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Abstract
The non-independence of social network data is a cause for concern among behavioural ecologists conducting social network 
analysis. This has led to the adoption of several permutation-based methods for testing common hypotheses. One of the 
most common types of analysis is nodal regression, where the relationships between node-level network metrics and nodal 
covariates are analysed using a permutation technique known as node-label permutations. We show that, contrary to accepted 
wisdom, node-label permutations do not automatically account for the non-independences assumed to exist in network data, 
because regression-based permutation tests still assume exchangeability of residuals. The same assumption also applies to 
the quadratic assignment procedure (QAP), a permutation-based method often used for conducting dyadic regression. We 
highlight that node-label permutations produce the same p-values as equivalent parametric regression models, but that in 
the presence of non-independence, parametric regression models can also produce accurate effect size estimates. We also 
note that QAP only controls for a specific type of non-independence between edges that are connected to the same nodes, 
and that appropriate parametric regression models are also able to account for this type of non-independence. Based on this, 
we suggest that standard parametric models could be used in the place of permutation-based methods. Moving away from 
permutation-based methods could have several benefits, including reducing over-reliance on p-values, generating more reli-
able effect size estimates, and facilitating the adoption of causal inference methods and alternative types of statistical analysis.
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Introduction

Social network analysis is a central tool in the study of ani-
mal sociality. Social networks characterise the structure of 
social connections between individuals and are useful for 
answering a wide range of biological questions related to 
social structure, the evolution of sociality, information, 
and disease transmission, and more (Farine and Whitehead 

2015). Social networks are usually analysed quantitatively at 
three levels: nodal, dyadic, or global. Nodal metrics describe 
each node’s position in the network relative to the other 
nodes; dyadic metrics describe each edge’s position in the 
network; and global network metrics characterise features 
of the entire network, such as connection density or long-
est path (Butts 2008). Two common types of hypotheses 
in animal social network analysis can be characterised as 
follows: ‘nodal metrics are related to nodal covariates’, and 
‘the presence or metric of edges are related to dyadic covari-
ates’ (Dekker et al. 2007; Croft et al. 2011). The types of 
analyses used to test these hypotheses are known by vari-
ous names, but we will refer to them as nodal regression 
and dyadic regression respectively. These analyses usually 
use permutation-based regression techniques such as node-
label permutations or the quadratic assignment procedure 
(QAP). Node-label permutations have typically been applied 
to nodal regression and QAP to dyadic regression (Farine 
2017). The justification for the use of permutation-based 
regression tests over parametric regression models is that 
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network data are inherently non-independent and therefore 
break the assumptions of parametric regression.

The problem of non‑independence

Many conventional statistical analyses make the assump-
tion that data are independent (Cohen 1992). This assump-
tion is key to reliable data analysis because it defines the 
source and nature of noise in data generating processes and 
is therefore closely linked to null hypothesis significance 
testing and calculation of p-values. In the case of regression 
analysis, a noise term is included in the model to account 
for non-systematic, independent random noise present in the 
data (Draper and Smith 1998). This assumption is conveni-
ent because it has appealing mathematical properties but in 
practice can rarely be met. In the presence of known sources 
of non-independence, statisticians often use explicit models 
of the sources of non-independence; for example, autocorre-
lation models are frequently deployed in time series analysis 
to account for the known temporal dependencies in sequen-
tial data (Wei 2013).

In network data, dependencies are assumed to be more 
complex. A common example is that undirected node 
strength is explicitly related to the node strength of every 
other node in the network, even for nodes that are not 
directly connected to the node of interest (Sosa et al. 2021). 
Therefore, noise in the data may be linked to various struc-
tural features of the network and would be poorly modelled 
by an independent noise term. Whether or not the p-value of 
a statistical analysis can be trusted depends on how well the 
process that generates noise in the data is described by the 
model, which in the case of parametric regression models 
requires independent residuals.

Inappropriate noise terms in statistical models are a major 
problem when scientific hypotheses are evaluated using null 
hypothesis significance testing (Anderson and Robinson 
2001). Null hypothesis significance testing is based on the 
concept of constructing a null model that describes the data 
if there is no relationship between variables of interest, and 
that any relationship between them is due to chance alone 
(Wasserman 2004). Tests are usually conducted by calculat-
ing the p-value, which is the probability of getting coefficient 
estimates at least as extreme as those from hypothetical data 
generated under the null hypothesis. Parametric regression 
tests use the noise term in the model to estimate what coef-
ficient values are likely ‘by chance’, and to subsequently 
calculate the p-value. If the noise term in the regression 
model does not approximately match the process that gen-
erates noise in the data generating process, then the p-value 
will not reflect what is expected by chance and therefore will 
not be reliable.

Permutation tests

The interconnectedness of social networks appears 
to break the independence assumptions of parametric 
regression models. This has been a long-term concern of 
behavioural ecologists conducting social network analyses 
(Croft et al. 2010). Because permutation tests relax some 
assumptions about the distributions of noise terms, they 
have been widely adopted with the aim of enabling regres-
sion analysis in the presence of non-independence (Croft 
et al. 2011). The notion behind permutation regression 
tests is that if there is no effect, nodal (or dyadic) covari-
ates are equally likely to belong to any node (or dyad). 
When using node-label permutations, parametric regres-
sion is applied to the network and a test statistic such as 
the coefficient estimate or t-value is recorded. Then the 
node labels are swapped at random and the test statistic 
is re-estimated from the new dataset with permuted node 
labels. This permutation step is repeated many times to 
build a distribution of test statistic values under the null 
hypothesis of no relationship between node centrality and 
nodal covariate. The observed test statistic can then be 
compared to the null distribution to calculate statistical 
significance.

In permutation tests, some confounds can be accounted 
for by constraining permutations to between certain data 
points (Winkler et al. 2015). Constraining permutations 
is the key notion behind QAP, which works in much the 
same way as node-label permutations, but because the 
dyad is the unit of analysis, relabelling nodes effectively 
permutes all connections of a node at the same time. This 
controls for any dependence between edges that connect 
to the same node. Constraining permutations in this way 
means that the model that calculates the observed test 
statistic does not account for the confounds being used 
as constraints and subsequently does not take them into 
account when calculating effect size estimates. Conse-
quently, effect size estimates computed in this way will be 
incorrect, to the extent that they may even have the wrong 
sign (Franks et al. 2021).

Instead of explicitly assuming a parametric noise term, 
permutation tests assume that under the null hypothesis, 
any rearrangement of the data is equally likely (Good 
2000). In a regression setting, this generates the null 
hypothesis of no relationship between the response and 
covariates. Thus, permutations have the benefit of remov-
ing the need for some assumptions about the distributions 
of noise in data generating processes. The assumption 
that all permutations of the data must be equally likely 
under the null hypothesis is known as exchangeability of 
data points. This means that data points must be freely 
exchangeable under the null hypothesis without changing 
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their joint probability, which depends on the underlying 
dependence structure of the data points. In the presence 
of dependence between data points, unconstrained permu-
tations of the data do not preserve dependence structure 
(see Fig. 1). This breaks the exchangeability assumption of 
permutation tests for much the same reason as non-inde-
pendence breaks the assumptions of parametric regression 
(Winkler et al. 2015). This is illustrated in Fig. 1A where 
the data points 1 and 2 are independent, but data points 1 
and 3, and 2 and 3 are dependent on each other. This forms 
a dependence structure that must not be broken by permu-
tations, but node-label permutations freely permute data 
points and thus break any dependence structure in the data.

The exchangeability condition also applies to QAP, 
though QAP makes the explicit assumption that dyads are 
dependent on the nodes to which they are attached. This 
assumption means that the QAP controls for one specific 
type of non-independence but is not immune from more 
complex dependencies such as dyads depending on other 
aspects of network substructure. Figure 1B shows how QAP 
restricts permutations on networks to move multiple edges at 
once, preserving the original dependency structure. Hypo-
thetically speaking, if in QAP edges were permuted freely, 
as nodes are in node-label permutations, the dependency 
structure would not be preserved, and invalid permutations 
would be generated (as shown in Fig. 1C). Therefore, per-
mutation tests do not automatically correct for non-inde-
pendence, meaning node-label permutations will produce 

equivalent p-values to comparable parametric regressions, 
and QAP will provide equivalent p-values to comparable 
to parametric regressions with a term for node dependence 
(Good 2000).

In this paper, we provide examples to illustrate that, in 
practice, node-label permutations and parametric regres-
sion yield the same true and false positive rates. We show 
that QAP correctly accounts for a specific type of non-inde-
pendence, but that alternative non-permutation models are 
also capable of accounting for such non-independence. We 
also show that in the presence of non-independence that is 
not explicitly accounted for, both node-label permutations 
and QAP yield inflated false positive rates, highlighting 
that permutations do not automatically control for non-
independence. Finally, we discuss the potential benefits of 
using standard parametric models for regression analysis 
on network data, such as facilitating the adoption of causal 
inference.

Methods

In this section, we use network simulations to illustrate that 
node-label permutations achieve the same true positive rates 
(power) and false positive rates (type I error) as ordinary 
least squares in nodal regression to detect trait-based dif-
ferences in a common node-based measure of centrality. 
We also use simulations to show that network substructure 

Fig. 1  Dependence structure between data points must not change 
under permutations. In node-label permutations (A), any depend-
ency structure between nodes would be lost when permuting. This 
could break the exchangeability assumption and generate invalid per-
mutations in the presence of a strong dependence structure. In QAP 
(B), node labels are again permuted, but at a dyadic level, this is 
equivalent to permuting multiple edges at once, which preserves the 
assumed dependency structure of the data, generating valid permu-

tations and correct p-values. Hypothetically, if edges were permuted 
freely (C), the pattern of the dependency structure in the original 
data would be lost, and the resulting permutations of the data would 
not be valid. Solid lines with arrows on both ends denote depend-
ence between data points, and dashed lines with circles on both ends 
denote independence between data points. Note that some dependen-
cies have been omitted for clarity
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can introduce dependence structure in the data that neither 
node-label permutations nor QAP can account for. Finally, 
to demonstrate that parametric statistical models are able to 
account for specific types of non-independence in the same 
way as QAP, we compare QAP to both ordinary least squares 
and a multimembership linear model that includes a node 
dependence term.

Simulations: nodal regression

Trait‑based strength differences

To demonstrate that node-label permutations perform the 
same as parametric regression, we compared a standard 
simple linear regression (LM) to node-label permutations 
where an LM is used to calculate the test statistics. Note that 
the LM used here is equivalent to a basic Gaussian gener-
alised linear model with a single predictor. To generate the 
data, we used the simulation model described by Farine and 
Whitehead (2015). The simulations assigned a gregarious-
ness score to each individual in the population of size n = 20 
from a Poisson distribution. Individuals were then assigned 
a sex either according to their gregariousness (effect), or at 
random (no effect). Sampling periods were simulated where 
the probability of a pair interacting in a sampling period 
was proportional to the combined gregariousness scores of 
the two individuals, giving a weighted, undirected network. 
Node strength was calculated as the sum of each node’s con-
nection strengths. Node strength was regressed against sex 
using simple linear regression. Node-label permutations 
were conducted with 10,000 permutations on the networks 
to generate the null distribution using the slope coefficient (β 
estimates) as the test statistic. The observed coefficient was 
compared to the null distribution to compute a two-sided 
p-value and effect size estimate for the null hypothesis of 
no effect. This was repeated 1000 times in the presence of 
both an effect and no effect, and the true positive and false 
positive rates were computed.

Nodal dependence on clique membership

The non-independence of network data can take many 
forms, but to demonstrate one possible form, we consid-
ered the case where a network is formed from two unknown 
underlying cliques. Our simulations assigned nodes to 
one of two cliques at random, with equal probability of 
being assigned to either clique. Dyads of nodes that were 
in the same cliques had an 80% chance of having a non-
zero edge, whereas dyads of nodes that were in different 
cliques only had a 40% chance of having a non-zero edge. 
Edge weights were drawn from a uniform U(0,1) distribu-
tion. Nodal covariates were assigned according to a linear 
combination of node strength, a clique dependence variable, 

and a random noise term, drawn from a uniform distribu-
tion U(0,1). The clique dependence variables were drawn 
from a uniform distribution U(0,1) and were used to create 
an effect of clique membership on nodal covariates. If no 
effect was being simulated, the coefficient of node strength 
was set to zero to remove the effect; otherwise, it was set to 
0.05. This simulation creates an effect of non-independence 
because under null hypothesis, the size of the cliques will 
affect node strength, and clique membership affects the 
nodal covariates. The strength of a node will depend on the 
size of its clique, which is generated by a stochastic process, 
so there is potential for spurious correlation between node 
strengths and nodal covariates. This simulation is designed 
to simulate the effect of substructures in the network that 
may be difficult or even impossible to detect either manually 
or computationally. The simulation was repeated 1000 times 
with and without the effect, and the two-sided p-values and 
effect size estimates for each method were recorded.

Simulations: dyadic regression

Dyadic dependence on nodes

To demonstrate the performance of QAP against paramet-
ric regression, we designed simulations based on those 
described by Dekker et  al. (2007). Specific simulation 
choices such as distributions and intercepts were made in 
line with the original study, but the theory holds regardless 
of these minor details. Simulations were carried out by simu-
lating the response and predictor matrices as being partially 
dependent on a node-level vector:

where x and y are the observed matrices, r and s are the 
node dependencies for x and y respectively, y′ and x′ are 
the true, underlying social preferences, and β′ describes the 
relationship between x and y. This creates a relationship 
between x and y when β′ = 0. The matrices were symmetric 
of size n = 20, with elements drawn from a uniform U(0,1) 
distribution. The node dependence vectors r and s were also 
drawn from a uniform U(0,1) distribution, and the effect 
parameter β′ was set to either β′ = 0 to simulate no effect, or 
to β′ = 0.20 to simulate a moderate effect. In line with Dek-
ker et al. (2007), intercepts were not included in the simula-
tion or model, but this does not affect the generality of the 
results as the resulting model corresponds to a mean-centred 
response variable.

Previous studies have demonstrated that QAP is effective 
at accounting for node dependencies in dyadic regression 

xij = ri + rj + x
�

ij

yij = β
�

xij +
(

1 − β
�)

(si + sj + y
�

ij
)
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(Dekker et al. 2007). The reason for this is not because 
QAP is a permutation test, but because QAP makes explicit 
assumptions about the sources of non-independence. This 
same assumption can also be built into parametric mod-
els using random effects. Since each edge depends on two 
nodes, and each two nodes have only one edge between 
them, conventional random effects cannot be used to control 
for node dependence, as this would use one random effect 
per unit of analysis (per dyad). Instead, a random effect is 
used for each node, and the random effects for two nodes 
that each edge is between are included in the model. This 
type of mixed model is often referred to as a multimember-
ship model (Rushmore et al. 2013; Boyland et al. 2016). We 
implement the following multimembership linear model:

where x and y are the predictor and response matrices, u is 
a random effect vector describing the influence of each node 
on its connected dyads, and ϵ is an independent noise term. 
The vector u is treated as a set of parameters to be learned, 
which introduces a considerable number of parameters to the 
model. For computational reasons, the model was fit using 
numerical least squares with the optim function in R, but 
these types of models are also supported in R packages such 
as brms and MCMCglmm (Hadfield 2010; Bürkner 2018; R 
Core Team 2022).

The simulated matrices x and y were regressed against 
each other using the following three methods: a simple lin-
ear regression (LM), QAP, and the multimembership linear 
model described previously (MMLM). The p-values and 
effect size estimates from each were recorded. The QAP 
method used 1000 permutations to generate the null distri-
bution. As with the previous simulations, this was repeated 
1000 times in the presence of both an effect and no effect, 
and true positive and false positive rates were computed.

Dyadic dependence on clique membership

As with the simulation of the effect of network substruc-
ture on nodal regression, the aim of this simulation was to 
demonstrate how dependence on network substructures can 
affect the performance of dyadic regression. To demonstrate 
the potentially subtle nature of non-independence in dyadic 
regression, we introduce dependence in a different way to 
the nodal simulation. In this simulation, we assume that sub-
graphs of 4 nodes form cliques that affect both the strengths 
of edges and dyadic covariates within the cliques. Naturally, 
a dyad may belong to multiple cliques, it so may have a com-
plex structure of dependencies. Cliques of size 4 are used 
because they are the smallest possible subgraph that does not 
follow the assumptions of QAP. The rest of the simulation 

yij = �xij +
(

ui + ui
)

+ ϵij ϵij ∼ N
(

0, σ2
)

proceeds in the same way as the previous simulation with 
the three models: LM, MMLM, and QAP.

Results

Plots of the distributions of p-values in the presence and 
absence of an effect are shown for each of the four simula-
tions in Fig. 2. Under the null hypothesis of no effect, the 
p-values should be uniformly distributed, whereas under the 
alternative hypothesis, the p-values should be concentrated 
towards zero (Wasserman 2004). The distributions of effect 
size estimates for the dyadic regression simulations are 
shown in Fig. 3 and should be centred around 0.2 when there 
is an effect and centred around zero when there is no effect.

Nodal regression

Trait‑based strength differences

In our simulations of trait-based strength differences, the 
LM and node-label permutation methods had true positive 
rates of 57.0% and 57.1%, respectively, and both methods 
had a false positive rate of 5.5%. The distribution of p-values 
was almost identical for both methods and under the null 
hypothesis was approximately uniform.

Nodal dependence on clique membership

When the effect was present, the two methods achieved 
true positive rates of 50.6% for both the LM and node-label 
permutations. As with the previous simulation, the LM and 
node-label permutations achieved the same p-value distribu-
tions both in the presence and absence of an effect. Unlike 
in the previous simulation, the p-value distribution was not 
uniform under the null hypothesis, with the methods giving 
inflated false positive rates of 13.7% and 13.3% for the LM 
and node-label permutations respectively.

Dyadic regression

Dyadic dependence on nodes

The dyadic regression simulations where dyads were 
dependent on nodes showed that the LM method had a high 
true positive rate of 76.4%, QAP was more conservative 
with a true positive rate of 35.4%, and the MMLM had a 
true positive rate of 42.6%. The LM had a highly inflated 
false positive rate of 37.0%, compared to QAP with a false 
positive rate of 6.4% and the MMLM at 0.6%. QAP had 
approximately uniformly distributed p-values under the null 
hypothesis.
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When there was an effect, the distribution of effect size 
estimates for the LM and QAP had a median of 0.205, with 
a 95% interval of (− 0.0349, 0.455), compared to the effect 
size estimates of the MMLM, with a median of 0.200 and 
a 95% interval of (0.0810, 0.330). The effect size estimates 
from the LM and QAP had the wrong sign in 4.9% of cases, 
and significant results had the wrong sign in 0.4% of cases 
for the LM, but never for QAP. The MMLM effect size esti-
mates had the wrong sign in 0.1% of cases; again, none of 
these cases was statistically significant. In the absence of an 
effect, the distribution of effect size estimates for the LM 
and QAP had a median of − 0.00498 with a 95% interval 

of (− 0.315, 0.317), whereas the effect size estimates of the 
MMLM had a median of − 0.00355 with a 95% interval of 
(− 0.140, 0.150).

Dyadic dependence on clique membership

When the assumptions of QAP were broken by allowing 
dyads to depend on cliques in the network, in the presence 
of an effect, the LM achieved a true positive rate of 94.0%, 
compared to QAP with a true positive rate of 62.5%, and 
MMLM with a true positive rate of 72.5%. In the absence 
of an effect, the LM suffered an inflated false positive rate 

Fig. 2  Distributions of p-values in nodal and dyadic regression from 
simulations comparing ordinary least squares regression (LM) and 
its permutation-based equivalents: node-label permutation and QAP 
respectively. The dashed line indicates the conventional significance 
threshold of p = 0.05. When there is no effect, distributions should be 
uniformly distributed, but when there is an effect, p-values should be 
concentrated towards zero. In the two nodal regression simulations, 
the p-value distributions for both methods are identical both with and 
without an effect, indicating equivalent performance for both meth-

ods. Furthermore, in the presence of clique dependence in nodal 
regression, an inflated false positive rate is seen in the p-value distri-
bution. In dyadic regression LM had a high false positive rate in both 
simulations though suffered even higher false positives in the pres-
ence of clique dependence. In contrast, both QAP and MMLM per-
formed well in the presence of node dependence. In the presence of 
clique dependence, QAP had an inflated false positive rate of 19.5%, 
compared to the MMLM which had a low false positive rate of 5.4%
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of 65.9%, QAP obtained a false positive rate of 19.5%, and 
the MMLM obtained a false positive rate of 5.4%.

In these simulations, when an effect was present, the dis-
tribution of effect size estimates of the LM and QAP had 
a median of 0.368, with 95% interval of (0.0453, 0.673), 
whereas the MMLM had a median of 0.200 with a 95% 
interval of (0.0790, 0.330). The LM and QAP had the wrong 
effect sign in 0.9% of cases. These wrong effect signs accom-
panied significant p-values in 0.2% of cases for the LM, and 
in zero cases for QAP. The MMLM had wrong effect signs in 
0.1% of cases, and never accompanying significant p-values. 
In the case where no effect was present, the distribution of 
effect size estimates for the LM and QAP had a median of 
0.210, with a 95% interval of (− 0.196, 0.615). The distribu-
tion for the MMLM had a median of − 0.000126 with a 95% 
interval of (− 0.160,

0.160).

Discussion

Node-label permutations and QAP are some of the most 
popular statistical tools used in animal social network analy-
sis (Farine 2017). We have highlighted that node-label per-
mutations do not control for the non-independence of net-
work data. We have also demonstrated that while the QAP 

does control for some types of non-independence, such 
control can also be achieved by a relatively simple paramet-
ric regression model. Additionally, we have shown that in 
plausible scenarios of non-independence, both node-label 
permutations and QAP can yield inflated levels of false posi-
tives and low statistical power, and that even properly con-
strained permutation models provide unreliable effect size 
estimates. In this section, we will discuss the consequences 
of these findings, the potential benefits of parametric mod-
els for network analysis, and future directions for statistical 
analysis of networks.

Simulation results

We illustrated that node-label permutations yielded near-
identical results to the LM model on the nodal regression 
simulations. Node-label permutations are the non-parametric 
equivalent to standard regression, which are identical models 
when distributional assumptions are met (Good 2000). Both 
methods achieved the correct false positive rates, showing 
that the assumptions of the models were not severely bro-
ken, and the noise term in the LM was an appropriate model 
for the noise. In our second nodal regression simulation, 
we showed that in the presence of non-independence due 
to network substructure, the assumptions of both the LM 
and node-label permutations were broken, leading to inflated 

Fig. 3  Distributions of estimated effect sizes in the two dyadic regres-
sion simulations. The LM and QAP both use the estimates directly 
from a simple linear regression and therefore have the same distribu-
tions of effect sizes. The MMLM takes the dependence terms into 
account when making effect size estimates and has a narrower dis-
tribution around the median effect estimates than the LM and QAP. 

The LM and QAP produce the same estimates, which are correct in 
the node dependence simulations, but biased towards a positive effect 
size when there is no true effect in the clique dependence simulations. 
The MMLM performed correctly in both scenarios and achieved a 
narrower distribution. The dashed line indicates the desired effect size 
estimate of 0.2 when there is an effect, and 0.0 when there is no effect
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false positive rates. In the simulation, group size was dis-
tributed according to a random binomial process, and since 
group size affected network strength; this led to spurious 
correlation in the regression. The noise term of the LM is not 
designed to absorb error of this nature and failed to produce 
correct p-values. The node-label permutation failed in the 
exact same way because the assumption of exchangeability 
of data points was broken.

Our dyadic regression simulations illustrated how the LM 
suffered from inflated false positive error rates because of 
simulated node dependence, whereas QAP and the MMLM 
achieved correct false positive and true positive rates. This 
demonstrates that while QAP does control for node depend-
ence, the same control can be replicated by including terms 
for dependencies in what many researchers may consider 
to be more conventional statistical models. Modelling 
dependencies in this way is more powerful because it allows 
effect size estimates to fully account for non-independence, 
whereas QAP generates the same unadjusted effect size esti-
mates as the LM. Higher-order nodal dependencies, or other 
structural dependencies are not controlled for by either QAP 
or any other model, unless explicitly specified. To demon-
strate this, our final simulation assigned edge values and 
dyadic covariates according to their membership of cliques. 
This created a dyadic dependence on substructure that the 
QAP is not designed to control for. The results of the simula-
tion agreed with the theory, showing that QAP only accounts 
for non-independence between adjacent dyads. The MMLM 
achieved a low false positive rate and a high true positive 
rate on this simulation, suggesting that the multimember-
ship term was able to effectively model dyadic dependence 
on cliques.

Impacts of non‑independence in network analysis

The findings of this paper may raise questions about the 
reliability of p-values and effect size estimates in statistical 
analysis of networks. In nodal regression, where centrality 
metrics are regressed against nodal covariates, the noise in 
the relationship between centrality and trait can be attributed 
to either measurement error in the traits or due to traits being 
noisy proxies for the true variables of interest. Therefore, 
the noise in the relationship can be considered to be inde-
pendent between nodes, and standard regression will be an 
appropriate type of model for conducting nodal regression, 
as is widely used in several other fields (Wasserman 2004; 
O’Malley and Marsden 2008; Morselli et al. 2013; Morelli 
et al. 2017). We note that in GLMs and their derivatives, the 
responses only need to be conditionally independent given 
the predictors, so when using network data as a predictor, 
there is no inherent problem of non-independence either.

In dyadic regression, whether node dependence is a real-
istic assumption will again depend on the biological question 

and data. Where dyadic covariates are related to attributes 
of the nodes, such as age or sex differences, accounting for 
dependence on nodes will be of vital importance. This is 
because network structure affects both the dyadic response 
and dyadic covariates, creating a non-causal association 
between response and covariate and breaking the independ-
ence assumption. Conversely, if dyadic covariates are not 
dependent on nodes, the independence assumption of stand-
ard regression will hold, and QAP and multimembership 
models will not be necessary.

Permutation tests are also used outside of regression con-
texts, and the exchangeability of data points is a condition 
that applies to any permutation test. This includes datastream 
permutations, where raw observations of association and 
interactions are randomised (Bejder et al. 1998). Whether 
other common permutation tests are valid will depend on 
both the data and the biological question. For example, tests 
such as Bejder et al. (1998)’s test of non-random association 
are valid because the null hypothesis is that social associa-
tions are random, and therefore, observations of individuals 
are assumed to not be dependent on the observations of other 
individuals. This means that the data points are exchange-
able under the null hypothesis and may be freely permuted.

Future directions

The prevalence in empirical data of the types of non-inde-
pendence described in our simulations is unknown. Whether 
or not this type of non-independence is a major issue for 
statistical analysis of network data will require further inves-
tigation. It is worth noting that higher-order dependencies 
such as clique membership may lead to apparent effects may 
in fact be the object of interest for many network analy-
ses. Statistically controlling for those dependencies would 
remove the effect of interest, so further consideration of the 
role of dependencies in network data will play an important 
role in shaping how hypotheses can be tested in network 
analysis. In cases where higher-order dependencies are not 
the objects of interest, one potential direction for future work 
is to categorise potential sources of network dependence 
(see, e.g., Tranmer et al. 2014). This would make it possible 
to use causal models to identify likely sources of depend-
ence in network data and account for them statistically (Pearl 
2010). Causal inference could provide a toolkit for rigor-
ously specifying assumptions and identifying dependencies 
in future network analyses. We see the adoption of causal 
thinking to be an important future direction for the field. An 
ideal family of models for conducting causally-motivated 
inference are mixed models, also known as multilevel, hier-
archical, or random effects models, among others (Cong-
don 2020). These flexible and powerful models allow for 
explicit modelling of interdependence between data points 
at multiple levels. Furthermore, other sources of noise such 
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as uneven sampling and sampling biases could also be 
accounted for directly in well-specified mixed models and 
would lead to more powerful, efficient, and reliable statisti-
cal analyses.

The problem of non-independence in network data has 
also been considered for several other types of statisti-
cal model. Exponential random graph models (ERGMs) 
make the same base assumption as QAP, namely that edges 
that are not connected to the same nodes are independent. 
However, extensions of ERGMs have been developed that 
explicitly model dependence between clique-like triangular 
substructures (Snijders et al. 2006; Hunter 2007). Another 
example of dependence modelling in dyadic data is the 
actor-partner interdependence model (Cook and Kenny 
2005). The actor-partner interdependence model is a dyadic-
level model that assumes that an actor’s nodal covariate 
depends on both the dyad and partner node. A related idea 
where non-independence is treated as the object of interest 
in analysis is the network autocorrelation model and its vari-
ants (Dittrich et al. 2020). Network autocorrelation models 
treat non-independence as the object of analysis rather than 
a nuisance factor and have a long history of being used to 
test hypotheses about social influence in networks (Doreian 
1981). The common thread between these methods is that 
dependencies in the network are explicitly accounted for in 
the statistical model. We believe that approaching the prob-
lem of non-independence in network data in this way will 
lead to more robust analyses of animal social networks.

Over-reliance on p-values and significance testing has 
garnered widespread criticism over several decades (Cohen 
1994). A key drawback of p-values is that they do not indi-
cate the magnitude or direction of an effect. For example, in 
some cases, a significant result (p < 0.05) might be accom-
panied with a miniscule effect estimate that would be of little 
interest to the researcher. Critics of this use of the p-value 
have proposed to instead focus on effect size estimates and 
confidence intervals, and to use p-values as a complemen-
tary piece of information when drawing conclusions about 
analyses. Permutation tests generate effect size estimates 
using standard regression, so even when permutations are 
properly constrained to account for confounds, though they 
will generate correct p-values, the effect size estimates will 
not account for these confounds and may be unreliable 
(Franks et al. 2021). In our simulations, the distribution of 
effect size estimates for QAP was around twice the width of 
those of the MMLM. In real world use, this could severely 
reduce the reliability of inference and even introduce the 
possibility of statistical significance for effect sizes with the 
wrong sign. We suggest that future analyses could focus on 
accurately estimating effect sizes and confidence or credible 
intervals and use statistics such as p-values or Bayes factors 
as complementary information, rather than as strict thresh-
olds for hypothesis testing (Halsey 2019).

Suggestions

Permutation tests can yield correct p-values under appro-
priate constraints, but, as with parametric models, they 
do not automatically account for non-independent data, 
and unlike parametric models, they do not account for 
confounds when estimating effect sizes. For this reason, 
we argue that parametric models could offer a number of 
important benefits over permutation methods for nodal and 
dyadic regression. Specifically, well-specified parametric 
regression models such as simple linear regression or 
mixed models could be used in the place of node-label per-
mutations. In dyadic regression, multimembership models 
could be used as an alternative to QAP and its derivatives. 
In both cases, confounds can be explicitly accounted for 
without the need to use constrained permutations. These 
types of models are widely used and have several existing 
R implementations, for example in MCMCglmm and brms 
(Hadfield 2010; Bürkner 2018). Adopting this approach 
would yield both correct p-values and correct effect size 
estimates, leading to more reliable statistical inferences.

Conclusion

In this paper, we have highlighted that permutation tests 
are not a panacea for non-independence in network data. 
We have illustrated that node-label permutations are 
equivalent to parametric regression for nodal regression 
analysis and that multimembership models can control 
for non-independence in the same way as QAP in dyadic 
regression analysis. Given their more widespread use 
across various life science disciplines, we promote the use 
of standard parametric models for animal social network 
analysis in the place of node-label permutations and QAP. 
Further work is required to understand potential sources of 
non-independence in animal social networks. We believe 
that the arguments presented in this study open up oppor-
tunities to adopt more powerful, versatile, and robust sta-
tistical methods in animal social network analysis.
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