC = 0.162, P = 0.306
Nearest neighbor distance ICC = 0.420, P = 0.083 ICC = -0.098, P = 0.553
Distance to group center ICC = 0.523, P = 0.030* ICC = -0.065, P = 0.524
Group speed ICC = 0.736, P < 0.0001*** ICC = 0.268, P = 0.201
Group polarization ICC = 0.526, P = 0.029* ICC = 0.320, P = 0.153
Group PTM ICC = 0.639, P = 0.005** ICC = -0.100, P = 0.555
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to split into subgroups, with larger group sizes occurring at 
25 °C than at 15 °C.

Previous studies have shown that the effect of temperature 
on individual fish behavior is modulated by the behavioral 
strategies of the fish (Fu et al. 2018). The spontaneous activ-
ity of damselfish (Pomacentrus moluccensis) increases with 
increasing temperature (Biro et al. 2010). However, the loco-
motor activity of common carp (Cyprinus carpio) decreases 
with increasing temperature (Fu et al. 2012), while the spon-
taneous activity of Chinese bream (Parabramis pekinensis) 
does not change with increasing temperature (Peng et al. 
2016). Such behavioral strategy choices may be modulated 
by the different physiological states of fish and the envi-
ronment in which the individual is situated. In our study, 
compared to the fish at 15 °C, the fish at 25 °C had greater 
individual swimming speeds (e.g., spontaneous activity) 
and foraging speeds. Moreover, the fish groups spent more 
time hiding in the shelter at 15 °C than at 20 °C, suggesting 
that this behavioral strategy of hiding in shelters in crucian 
carp groups may be modified by temperature. At lower tem-
peratures, physiological activity and metabolic functions are 
reduced, resulting in lower spontaneous activity (Claireaux 
et al. 2000; Joaquim et al. 2004; Zeng et al. 2009; Fu et al. 
2018). Under such thermal conditions, the fish may have 
chosen to compensate for this functional decline by reducing 
movements and instead staying in the shelter.

Generally, the faster the group moves, the greater the syn-
chronization of speeds, and the greater the IID and coher-
ence of the group (Jolles et al. 2017; Schaerf et al. 2017; 
Wang et al. 2019; Li et al. 2022). In the foraging context, 
fish usually exhibit a faster foraging speed and may form 
looser shoals to reduce competition for food between group 
members (Hoare et al. 2004; Schaerf et al. 2017). An empir-
ical study showed that the IID and group polarization of 
stickleback (Gasterosteus aculeatus) increase with increas-
ing group speed (Jolles et al. 2017). In zebrafish (Danio 
rerio), the faster the group swims, the looser the group 
becomes (Miller and Gerlai 2012). Compared to those in an 
open water context, qingbo showed a significant increase 
in group speed but a decrease in group cohesion and group 
coordination in the presence of both food and shelter (Yang 
et al. 2021). In our study, fish in the open water context 
swam the slowest, those in the food context swam at moder-
ate speeds, and those in the food + shelter context had the 
highest swimming speeds. Interestingly, the fish in the food 
context were the most cohesive and closely aligned, hav-
ing the greatest group polarization and the smallest IID. 
The groups in the food + shelter context had the greatest 
group swimming speeds but were not as well aligned as the 
groups in the food context were. Moreover, although the 
groups in the food + shelter contexts had the greatest move-
ment speeds, their synchronization of speed was not posi-
tively related to individual swimming speeds. There was no 

significant difference in the synchronization of speed (both 
0.65 ± 0.02) between the two temperatures for the fish in the 
food + shelter context. This may be attributed to the presence 
of shelters allowing for increased environmental complex-
ity, which may reduce anxiety in fish (Maillet et al. 2015). 
Environmental contexts might temporarily reduce hetero-
geneity in behavioral expressions; for example, foraging 
motivation may change in response to food availability or 
predation risk (Krause and Ruxton 2002; Jolles et al. 2019). 
A complex habitat provides a variety of ecological niches for 
animals and facilitates the coexistence of multiple behavioral 
strategies within a community (Xu 2020). Furthermore, the 
physical structure of shelters may also reduce visual contact 
between individuals but also increase barriers to movement; 
shelters provide more physical structures while increasing 
the cost of animal movement (Amat et al. 2018), and animals 
may be less likely to move in complex habitats (Skalski and 
Gilliam 2002). Additionally, the presence of more complex 
environments, as compared to a single biological context, 
introduces multiple physical dimensions in fish, thereby 
diverting attention to some extent (Heit et al. 2002; Dall 
et al. 2005). The presence of shelters increased the poten-
tial for fragmentation of intergroup behavioral strategies 
and led to differences in the behavioral tendencies of mem-
bers of different groups. In our study, in contexts without 
shelter grouping is the primary option for safety and it also 
increases competition for food among group members. In the 
food + shelter context, however, some individuals that were 
less hungry tended to stay in the shelter, but others tended 
to go out for some motivational activities, such as search-
ing for food, resulting in a longer latency to consume food 
compared to the food context. In this way, although the fish 
in the food + shelter context exhibited the fastest movement 
speed, the synchronization of swimming speed did not show 
a corresponding change, and the group coordination was 
lower than that in the food context.

Animal foraging behavior is regulated by various factors. 
It has been shown that under high temperature conditions 
(especially in hot summers), the activation of the GH/IGF-I 
axis increases metabolic demand for growth in fish (Gabil-
lard et al. 2003) and can also regulate the expression of appe-
tite centers in the Atlantic cod (Gadus morhua) and Chinese 
perch (Siniperca chuatsi) (Kehoe and Randall 2008; Song 
et al. 2017). Additionally, uncertainty about distribution of 
food patches or predators in the environment may also allow 
foraging behavior to change. Previous studies have indicated 
that during foraging, an animal's energy intake increases, but 
the risk of exposure to predators also increases (Andrews 
and Belknap 1986). When not foraging, animals can scan 
the environment for predators or rest in a shelter, thus reduc-
ing the risk of predation but decreasing energy intake (Hig-
ginson et al. 2012). The presence of shelters, in addition, 
enhances environmental complexity, potentially impeding 
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communication between group members and consequently 
reducing their foraging speed (Tang and Schwarzkopf 2013). 
Consistent with the findings of previous studies (Hansen 
et al. 2015; Allan et al. 2015), our study found that the forag-
ing speed of fish at 15 °C was lower than that at 25 °C in all 
three contexts. Compared with those in the 15 °C treatment, 
the fish in the 25 °C treatment may have had greater meta-
bolic demands for basic energy expenditure, growth, and 
appetite, and they were more strongly motivated to forage 
at larger group sizes under the 25 °C treatment. Fish often 
delay feeding when shelters exist. The presence of shelters 
may not only provide shelter from potential risks but also 
reduce the animals' visibility to the habitats (Lima and Zoll-
ner 1996; Tang and Schwarzkopf 2013). In our study, fish 
first entered the shelter after being released into the tank to 
scan their surroundings or to rest in the shelter to balance 
foraging benefits and costs. The food context was relatively 
simple in terms of environmental cues, and the fish could 
quickly observe and assess the potential risks of their sur-
roundings and find food to then make group decisions when 
compared to the food + shelter context. It is noteworthy that 
the juvenile crucian carp used in the present study were 
obtained from a local fish farm, implying a probable lack 
of exposure to really natural predators, and suggesting that 
their antipredatory behavior likely stems from innate evolu-
tionary responses.

In conclusion, changes in temperature and context lead 
to differences in individual behavior of group members, 
which can further lead to changes in collective behavior 
and group functioning. Even at the same temperature, col-
lective behaviors are modulated according to the different 
contexts in which they occur and are temperature-depend-
ent. Consistent differences in collective behavior can occur 
even when the same group is faced with different contexts. 
In the food context where only a single stimulus cue (e.g., 
food) is present, the fish groups show the tightest and neatest 
structure. However, with the addition of shelter to the tank, 
the environmental complexity increased, and the behavioral 
tendencies of the group members changed. It becomes more 
difficult for fish groups to assess the potential risk of their 
surroundings over time, and fish may need to spend more 
time to trade off the benefits of foraging against these risks. 
Such adaptive variation in fish groups may impact colony 
survival and reproduction. Currently, in the face of global 
climate change and frequent human activities, animals may 
face multiple survival stresses and challenges. Whether ani-
mal groups develop adaptive variations in response to rapid 
environmental changes in their habitats as well as the associ-
ated behavioral responses deserves attention. Future studies 
should focus on the collective behavioral patterns of animals 
and explore the links between collective behavior, functional 
performance, mechanisms, and ecological processes in the 
face of global climate change.
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