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Abstract

Ambotuy
Favoring males’ specific sexual signals, female preferences play a major role in frogs’ evolutionary process by selecting 
traits linked to those signals. However, the factors constraining and determining those preferences are scarcely explored in an 
evolutionary background. Here, through a phylogenetic comparative approach we check whether anuran species phylogenetic 
proximity and calling site predicts female preferences for dominant frequency and whether those preferences influence spe‑
cies sexual size dimorphism. Our hypotheses are as follows: 1) closer species have similar females’ preferences related to the 
dominant frequency of the partners’ calls; 2) the calling site influences sound propagation and consequently the preference 
of females for the dominant frequency of the males’ calls; and 3) the preference for calls with low dominant frequency influ‑
ences the size of the males and consequent reduction of the biSased dimorphism for females. We did not find support for our 
hypotheses, neither for the influence of phylogenetic proximity nor for calling site determining these preferences. Moreover, 
female preferences did not impact on species sexual size dimorphism. Besides shedding light into our hypotheses, this study 
represents a considerable advance on evolutionary studies of female preferences in anura, which still lacks broad species 
comparative approaches. Furthermore, we suggest future studies to expand knowledge regarding frogs’ female preferences.

Significance statement
This study advances our comprehension of female preferences in frogs by investigating the factors that shape these prefer‑
ences and their implications for species sexual size dimorphism. Utilizing phylogenetic comparative methods, an approach 
rarely used in the context of anuran female preferences, this study represents a significant step in applying broad comparative 
approaches in this field. Highlighting the complex nature of mate choice and its relationship to morphology, soundscape, 
and phylogeny, we present important insights into evolutionary hypotheses related to female preferences. Lastly, we provide 
advice on how future studies could further explore this topic in a broader comparative framework while also discussing the 
limitations of available data on anuran mating preferences.
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Introduction

Female preferences play a major role on animal’s sexual 
selection by determining mate choices based on sexual 
signals (Andersson and Simmons 2006). Favoring a 
specific trait variant, mating preferences might result in 
important evolutionary changes in male morphology, 
behavior, and on species extinction or adaptation in con‑
texts of environmental change  (Houde and Endler 1990; 
Ptacek 2000). Many studies have focused on hypotheses 
to explain evolution of specific mating preferences (e.g., 
good genes (Zahavi 1975), direct benefits (Williams 1966), 
and Fisher’s process (Fisher 1930)). However, more efforts 
are needed to understand how female choice acts on sexual 
selection to understand its role in species adaptation (Can‑
dolin and Heuschele 2008).

Anura is one of the most well‑studied taxa in female 
preference research (Gerhardt and Huber 2002). Anuran 
females choose their mates based on several characteris‑
tics, such as territory quality  (Wells 1977; Howard 1978), 
parental ability (Márquez 1993), morphology (Robertson 
1986; Zhu et al. 2016), and specially by their acoustic 
features (Gerhardt and Huber 2002). Experimental play‑
back approaches have already shown that females from 
several species might choose their mates based on call 
properties like dominant frequency, calling rate, and call 
duration (Gerhardt and Huber 2002; Bee 2008; Moreno‑
Gómez et al. 2015; Yu et al. 2020). Specifically, the domi‑
nant frequency (i.e., the frequency in the call where most 
energy is concentrated (Köhler et al. 2017)) is widely used 
by anuran females to choose their mates (Wollerman et al. 
1998; Lardner and Lakim 2004; Zhu et al. 2016). Directly 
determined by males’ body size (Gingras et al. 2013a), 
this characteristic is used by several animals in their mate 
choice process, including anura (Fitch and Hauser 2003; 
Reby and McComb 2003).

As in other animal groups (Colleye et al. 2011; Arato 
and Fitch 2021), closely related anurans are known to have 
similar call characteristics, especially those related to mor‑
phological characters, such as dominant frequency (Hepp 
et al. 2017). Compliant with that, using phylogenetic com‑
parative tools, studies have shown that phylogenetic close 
anurans share many of their call’s characteristics (Goi‑
coechea et al. 2010; Gingras et al. 2013b). Furthermore, 
considering the idea that species have pre‑existent prefer‑
ences inherent to signal perception neurological aspects 
(Ryan and Rand 1993), this acoustic resemblance could 
also reflect on similar preferences between related species. 
Yet, this topic is still a gap in the evolutionary knowledge 
of anura.

Choosing a mate represents a cost in terms of preda‑
tion risk, time, and energy (Milinski and Bakker 1992; 

Godin and Briggs 1996). Therefore, the capacity of 
females to correctly evaluate a mate plays a major role 
in the cost–benefit balance of mating decision processes 
(Wiley 1994). Acoustic signals in nature are subject to 
the influence of environmental factors (e.g., topography, 
air temperature, wind speed, or vegetation cover) that 
constrain the efficiency of signal transmission, affecting 
its quality and range (Wiley and Richards 1978). Accord‑
ingly, studies have explored how frog species microhabi‑
tat and calling site affect sound propagation (Goutte et al. 
2016, 2018; Tonini et al. 2020). Calling from herbaceous 
vegetation or trees represents an advantage in terms of 
signal propagation, as those sites provide longer signal 
propagation distance due to their height while also fac‑
ing few physical barriers and therefore, diminished excess 
attenuation (Marten and Marler 1977; Wiley and Richards 
1978; Römer 1992). In contrast, acoustic signals emitted 
from the ground are more susceptible to signal attenuation, 
since part of the reflected signal energy is absorbed by the 
soil (Marten and Marler 1977; Forrest 1994). While signal 
reflection is better in water than in ground, attenuation 
is still dependent on water depth and on the interaction 
between water and water‑surface, which increases signal 
attenuation for specific frequency windows (Forrest 1994). 
Moreover, sound production in water might be problem‑
atic as depth also affects species ability to float, limiting 
their vocal sac inflation, which impacts calls attractive‑
ness (Halfwerk et al 2017). These constraints on sound 
production and propagation imply that frog females are 
subject to errors while interpretating signals coming from 
calling males (Forrest 1994; Bee and Micheyl 2008). Thus, 
females from species in which males typically call from 
disadvantageous sites in terms of signal transmission prop‑
erties and production would receive a less reliable signal, 
not being able to correctly evaluate mates and exert their 
mating preferences.

Sexual selection can strongly influence sexual size dimor‑
phism, by both increasing and decreasing differences in the 
size of the sexes (Andersson and Iwasa 1996). However, 
the relationships between sexual selection and sexual size 
dimorphism in anurans were only explored considering 
competition between males as a proxy for sexual selection 
(Shine 1979; Han and Fu 2013; Pincheira‑Donoso et al. 
2020). On the other hand, female choice is an alternative 
to explore the relationship between sexual selection and 
sexual size dimorphism, as a previous meta‑analysis on call 
frequency and male body size preferences in anurans as 
observed that females, in general, prefer males that vocalize 
with a low dominant frequency, that indicate larger males 
(McLean et al. 2012). In this sense, as female choice can 
indirectly affect male size through the selection of specific 
call frequencies, this preference could affect sexual size 
dimorphism.
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Despite the well‑established knowledge on female prefer‑
ences for call frequencies in anurans (Marquez 1995; Rosso 
et al. 2006; Schrode et al. 2012), large‑scale approaches on 
their evolutionary determinants are still scarce. Therefore, 
assessing those relationships turns out to be a relevant matter 
in terms of ecological and evolutionary knowledge for anura. 
Thus, using phylogenetic comparative tools (Felsenstein 
1985) we test the following hypotheses: (1) preference for 
call frequency is a phylogenetically conservative trait, and 
thus females of closely related species share similar prefer‑
ences for dominant frequency; (2) male calling site influ‑
ences sexual preferences, and thus females do not exhibit 
preferences for dominant frequency in species with males 
calling from poor sound propagation sites (i.e., water and 
ground in comparison to perched, see methodology); and (3) 
species in which females exhibit preferences for lower domi‑
nant frequency have sexual size dimorphism less skewed or 
skewed toward males.

Methods

Female frequency preference data

We retrieved female frequency preference (FFP) through a 
systematic literature search using Scopus and Web of Sci‑
ence database. The search included articles in English con‑
taining the following terms combination in their abstract, 
keywords or title: (Anura* OR frog* OR treefrog* OR toad* 
OR (all anuran families)) AND (“sexual select*” OR “mat* 
choic*” OR “mat* preference*” OR “female choic*” OR 
“female preference*” OR “assortative mat*” OR “mat* 
success” OR “reproductive success”). Our survey includes 
records published until January, 2022, starting from 1970 
for Scopus and from 1945 for Web of Science. We identified 
three types of FFP in 30 species: preference for lower domi‑
nant frequencies, preference for average dominant frequen‑
cies, and absence of preference. In a few species (3 cases), 
three or more studies had divergent results regarding FFP 
(species), in those cases we considered the most consensual 
result between them.

Calling site data

We determined calling site using a previous classification by 
Tonini et al. (2020), that divides anuran species into three 
groups according to their preferred calling site: water (6), 
ground (16), and perched (8). For a few species of our FFP 
dataset which were not included in that classification (3), 
we searched scientific literature using Google Scholar and 
AmphibiaWeb platforms to classify their calling site.

Sexual size dimorphism data

To calculate sexual size dimorphism (SSD), we retrieved 
maximum body size (snout‑vent length, SVL) for males 
and females from the Pincheira‑Donoso et al. (2020) and 
additional literature search. Maximum SVL was used 
because it is indicative of the potential size of taxon with 
indeterminate growth, due to allometric limitations (Levy 
and Heald 2015). For duplicate species in the database, 
we used the highest SVL found. The SSD calculation was 
done as follows: ln (male maximum SVL/female maximum 
SVL). This proportion is common in literature, allowing a 
simple interpretation of values (Smith 1999). Thus, SSD 
is equal to zero in species with males and females of the 
same size, and takes negative values in species with larger 
females and positive values in species with larger males.

Comparative analyses

All our analytical procedures were based on 1000 phy‑
logenetic trees for the amphibians and all 30 species in 
our data were matched on the Jetz and Pyron (2018) phy‑
logeny. Species names of our data sources (above) were 
paired with those defined in the available phylogenies and 
nomenclature standardized accordingly.

To test phylogenetic patterns in FFP shape, we use the 
fit Discrete function, which is suitable for fitting models 
that involve discrete traits and phylogenetic trees. We 
tested all available evolutionary tree transformation mod‑
els (Brownian, ACDC, lambda, kappa, delta, and white 
noise) and selected the one with the lowest average AICc 
(considering the 1000 phylogenetic trees) as the best evo‑
lutionary model for our data.

To test the relationship between FFP and calling site, 
we used phylogenetic GLM models, with the phyloGLM 
function, computing 100 bootstraps and using maximum 
penalized likelihood estimation. Here, we only used the 
presence or absence of FFP. This model was performed 
1000 times (once for each phylogenetic tree) and we used 
the average coefficients to account for the phylogenetic 
uncertainty.

To test the relationship between SSD and FFP, we per‑
formed a phylogenetic linear model, with the “phylolm” 
function. FFP are categorized as lower dominant fre‑
quencies, preference for average dominant frequencies, 
and absence of preference. Here, we also use the average 
coefficients obtained from the 1000 trees. All analytic and 
phylogenetic procedures were performed in the software R 
v4.3.0 (R Core Team 2022), using the packages phytools 
(Revell 2012), phylolm (Tung Ho and Ané 2014), and gei-
ger (Harmon et al. 2008).
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Results

We obtained data for FFP for 30 species from 12 differ‑
ent families (see Supplementary Data). While almost half 
our species show preferences for lower values of dominant 
frequency (~ 53%), a considerable number prefer average 
values (20%) or do not show any preferences for call fre‑
quency (~ 27%). No species show preferences for higher 
values of dominant frequency. Figures 1, 2, and 3 present 

the distribution of studied traits (FFP, calling site, and SSD) 
mapped onto the phylogeny.

Following the AICc criteria, the white‑noise model had 
the best fit to the evolution of FFP in all our phylogenies 
(99.9% of trees; mean of AICc = 67.746; Table 1), coherent 
with Pagel’s lambda close to 0. As this model converts the 
tree into a star phylogeny, losing all traces of shared ances‑
try, we do not support the relation between phylogenetic 
proximity and FFP.

Fig. 1  Species phylogenetic 
relationships and studied traits: 
female frequency preference 
(FFP), calling site and sexual 
size dimorphism (SSD), follow‑
ing one of the 1000 simulated 
trees by Jetz and Pyron (2018). 
Absence of dots represents data 
absence

Fig. 2  Number of anuran spe‑
cies according to presence of 
FFP (female frequency prefer‑
ence) and their calling sites 
(aquatic, arboreal, or terrestrial)
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We do not find support for calling site influence on female 
frogs’ preference for dominant frequency (Table 2). Also, we 
find no effect of the FFP on species SSD (Table 2).

Discussion

Overview

Using phylogenetic comparative methods, we did not find 
support for our hypothesis that females from close related 
species share similar preferences for dominant frequency. 
Furthermore, we did not find support for the influence of 
calling site on determining these preferences. Finally, 
according to the data available, female preference did not 
seem to influence sexual size dimorphism. Besides shed‑
ding light into our hypotheses, this study also raises rel‑
evant questions regarding data availability, usage, and future 
research topics.

Phylogenetic signal

Contrary to our expectations, FFP is not a phylogenetically 
conserved trait across frogs’ evolutionary history accord‑
ing to the data available for female preferences in the study 
group. Female preference is probably a trait with high levels 
of phenotypic plasticity and might be affected by several fac‑
tors, such as temperature, social aggregations size, and spe‑
cies interaction (Gerhardt 1978; Höbel and Gerhardt 2003; 
Tanner and Bee 2019). Thermal coupling, for example, 
occurs when in face of a temperature change, both the sig‑
nals emitted by conspecifics and the preference are changed 
in the same direction (Gerhardt 1978). However, there are 
cases, as seen in Hyla cinerea (Schneider 1799), where only 
the signal or the preference is altered by temperature, which 
impairs the identification and evaluation of the signals emit‑
ted by conspecifics (Gerhardt and Mudry 1980). Considering 
background noise from chorus, females of Dendropsophus 
ebraccatus (Cope, 1874) do not exhibit preferences for dom‑
inant frequency when there is a high level of chorus noise 

Fig. 3  Relationship between female frequency preference (FFP) and 
sexual size dimorphism (SSD) in anuran species. The box horizontal 
lines represent the interval between 25, 50 (median), and 75% per‑
centiles. The vertical line represents the highest and lowest values 
excluding outliers (observations which fall  outside by 1.5 times the 
interquartile range). Violin plots represent data distribution

Table 1  Mean, minimum, and maximum AICc values obtained for 
different evolutionary tree transformation models (ACDC, lambda, 
kappa, delta, white noise, and Brownian). Each transformation was 
made for 1000 phylogenetic trees. Some models were discarded due 

to fit errors (710 ACDC models and 68 delta). The % of trees in 
which each model has the lowest AICc among others is presented and 
indicates the most plausible evolutionary tree transformation model 

Model Lambda ACDC Kappa Delta White Brownian

Mean AICc 65.31 69.10 69.80 70.33 65.02 68.060
Min AICc 65.31 61.68 69.80 68.99 65.02 68.060
Max AICc 65.31 70.36 69.80 70.36 65.02 68.060
% Lowest AICc 0 0.1 0 0 99.9 0

Table 2  Mean coefficients with respective standard deviations and 
confidence intervals (95%) for the 1000 PHYLOglm (FFP–calling 
site) and Phylolm (SSD–FFP) performed considering the 1000 phylo‑
genetic trees. The intercept represents water site and absence of pref‑
erence, respectively. Metaphrynella sundana (Peters, 1867) was not 
considered for SSD–FFP analysis as it is known that males’ dominant 
frequency is not related to their body size in this species (Lardner and 
Lakim 2004)

FFP–calling site

Estimate Lower limit Upper limit Z

   Intercept 1.36  − 0.74 3.43 1.33
   Ground  − 0.88  − 3.23 1.46 0.78
   Perched 0.25  − 2.61 3.11 0.18

SSD–FFP
Estimate Lower limit Upper limit t

   Intercept  − 0.17  − 0.26  − 0.09  − 4.41
   Low frequency 0.004  − 0.10 0.10 0.07
   Average frequency 0.09  − 0.04 0.22 1.42
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(Wollerman and Wiley 2002). Furthermore, in sympatry, 
species interactions might modify female frequency prefer‑
ence to avoid hybridation (Márquez and Bosch 1997).

Males’ call frequencies are not the only characteristic driv‑
ing females’ mating decisions. For example, female prefer‑
ences for temporal characteristics like call rate and call dura‑
tion have been documented for several anuran species (Bosch 
and Márquez 2005; Dawson and Ryan 2009; Richardson et al. 
2010; Laird et al. 2016). Mate choice may also be related to 
characteristics that involve direct benefits for the female, such 
as males’ territories or nests  (Wells 1977; Höbel 2000; da 
Rocha et al. 2018). It might also be related to the good gene 
model of female preference so that attributes such as color 
can indicate males that have higher genetic quality (Maan 
and Cummings 2009). Studies have shown that females of 
some frog species from our dataset also express preferences 
for male characteristics other than call frequency (Backwell 
and Passmore 1990; Bosch and Márquez 2001; Baugh and 
Ryan 2011; Richards‑Zawacki et al. 2012). For instance, 
Oophaga pumilio (Schmidt, 1857) females choose their 
mates based on visual cues related to males’ colors (Sum‑
mers et al. 1999; Maan and Cummings 2009). Furthermore, 
studies with Engystomops pustulosus (Cope, 1864) sug‑
gest that male attractiveness should be a multidimensional 
characteristic, in which females choose their mates based 
on the evaluation of several characteristics simultaneously 
and not exclusively through their dominant frequency (Ryan 
and Rand 2003; Baugh et al. 2008). The phenotypic plastic‑
ity of female preferences as well as the preference for other 
characteristics might explain why according to our results, 
closely related taxa do not share female frequency prefer‑
ences. However, it is important to highlight that despite being 
a considerable effort in comparison to other studies in the 
area while embracing 30 species with described FFP, this 
represents only a very small sample of all anura diversity 
(i.e., approximately 7500 species (Frost 2020)).

Calling site

Females’ signal perception and interpretation might not be 
such a limiting and costly factor for mating choice as we 
expected. As predicted by sound propagation properties, 
specific calling sites might represent real challenges to sig‑
nal transmission (Wiley and Richards 1978; Richards and 
Wiley 1980; Hardt and Benedict 2020). However, the acous‑
tic adaptation hypothesis (Morton 1975; Wiley and Richards 
1978) predicts that species’ acoustic signals should evolve 
to optimize their transmission in their habitats. For instance, 
while comparing species calling from water and non‑floating 
ones, Muñoz et al. (2020) found that water species had lower 
dominant frequencies, an advantage in terms of signal propa‑
gation distance. Moreover, animals might develop behavioral 

strategies to minimize signal degradation like increasing 
their call amplitude and duration (Brumm and Slater 2006; 
Ey et al. 2009). Finally, receivers are also expected to evolve 
their cognitive systems in order to interpret those degraded 
signals (Naguib and Wiley 2001). Thus, if both senders and 
receivers are adapted to minimize the impact of acoustic 
signal degradation, females should be still able to exert and 
maintain their preferences regardless of environment signal 
propagation constraints.

In contrast with FFP, species calling site data is a lot 
more representative (i.e., Tonini et al. (2020) database 
classifies 2176 species according to their calling sites). 
However, we should consider that using different scales 
on habitat classification may represent different aspects 
of signal propagation. For instance, Zimmerman (1983) 
tests the effect of habitat on frogs’ acoustic signal evo‑
lution using a binary classification (open and closed 
habitats), while Goutte et al. (2018) uses a continuous 
measure of canopy cover to represent habitat propaga‑
tion properties. While the calling site classification we 
use embrace several species, it is not necessarily the best 
representation of the environmental constraints on signal 
propagation and therefore female choosiness.

Female preferences and SSD

We found no evidence that female preference for call fre‑
quency influences SSD in anurans. Probably, other fac‑
tors, such as parental care, fecundity selection, and dif‑
ferent life history traits between sexes, act more intensely 
in the direction of SSD. For instance, it is known that the 
presence of parental care might decrease SSD in anurans 
(Han and Fu 2013) and larger female size is favored by 
fecundity selection, since larger females have greater 
fecundity (Han and Fu 2013; Nali et al. 2014). Consid‑
ering that anurans have indeterminate growth, female 
anurans have greater longevity, age, and size compared 
to males, and much of the SSD variation in anurans can 
be explained by the age difference between the sexes 
(Monnet and Cherry 2002). Furthermore, even if female 
frequency preferences do not appear to play a role in 
SSD, other aspects related to sexual selection might play 
a role.

Concluding remarks

In this study we explored some of the evolutionary rela‑
tionships determining and constraining female preferences 
for call frequency in anura. Moreover, we also explore the 
influence of those preferences on sexual size dimorphism. 
Through phylogenetic comparative methods we showed that, 
contrary to our expectations, related species do not share 
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dominant frequency preferences and these preferences are 
not determined by species calling sites. Additionally, we 
found no effect of female preferences on SSD, which might 
indicate that other factors play a more important role than 
sexual selection in determining SSD.

Despite of the large dataset gathered for this study, which 
represent a considerable advance on evolutionary studies of 
female preferences in anura, data availability is still scarce 
and might be a limitation to identify robust patterns. Perhaps 
expanding the data on FFP to more species and using differ‑
ent scales of species calling habitat could lead to different 
results. In addition, other aspects of sexual selection must 
be explored to understand its role on SSD. Lastly, we recom‑
mend future studies to also explore other possibly relevant 
variables, such as species mating systems, operational sex 
ratio, and reproductive pattern.

Supplementary Information The online version contains supplemen‑
tary material available at https:// doi. org/ 10. 1007/ s00265‑ 023‑ 03418‑3.
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