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Abstract
Camouflage through backgroundmatching is a widespread antipredator strategy in which animals blend in with their background
to avoid detection. To maximise survival in a variable natural environment, animals can have colourations that either match one
of the backgrounds maximally (i.e. specialist strategy) or match multiple backgrounds partially (i.e. generalist strategy).
Theoretical work indicates that the optimal strategy depends on the extent of visual difference between the backgrounds (i.e.
heterogeneity) or how commonly the animal will encounter the background types. However, the role of another critical deter-
minant of detection, the visual complexity of the background, on optimal camouflage strategy (specialist versus generalist) in the
face of background heterogeneity, remains unknown. Here, we performed a virtual predation experiment employing humans as
surrogate ‘predators’ and explored how background complexity influences camouflage in heterogeneous backgrounds. Under
low heterogeneity, we found the latency to attack generalists was higher than that for specialists on a complex background, but
there was no difference between specialists and generalists on a simple background. At intermediate heterogeneity, both spe-
cialist and generalist targets took a similar time to be attacked irrespective of complexity, suggesting that both the strategies may
co-exist. In contrast, at high levels of heterogeneity, we found generalists were attacked sooner when compared to specialists
irrespective of whether the background was simple or complex. Our results thus suggest that complex backgrounds favour the
evolution of a generalist background matching strategy that maximises fitness in multiple backgrounds but only when the visual
difference between the backgrounds is low. Overall, our study provides key insights highlighting the underappreciated role of
background complexity on the optimization and evolution of camouflage colouration in a heterogeneous environment.

Significance statement
Many animals often face the challenge of encountering multiple visually distinct backgrounds due to variation in their environ-
ment, i.e. background heterogeneity. How should animals optimise camouflage when there is background heterogeneity?
Theoretical studies have proposed that animals may match one of the many backgrounds (specialise) or match multiple back-
grounds partially (generalise) as an optimal solution. However, cognitive constraints from the predator’s perspective may also
have a role to play in this optimization problem, but this has not been examined. Our experiments involving humans as
‘predators’ show that when background complexity renders the search task more difficult, generalist targets took a longer time
to be attacked than specialist targets, but only in less heterogeneous backgrounds. However, irrespective of complexity, specialist
targets are better than generalists at avoiding attack in highly heterogeneous backgrounds. Cognitive constraints of predators
may, therefore, play a significant role in the optimization of camouflage colouration in heterogeneous environments.
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Introduction

Awidespread form of defence against predation is camouflage
(also called crypsis), in which animals use their body
colouration to remain undetected or unrecognised by preda-
tors (Thayer 1918; Cott 1940; Edmunds 1974; Stevens and
Merilaita 2008; Merilaita et al. 2017; Cuthill 2019). One pri-
mary form of camouflage is background matching, in which
the visual appearance of the animal (e.g. colour pattern)
matches the appearance of its background (Endler 1978,
1984; Merilaita and Lind 2005; Michalis et al. 2017).
Numerous studies have found support for this strategy in a
variety of taxa ranging from insects (Feltmate and Williams
1989), amphibians and reptiles (Norris and Lowe 1964), fish-
es (Armbruster and Page 1996; Clarke and Schluter 2011),
mammals (Vignieri et al. 2010), and also plants (Niu et al.
2017, 2018). However, unlike plants, most animals are not
sedentary and need to move in search of food, mates and
shelter (Merilaita et al. 1999). Besides, visual characteristics
of the environment can also change over the lifetime of an
organism, within a few seconds to hours (e.g. due to tidal
cycles or water caustics: Fingerman et al. 1958; Penacchio
et al. 2018; Matchette et al. 2020) or months (e.g. seasonal
change in snow cover in temperate and polar regions: Litvaitis
1991, Zimova et al. 2014, 2018). Thus, organisms may en-
counter a range of substrates, and matching a single, visually
distinct background may not be effective in such situations
(Merilaita et al. 1999, 2001; Hughes et al. 2019).

Research over the past decades has identified ways in
which camouflaging animals may decrease the risk of preda-
tion in a variable environment (i.e. heterogeneous in space or
time). For instance, many animals are observed to change
colour rapidly to match different environments (Stevens
2016; Duarte et al. 2017; Kjernsmo et al. 2020) or behavior-
ally prefer a background that better matches their appearance
(Kang et al. 2014; Stevens and Ruxton 2019). Alternatively,
animals can adapt colourations to resemble multiple back-
grounds simultaneously—termed ‘compromise’ or ‘general-
ist’ strategy. In this case, the animal cannot strongly match
any background (i.e. an animal can only partially match mul-
tiple backgrounds). This is because organisms have to com-
promise the extent of matching one background at the cost of
mismatching the other (Merilaita et al. 1999; Houston et al.
2007; Sherratt et al. 2007; Michalis et al. 2017; Toh and Todd
2017). This is in contrast to the ‘specialist’ strategy, where
individuals best resemble one of the many backgrounds
(Merilaita et al. 1999).

Several theoretical and experimental studies have identified
situations under which generalists and specialists might be
favoured (Merilaita et al. 1999; Houston et al. 2007; Sherratt

et al. 2007; Toh and Todd 2017). Experiments employing
multiple, visually distinct backgrounds are difficult to under-
take. Therefore, most studies have considered the optimiza-
tion of background matching based on differential survivor-
ship in two distinct backgrounds (but see Nokelainen et al.
2020). This definition of heterogeneity refers to a situation
where the scale of spatial or temporal differences in visual
features of the backgrounds are many orders of magnitude
larger than the size of the animal—termed ‘disjunct heteroge-
neity’ (Bond and Kamil 2006). The occurrence of dark and
light coated animals that are found on rocks made of the dark
lava flow and surrounding light-coloured regions is a good
example of such heterogeneity (Hoekstra et al. 2004).

The outcome of selection in such heterogeneous environ-
ments can be depicted in the form of a trade-off curve (Fig.
1a), which theoretically can be of three shapes, (i) concave, (ii)
convex or (iii) linear (Levins 1968; Merilaita et al. 1999;
Sherratt et al. 2007; Hughes et al. 2019) or include combina-
tions of the three shapes (Merilaita et al. 1999). A concave
trade-off curve suggests that the net survivorship (i.e. com-
bined survivorship on both backgrounds) is higher for special-
ists than for generalists. This scenario can occur when the
visual difference, i.e. heterogeneity, between the two back-
ground patches is relatively high, and the generalists have
low survival in both the patches, whereas the specialists have
high survival on their respective matching backgrounds
(Merilaita et al. 1999; Toh and Todd 2017). On the other hand,
a convex curve indicates that the generalists have higher net
survivorship when compared to a specialist that has higher
survivorship only on the matching background. Therefore, a
convex trade-off curve represents a scenario where a general-
ist strategy is likely to evolve, whereas a specialist strategy is
favoured under the concave scenario (Merilaita et al. 1999;
Ruxton et al. 2004; Sherratt et al. 2007; Hughes et al. 2019).
Alternatively, under a linear trade-off scenario, both the gen-
eralist and specialist strategies have equal net survivorship,
and therefore, both strategies may theoretically co-exist
(Merilaita et al. 1999). This is one of the conditions favouring
local maintenance of polymorphism (Bond 2007). Support for
the concave (Sandoval 1994; Sherratt et al. 2007), convex
(Macedonia et al. 2003; Toh and Todd 2017) and linear
trade-off curves (Merilaita et al. 1999; Houston et al. 2007;
Toh and Todd 2017) have been found in different studies that
mainly focused on the extent of visual difference between the
backgrounds (Merilaita et al. 1999, 2001; Toh and Todd
2017) or the movement range of predators (Houston et al.
2007). Apart from these, it is possible that other factors, such
as those that influence the detection of background matching
prey, may affect the optimal strategy, but such factors largely
remain untested (Hughes et al. 2019).
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One factor that influences target detectability is the amount
of visual information present in the background, i.e. the visual
complexity of the background (Duncan and Humphreys 1989;
Merilaita 2003). Visually complex backgrounds contain high
visual noise (i.e. a low signal to noise ratio Merilaita et al.
2017) and, therefore, are cognitively challenging for the pred-
ators to process the information (Dukas 2004), leading to in-
creased search time (Dimitrova and Merilaita 2009, 2011).
Background complexity can arise due to a variety of sources
and can be of many forms based on the properties of back-
ground features and its spatial arrangement (Dimitrova and
Merilaita 2011, 2014; Xiao and Cuthill 2016; Merilaita et al.
2017). Predation experiments have altered background com-
plexity by varying the (i) diversity of visual information, for
e.g. orientations of elements (Kjernsmo and Merilaita 2012),
(ii) the geometric complexity of element shapes, for e.g. the
ratio of perimeter to the square root of area (Dimitrova and
Merilaita 2011) or (iii) based on ‘visual clutter’ (Xiao and
Cuthill 2016). These studies found that background complex-
ity increases prey detection time and, therefore, suggested that
selection to maximally match the background might be re-
laxed on a complex background (Dimitrova and Merilaita
2009, 2011; Kjernsmo and Merilaita 2012; Xiao and Cuthill

2016). However, it is unclear whether the visual complexity of
the background can affect the optimal background matching
strategy in terms of generalisation and specialisation of prey
colouration in heterogeneous environments.

In this study, we explored how one aspect of background
complexity—defined based on the complexity of pattern ele-
ments (Dimitrova and Merilaita 2011)—influences the survi-
vorship trade-off curve at varying levels of background het-
erogeneity using two independent setups of heterogeneity.We
adopted a virtual predation experiment as in many previous
studies (reviewed in Karpestam et al. 2013), where humans
acted as ‘predators’ searching for artificial targets on a com-
puter screen. While background heterogeneity can occur over
spatial (e.g. two different habitats) or temporal scales (e.g.
seasonal changes), we examined a scenario where visual back-
grounds vary spatially (Cuthill 2019) and the prey adopting
camouflage is of many orders of magnitude smaller than the
spatial variation in background features (Bond and Kamil
2006; Sherratt et al. 2007; Toh and Todd 2017). If background
complexity affects detection differently for the specialists and
generalists, there are three possible detectability (or survivor-
ship) trade-off scenarios, assuming that there are three major
types of trade-off in heterogeneous environments (Merilaita

Fig. 1 (a) Trade-off curves
representing possible optimal
background matching strategies
expected based on differential fit-
ness (i.e. survivorship or latency
to attack) on two different back-
grounds (A and B); adapted from
(Sherratt et al. 2007; Hughes et al.
2019). (b–d) The possible survi-
vorship scenarios of prey on
complex background (solid
coloured lines) for the given
trade-off curve in the simple
backgrounds (dotted/broken
black line) to be (b) concave
(specialists have higher net survi-
vorship), (c) linear (both special-
ists and generalists have equal net
survivorship) or (d) convex (gen-
eralists have higher net survivor-
ship). Green lines represent
higher fitness gain for specialists,
orange lines indicate equal fitness
gain for both specialists and gen-
eralists, and blue lines indicate
higher fitness gain for the gener-
alist in a complex background
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et al. 1999, Sherratt et al. 2007; Fig. 1a). In other words, while
the trade-off curves can take many possible shapes (Merilaita
et al. 1999), for simplicity, we here predict scenarios where
generalists and specialists are expected to be significantly dif-
ferent from each other in terms of survival. The three scenarios
are (i) specialists gain more net survivorship (i.e. are more
difficult to detect) due to increased complexity than do gener-
alists and, therefore, the trade-off curve in a complex hetero-
geneous environment becomes more concave than in a com-
parable simple heterogeneous environment (green curves; Fig.
1b–d). On the contrary, (ii) generalists gain relatively more
survivorship than do specialists, resulting in a more convex
trade-off curve in complex heterogeneous than in a simple
heterogeneous environment (blue curves; Fig. 1b–d).
Finally, (iii) both generalists and specialists may gain equal
net survivorship, and the shape of the trade-off curve is the
same in simple and complex environments (orange curves;
Fig. 1b–d). We show that the possibility of each scenario
depends on the extent of the visual difference between the
backgrounds.

Methods

General procedure

The experimental protocol followed the Declaration of
Helsinki, and participants signed an informed consent form
before taking part in the experiment. All participants were
drawn from the student population of Indian Institute of
Science Education and Research Thiruvananthapuram, repre-
sented both sexes and aged from 17 to 27 years, with normal
or corrected to normal vision. Participants were not informed
about the hypotheses being tested. However, it was not possi-
ble to employ a double-blind procedure as each participant
received both simple and complex treatments (see below).
The experiments involved participants performing tasks
through a custom Graphical User Interface (GUI) presented
on a 21.5″ touch-sensitive gamma-corrected LCD monitor
(DELL S2240Tb, refresh rate of 60 Hz) (Fig. 2f;
Supplementary Fig. S1). The GUI was created in MATLAB
v. R2017a (MATLAB and Statistics Toolbox Release 2017a,
The MathWorks, Inc., Natick, Massachusetts, USA).
Participants viewed the presentation from a distance of ca.
65 cm and were given printed instructions describing how to
perform the task. The GUI included a square-shaped ‘target’
on a ‘background’ (both created in MATLAB) (Fig. 2f), and
each participant was presented multiple unique target-
background combinations.

The task involved discriminating the target from the back-
ground and ‘attacking’ it as quickly as possible by touching it.
Participants were asked to search for a square-shaped target
that either had the same or similar elements of the background

and were informed that the target may occlude some part of
elements in the background (e.g. Fig. 2f). Participants were
instructed to attack the target more than once if they were
unsuccessful in their attempts. Before the start of each exper-
imental session, for practice, one of the randomly chosen
target-background combinations was shown to the participant
highlighting the actual position of the target (Fig. 2f). We
proceeded with the trials only after the participants confirmed
verbally that it was clear to them what they were searching for
in the background. After the target was successfully attacked
in the actual trials, the participant was informed that the target
had been successfully attacked (a uniform white screen with a
‘Next’ button was shown; Fig. 2f), and the time was recorded
automatically (attack latency in seconds with a precision of 10
ms). If participants did not find the target within 60 s, the
target was recorded as having survived for 60 s, and the next
target was presented without revealing the position of the tar-
get that the participant had failed to find. A uniform white
screen was shown until they pressed the ‘Next’ button, and
the next target-background combination was presented (Fig.
2f). Each participant was presented with 30 such target items
(3 replicates of 5 target types across two background types
presented in random order; full details of target types and
background types are in the subsequent sections). We ac-
knowledge the limitation that the cognitive processes in the
visual search task might differ in humans and other animals.
However, this method is advantageous to test hypotheses that
are difficult to investigate using experiments with real preda-
tors and prey.

Outline of experimental design

The study comprised two ‘setups’ based on how heterogeneity
was defined—i.e. size and colour heterogeneity (Fig. 3). Each
setup consisted of three levels of heterogeneity—low,
intermediate, and high. Thus, we had a total of 6 experiments,
3 per setup representing different levels of heterogeneity. Each
experiment included a comparison between backgrounds
made of simple and complex elements. All targets and back-
grounds of the complexity type ‘simple’ consisted, solely of
‘simple’ elements, while the target and backgrounds of ‘com-
plex’ type consisted only of ‘complex’ elements (Fig. 2a).
Here, we define the complexity of elements based on the ele-
ment shape (see below). The study involved a total of 180
participants, with 30 participants per experiment. While it
would have been preferable to have the same participant
searching for targets of different heterogeneity levels, during
our pilot experiments, many participants terminated the exper-
iment prematurely when they were asked to search targets for
more than one level of heterogeneity, possibly due to fatigue.
In order to avoid participants from terminating the experiment
prematurely, we used six groups of unique participants across
the six experiments.
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Elements

The targets and backgrounds consisted of multiple achromatic
grayscale elements and were presented upon a uniform neutral
grey (R=G=B=128; luminance: 72.9 cd/m2) base. The ele-
ments were of four achromatic grey shades—white
(R=G=B=255; luminance: 139.9 cd/m2), light grey
(R=G=B=192; luminance: 106.9 cd/m2), dark grey
(R=G=B=64; luminance: 40.1 cd/m2) and black
(R=G=B=0; luminance: 5.9 cd/m2). In all experiments, the
background and target contained elements that had eight
unique shapes (Fig. 2a).

The element complexity index in Dimitrova and Merilaita
(2011) was defined as perimeter-to-√area ratio; an element
was considered ‘simple’ if the index was ≤4, and ‘complex’
if the index was ≥6. In our study, we categorised an element as
simple if the index was ≤4, and complex if the index was ≥6.5
(Fig. 2a). These limits were chosen based on previous studies
(Dimitrova and Merilaita 2009, 2011, 2014), who found that
varying the perimeter-to-√area ratio of elements within these
limits markedly affected the detectability of targets. This
method of classifying the complexity of the element shape
has been used in multiple studies involving both humans
and birds (Dimitrova and Merilaita 2009, 2011, 2014; Toh
and Todd 2017), and offers the advantage of controlling back-
ground features objectively. However, we acknowledge the

limitation in classifying background complexity based on el-
ement shape and that in nature, the complexity of background
need not necessarily occur due to element shape (see Xiao and
Cuthill 2016; Fig. 3a for an example).

Backgrounds and target type

For each experiment, there were two background types (250
replicate each), A and B. The extent of heterogeneity was
defined as the visual difference between background A and
B , which was categorised into three levels— low ,
intermediate, and high. The difference between background
A and B was characterized either based on element size (size
heterogeneity setup) or the proportion of elements with a par-
ticular grey shade (colour heterogeneity setup) (Fig. 2b–d;
Fig. 3b–c). The backgrounds were generated using a
custom-written MATLAB script that saturated the neutral
grey base by placing the elements at random positions and
orientations, following procedures in Toh and Todd (2017).
To retain a constant density of elements, the centres of any two
elements were separated by a minimum distance of 1.305
times the length of the elements. Thus, in each experiment,
all replicates (pre-generated backgrounds: n=250 for each A
and B; targets: n=100) of a particular background type (A or
B) had the same total number of elements and hence density.
For each presentation, a random combination of target and

Fig. 2 (a) Elements used in the backgrounds and targets in all the
experiments (elements were of different achromatic shades in the actual
experiments). Upper row: simple elements; lower row: complex
elements. Backgrounds and targets used in colour heterogeneity setup
(including the generalist targets) when the level of heterogeneity was
high for (b & d) simple and (c & e) complex element shape. Note:

background, targets and elements are not scaled. See Supplementary
Fig. S2–S6 for other heterogeneity setups and levels. (f) Screenshot of
the GUI presented to the participants (see Supplementary Fig. S7–S12 for
more examples). Note that the target was not highlighted in the actual
experiments

Page 5 of 12     69Behav Ecol Sociobiol (2021) 75: 69



background from the replicates was presented. The target was
always square-shaped and was placed at a random position
without rotation within the background (i.e. with its edges
parallel to that of the rectangular background). The effective
background-size was 314 mm in breadth and 224 mm in
height on the monitor screen. The size of the targets and back-
ground was held constant in all the experiments.

In the experiments, for each background pairA andB, there
were three target types a4, a2b2, and b4. Target types a4 and b4

were specialists of backgroundA andB respectively, a2b2was
the generalist on both backgrounds. Target a4 matched back-
ground A better (contained characteristics of elements same
(100%) as that in background A) and therefore had a lower
match with the background B (0% of elements from back-
ground B). A 100% match denotes (theoretically) that the
target contained elements that were identically shaped and in
the same proportion and density as the background. Similarly,
b4 had 100% matching elements with B, but 0% with A.
Target a2b2 had 50% matching elements with both back-
grounds. For example, in the colour heterogeneity setup, the
ratio of the elements with different grey shades was interme-
diate to the element ratios of the backgrounds (see below for
details). In addition, these experiments also included twomore

generalists which we call a3b and ab3 that better matched the
backgroundsA andB, respectively. Target a3b shared 75% of
its elements with background A, more than it did with back-
ground B (25%). Likewise, the target ab3 shared 75 % of its
elements with background B (75%), more than it did back-
ground A (25%). We present the results of these intermediate
generalist targets in the Supplementary Materials (Figs. S13–
S16).

Size heterogeneity setup

All backgrounds in this setup had equal numbers of elements
with a specific grey shade. The elements in both the targets
and backgrounds had an equal probability of beingwhite, light
grey, dark grey, and black in colour (see Elements section
above for actual RGB values). However, we varied the size
of the elements in the backgrounds to achieve heterogeneity.
Since the overall shape of the element is varied, we defined the
size of the element as a square containing the element shape,
with the width of the square equivalent to the length or width
of the element, whichever was greater. Thus, for a circle (a
simple element) the size was scaled by the radius, which was
the same as the width of the containing square. The width of

Fig. 3 (a) Infographic depicting hypothetical backgrounds with varying
level of heterogeneity and complexity in nature. An organism selected to
match these backgrounds may have pattern elements similar to the
characteristics of pebbles. Heterogeneity is depicted here based on the
pebble size and complexity with pebble shape. (b–c) Summary of target
properties. Each panel represents a heterogeneity-complexity combina-
tion, with the target label represented on top of each square target. For
simplicity, only specialist (a4 and b4) and neutral generalist (a2b2) targets
are shown (See Fig. 2 and Supplementary Fig. S2–S6 for a full set of

targets and backgrounds). (b) size heterogeneity: the size of each individ-
ual element (in pixels) is given under each target. The difference in ele-
ment size between the targets are given above arrows. (c) colour hetero-
geneity: the ratio of grey element colour is given under each target
(black:dark grey:light grey:white). The difference in the number of the
unique coloured grey element between the targets is given above the
arrows. For a full set of element size and grey element ratios, see
Supplementary Table S1–S4
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the square, which defined the element size, was varied for
each background and target based on the extent of heteroge-
neity. For the low heterogeneity experiment, the size of ele-
ments used in background A was 125 x 125 pixels, and B was
175 x 175 pixels (Fig. 3b). Therefore, the size difference of
elements between the two backgrounds was 50 pixels. For the
intermediate and high heterogeneity setup, the size of the el-
ements in background A was 100 x 100 and 75 x 75 pixels,
respectively, whereas, for background B, this was 200 x 200
and 225 x 255 pixels. Thus, for intermediate and high hetero-
geneity, the element size differences were 100 and 150 pixels,
respectively (Fig. 3b). However, it took a greater number of
elements to saturate background A because the elements of
background A were smaller than that of background B. While
it has been shown that a high number of elements in a given
background may increase the detection time (Dimitrova and
Merilaita 2014), we minimised this effect by using the
same density of elements across backgrounds and targets, fol-
lowing procedures in Toh and Todd (2017). The exact size of
the elements for all the heterogeneity levels is presented in
Supplementary Table S1, S2.

The square-shaped target was 17.9 × 17.9 mm2 in size on
the computer screen. For each level of heterogeneity, irrespec-
tive of the complexity of element shape, the specialist target a4

was made of the element of the smallest size (i.e. same as
background A), whereas target b4 had elements of the largest
size (same as background B). Irrespective of the level of het-
erogeneity, the generalist target a2b2 had a constant element
size of 150 pixels because the element size of other target
types and the backgrounds differed symmetrically from 150
pixels (Supplementary Table S1). More details on the size of
targets for each setup are presented in Supplementary
Table S1, S2 and Fig. S2–S4.

Colour heterogeneity setup

The proportion of different grey elements in the background
was varied to achieve different levels of heterogeneity. There
were more white and light grey elements in backgroundA and
a greater number of dark grey and black elements in B
(Supplementary Table S3; Fig. 3c). For the low heterogeneity
experiment, the ratio of the grey shade of elements (black:dark
grey:light grey:white) in backgrounds A and B were 2:2:8:8
and 8:8:2:2, respectively (Table S3; Fig. 3c). That is, out of
every 20 elements, a minimum of 8 elements (2 of each grey
shade) were common to both backgrounds (i.e. based on the
number of the grey shade of elements), and 12 were different
between the backgrounds. For each heterogeneity level, the
element ratio was symmetric in either direction from an equal
proportion of grey shades (i.e. 5:5:5:5) for the backgrounds (A
and B). That is, for intermediate and high heterogeneity, the
number of unique elements was 14 (for A 1:2:8:9 and B
9:8:2:1) and 16 (for A 1:1:9:9 and B 9:9:1:1) respectively,

making the backgrounds appear more different from each oth-
er. The exact element ratios for each heterogeneity level are
given in Fig. 3c, and Supplementary Table S3 and also see
Fig. S5–S6. In cases where the ratio of grey shade values
happened not to be a whole number, we generated two subsets
of replicate backgrounds or targets with different amounts of
lighter or darker grey elements so that the average unique grey
elements in the replicate background images is maintained.
For example, 1:2:8:9 and 2:1:9:8 ratios represent the specialist
target ratio 2:2:8:8 for intermediate heterogeneity, and each
had a 0.5 probability of occurrence in the replicate population
(Fig. 3c).

The target size was 20.14 mm in both breadth and height.
Each target consisted of 20 elements (Fig. 3c). The specialist
target a4was made of the grey element at the same ratio as that
of backgroundA. Target b4 had the same grey element ratio as
background B. The intermediate level of background
matching can be achieved in two ways for the generalist
targets—either by altering the actual matching property of
the element on a continuous scale or by having a proportion
of elements from the extreme backgrounds. Here, we follow
procedures as in previous studies by varying the proportion of
grey colour elements present in the background (Bond and
Kamil 2006; Sherratt et al. 2007; Toh and Todd 2017). The
element ratio 5:5:5:5 represents the generalist target (a2b2)
which had an equal number of all grey elements. Exact ele-
ment ratios (black:dark grey:light grey:white) of targets for
each heterogeneity level are given in Supplementary
Table S4 and also see Fig. 3c.

Statistical analyses

We performed a Bayesian implementation of generalized lin-
ear mixed model analysis in R (R Core Team 2019) via
RStudio (RStudio Team 2015) using the function
MCMCglmm in R package MCMCglmm (Hadfield 2010,
2019). Since many targets were either left undetected or
attacked quickly, attack latency values tended to be bimodally
distributed, especially when elements were complex. Hence,
we fitted the attack latency data using a censored Gaussian
distribution (cengaussian family) following procedures in
Hadfield (2010). The attack latency values were first scaled
before the analysis to obtain a standardised metric of effect
size (Nakagawa and Cuthill 2007). In theMCMCglmmmodel,
Participant ID was included as a random effect term and target
type as the predictor variable. The MCMCglmm model was
specified as MCMCglmm (cbind (attack_latency,S) ~ target,
random= ~ participant_ID, family=‘cengaussian’). In this
model, attack_latency is the scaled attack latency (s) while S
is a binary vector indicating whether the target was attacked
(attack latency < 60s) or not attacked (attack latency = 60s).

We specified an uninformative inverse-Wishart distribu-
tion (with variance, V=1 and nu= 0.002) prior following
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(Hadfield 2010) in our MCMCglmm analysis, and the results
were not sensitive to the priors used (not shown). We ran two
chains of 510,000 MCMC iterations with a burn-in of 10,000
and a thinning interval of 500, so the effective sample size was
above 200. Convergence within chains was checked using
diagnostics in the coda package (Plummer et al. 2006).
Convergence between chains was ensured using the
Gelman-Rubin statistic (Gelman and Rubin 1992), where all
the fitted models had potential scale reduction factor less than
1.1. From the fitted models, we present the mean and 95%
confidence interval of the posterior estimates (β coefficient)
from the planned pairwise comparisons between the specialist
targets (a4 or b4 as base level) and generalists (a2b2) (Ruxton
and Beauchamp 2008). We considered a comparison signifi-
cant if the 95% credible intervals of the posterior distribution
of estimate (β) did not overlap with zero. A significantly lower
attack latency for one target over another indicates that the
former is a better strategy to cope with background matching
in a heterogeneous environment, whereas the lack of a signif-
icant difference between target types indicates that both strat-
egies are likely to co-exist. Thus, a positive value of the esti-
mate indicates that attack latency was higher for the generalist
target in comparison to the specialist, and a negative value
indicates lower attack latency for the generalist in comparison
to the specialist. All analyses were conducted separately for
each complexity type (simple or complex) for all experiments.
We present results based on the censored attack latency data
(hereafter, ‘attack latency’) in the main text. Similar results
were obtained when we categorised our data as a binary var-
iable, i.e. when a target that was not attacked was considered
to have survived (i.e. attack latency = 60 s), and targets with
other latency values were considered to have not survived
(Supplementary Fig. S17, S18).

Results

In general, the attack latency of specialist targets on their
matched background (i.e. a4 on A, and b4 on B) was higher
than that for generalist targets, and this difference between
specialists and generalists increased with the level of back-
ground heterogeneity (Supplementary Fig. S13). Further, at-
tack latency was higher in complex than in simple back-
grounds (Supplementary Fig. S14, S15). However, the level
of heterogeneity modulated the influence of background com-
plexity, which we explore in detail below for each level of
background heterogeneity and setup (size and colour)
separately.

Size heterogeneity setup

Overall, 927 out of 2700 targets were not attacked by partic-
ipants. The success of participants attacking the targets

increased with the level of heterogeneity. The number of tar-
gets successfully attacked was 460, 627 and 686 for low,
intermediate, and high heterogeneity respectively out of 900
targets each (Supplementary Fig. S17).

Low heterogeneity

No comparison between the generalist and specialist target
types was significant when the element shape was simple
(Fig. 4). For complex elements, the attack latency for gener-
alists a2b2 was significantly higher than that for both special-
ists a4 and b4 (Fig. 4).

Intermediate heterogeneity

All comparisons between the generalist and specialist target
types were non-significant irrespective of element shape (Fig.
4), except for the comparisons between the generalists a2b2

and a4 for simple elements. The generalist a2b2 had signifi-
cantly lower attack latency than the specialist a.4

High heterogeneity

All comparisons between the generalist and specialist target
types were significant irrespective of element shape (Fig. 4).
In general, the attack latency of specialists (a4 or b4) was
greater than the of generalists (a2b2).

Colour heterogeneity setup

Overall, 839 out of 2700 targets were not attacked by partic-
ipants. The success of participants attacking the targets in-
creased with the level of heterogeneity. The number of targets
successfully attacked was 578, 619 and 664 for low,
intermediate, and high heterogeneity respectively out of 900
targets each (Supplementary Fig. S17).

Low heterogeneity

No comparison between the generalist and specialist targets
was significant when the element shape was simple (Fig. 4).
However, when elements were complex, generalists (a2b2)
had higher attack latency than specialists (a4 or b4). That is,
the comparisons between the generalist a2b2 with both a4 and
b4 were significant.

Intermediate heterogeneity

None of the comparisons between the generalist and specialist
targets was significant (Fig. 4). Both generalist and specialist
targets had similar attack latency irrespective of the element
shape.
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High heterogeneity

The generalist target (a2b2) had lower attack latency than the
specialist a4 irrespective of element shape. However, for the
comparison against b4, the generalist target a2b2 had signifi-
cantly lower attack latency when the element shape was com-
plex and there was no difference on simple backgrounds (Fig.
4).

Discussion

Since searching for a target is challenging in backgrounds
with a high amount of visual features (Merilaita 2003;
Dimitrova and Merilaita 2009, 2011; Xiao and Cuthill
2016), we asked whether the optimal background matching
strategy in heterogeneous environments is affected by visual
complexity. Heterogeneity and background complexity can be
defined (and experimentally manipulated) in multiple ways.
Here, we defined background complexity in terms of pattern
element shape and heterogeneity as the visual difference be-
tween backgrounds (Fig. 3a). Using attack latency as a proxy
for fitness, we show that the shape of the fitness trade-off

curve (i.e. optimal background matching strategy) is deter-
mined by a complex interaction between the extent of visual
difference between the background (i.e. heterogeneity) and
visual complexity. First, with the increase in heterogeneity,
we found specialists were harder to find than generalists, in-
dicating that the visual distinctiveness of the backgrounds has
a strong influence on the optimal background matching strat-
egy (Merilaita et al. 1999; Houston et al. 2007; Sherratt et al.
2007; Toh and Todd 2017). Second, in line with previous
studies, we found that targets took a longer time to be attacked
when presented on a complex background than on a simple
background (Dimitrova and Merilaita 2009, 2011, 2014; Xiao
and Cuthill 2016), suggesting that background complexity can
have a strong influence on the outcome of selection for prey to
match a particular background, probably due to the constraint
on information processing by predators (Dimitrova and
Merilaita 2011). Finally, we found complexity increased at-
tack latency only when there was a threshold level of back-
ground matching. Generalist targets took a longer time to be
attacked than specialist targets in a complex, less heteroge-
neous background. In contrast, irrespective of complexity,
specialist targets are better than generalists at avoiding attack
in highly heterogeneous backgrounds.

Fig. 4 Posterior mean and 95%
credible intervals (CI) of esti-
mates (β) from MCMCglmm
model comparing attack latency
of specialist targets (a4 and b4)
against generalists (a2b2). For
simplicity, only specialist (a4 and
b4) and neutral generalist (a2b2)
targets are shown. See
Supplementary Fig. S14 for full
results including the intermediate
generalists a3b and ab3. Posterior
estimates not overlapping with
zero (red asterisks) are considered
significant. A positive value of
estimate indicates that attack la-
tency was higher for the generalist
target in comparison to the spe-
cialist one, and a negative value
indicates lower attack latency for
the generalist in comparison to the
specialist. Point and line colour
indicate whether the background
and target elements were simple
(orange) or complex (grey). The
strength of background heteroge-
neity is represented on top of the
panel and setup (size or colour)
across rows
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When backgrounds were simple and heterogeneity was
low, the specialist target had similar attack latency as general-
ists. However, the generalist targets had a higher attack laten-
cy than the specialist targets when elements were complex.
These results are similar to the scenario depicted by the blue
line in Fig. 1c, where the generalist target had higher survival
relative to the specialists, here, due to complexity. Since the
generalist target is visually intermediate between the two
backgrounds, the increase in attack latency due to complexity
is likely to be equal across both backgrounds. On the other
hand, for specialist targets, the increase in attack latency due to
complexity was higher in the matching background than in
mismatching backgrounds (Supplementary Fig. S13),
resulting in a convex trade-off curve. Therefore, our results
suggest that a complex, less heterogeneous environment fa-
vours the evolution of a generalist background matching strat-
egy. Furthermore, we found the trade-off curve to be linear
and not convex as expected when the element shape was sim-
ple, contradicting results from previous studies (Merilaita
et al. 1999; Sherratt et al. 2007; Toh and Todd 2017).
However, a convex trade-off curve that has been shown at
low heterogeneity levels in previous studies (Merilaita et al.
1999; Sherratt et al. 2007; Toh and Todd 2017) may be due to
high complexity of the background, as reported in the current
study, or because of asymmetric survival of generalists in the
two backgrounds (Toh and Todd 2017).

For intermediate heterogeneity, the trade-off curve was lin-
ear irrespective of whether the background contained simple
or complex elements (Fig. 1c, dotted and orange lines), sug-
gesting that both generalists and specialists can co-exist at
intermediate heterogeneity levels. Thus, polymorphic crypsis
can evolve when a prey animal encounters multiple distinct
backgrounds but when the backgrounds are not largely dis-
cernible. Another cognitive process—‘search image forma-
tion’—may also be responsible for the existence of polymor-
phism in nature (Pietrewicz and Kamil 1979; Bond and Kamil
1998, 2002, 2006; Punzalan et al. 2005) reviewed in Bond
(2007). In our experiments, all possible target-background
combinations were presented randomly to prevent participants
from encountering target-background combinations in the
same order. Further, the arrangements of elements in the back-
ground and targets were also unique, probably making it hard
for participants to develop a consistent search image, and
therefore, it is unlikely that search image formation would
have influenced our results. Nevertheless, further work is
needed to understand how search image formation is different
in simple and complex backgrounds, and how it affects the
optimal strategy in the heterogeneous environment.

In the simple background, we found a concave trade-off
curve when heterogeneity was high, which suggests that a spe-
cialist strategy is likely to evolve in an environment with mul-
tiple, highly distinct backgrounds (Sherratt et al. 2007; Toh and
Todd 2017). This is likely because the generalist target, which

is a compromise between the two backgrounds, can be discrim-
inated easily from both backgrounds at a very high level of
heterogeneity. On the other hand, specialists had a greater in-
crease in attack latency due to complexity compared to gener-
alists in the matching backgrounds (similar to the green line in
Fig. 1b). These results indicate that for high heterogeneity,
complexity does not benefit the generalist target and, in gener-
al, indicates that visual complexity does not necessarily benefit
highly mismatching prey. Experiments on least killifish indi-
cate that female fish with striped patterns prefer to stay on a
background containing randomly oriented and overlapping
stripes compared to a background with stripes matching the
orientation of stripes in the fish (Kjernsmo and Merilaita
2012). Therefore, it is possible that in nature, preference for
complex backgrounds could be selected for in a variable envi-
ronment, which awaits further investigation. Another area for
research is to test whether the preference for complex back-
grounds is stronger for a generalist or a specialist prey.

In experiments testing the role of complexity on back-
ground matching, Dimitrova and Merilaita (2009) used com-
mon elements between the simple and complex backgrounds
to maintain the basal level of matching between the corre-
sponding targets. In our experiments, we did not control for
such an effect as our initial pilot experiments indicated that the
effect of complexity is less pronounced (at least in humans) if
the background contained some simple elements. We also
acknowledge that the area covered by elements was overall
less in complex than in simple backgrounds because complex
elements, on average, have relatively lower area than simple
ones. Thus, our results have to be interpreted with caution
because the level of background matching may have been
different between the corresponding complex and simple
backgrounds. The difference in element area between simple
and complex elements could have further rendered the level of
heterogeneity for corresponding simple and complex back-
grounds incomparable (i.e. low, intermediate, and high het-
erogeneity may not be the same for simple and complex back-
grounds). Further, high contrast markings (or edges) play a
key role during the initial stages of image segmentation and
detection (Srinivasan et al. 1987; Merilaita et al. 2017). In our
experiments, targets occluded background elements, which
may have altered the original shape of the elements and some-
times creating prominent edges. Occlusion by the target could
have made the occluded background elements easily
detectable—especially for simple elements as they have a
low perimeter-to-√area ratio. Therefore, we cannot rule out
the possibility of participants using different search strategies
on simple and complex backgrounds. Future studies that em-
ploy a definition of complexity that is based upon natural
conditions would be of interest (e.g. Xiao and Cuthill 2016).

The size and colour of elements appear to be the main
features under strong selection in background matching
(Endler 1978, 1981, 1984; Troscianko et al. 2016; Baling
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et al. 2020). Therefore, our results should be widely applicable
to natural systems where background matching is achieved
through diverse element features. However, we modified only
a single attribute of heterogeneity (i.e. either colour or size—
Fig. 3b, c) at a time in our experiments and in nature, the
optimal strategy might be influenced by matching several fea-
tures of the background (e.g. colour over texture; Michalis
et al. 2017). We also acknowledge the limitation that we de-
fined complexity based on element shape, and under natural
conditions, many aspects of complexity may be at play (Xiao
and Cuthill 2016). However, we emphasise that our experi-
mental setup is not completely artificial, and parallels can be
drawn with natural systems. For instance, the shape of ele-
ments that make up a background, such as gravel in streams
(Fig. 3a), may be complex (Endler 1980) and thus make the
search task more difficult for a predator.

Summary and conclusions

Previous studies have suggested that background complexity
relaxes the selection to match a background accurately
(Merilaita 2003; Dimitrova and Merilaita 2009, 2011, 2014;
Xiao and Cuthill 2016), but how it affects the optimal back-
ground matching strategy on heterogeneous backgrounds
remained unclear (Hughes et al. 2019). In this study, we found
that specialists benefited more due to complexity when back-
ground heterogeneity was high, while generalists benefited
more at low heterogeneity. Hence, the effect of complexity
on optimal background matching strategy is conditional on
the level of background heterogeneity. Ours is the first study
to show that the heterogeneity of the habitat and visual com-
plexity impact the optimal camouflage strategy of organisms.
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